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Angular distributions of the intensity and the fourth-order correlation function are studied for light scattered
by acoustic waves with thermal statistics. In the case when the beam diameter exceeds the coherence length of
the acoustic wave, the fourth-order correlation function is found to contain an interference structure, whereas
the intensity angular distribution has a one-peak shape.@S1050-2947~96!50911-X#

PACS number~s!: 42.50.Ar, 42.25.Hz

Does the intensity correlation function~the fourth-order
correlation function, in Glauber’s notation! provide any in-
formation that is not contained in the intensity distribution?
For coherent light and for light with thermal statistics, the
answer is at first sight trivial: higher-order intensity moments
can be expressed via the average intensity. On the other
hand, the well-known experiment by Brown and Twiss@1#
demonstrated that the measurement of the intensity correla-
tion function has some advantages over the measurement of
the field correlation function. In particular, it was success-
fully used for determining the angular diameters of stars@2#.

There is no contradiction in these two statements. The
fourth-order correlation function differs essentially from the
second-order one, whenever the light under study contains a
superposition of independent fields. As a simple example,
one can consider the interference from two monochromatic
sources with thermal statistics: if the sources are indepen-
dent, they form no second-order interference pattern, but the
fourth-order correlation function contains interference
fringes, which can be used for measuring the angular dis-
tance between the sources@3#.

In the present paper we show how the measurement of the
intensity correlation function of light scattered by acoustic
waves can provide information that is not contained in the
intensity distribution. The experimental setup is shown in
Fig. 1. A single-model He-Ne laser beam, whose aperturel
can be varied by means of the diaphragmD0 within the
range 0.8–3 mm, is directed into a block of fused silica~FS!.
In the silica the beam is scattered by an acoustic wave propa-
gating normally to the beam. The acoustic wave has quasith-
ermal statistics, for it is excited in the following way. A
photomultiplier tube~PMT0! operating in a photon counting
regime is illuminated by the radiation of a stabilized light-
emitting diode~LD!, and its amplified pulses form a continu-
ous spectral distribution in the frequency range from 10 to
100 MHz. This ‘‘white noise’’ is sent to a narrow-band ac-
tive filter ~AF!, which amplifies the signal within the band of
d f52.5 MHz with central frequencyf5V/2p550 MHz.
According to the principles of statistical radiophysics, such a
procedure gives a random signal with Gaussian~thermal!
statistics. The spectrum of the electric signal is analyzed by
means of a spectrum analyzer~SA!. This signal is fed to a
piezoelectric element~PE!, which is used to generate the
acoustic wave in the silica. Thus, we obtain a quasithermal
acoustic wave with coherence length 1.5 mm. Light scattered
by this quasithermal wave must also possess thermal statis-

tics. This fact, perhaps obvious enough, is to be discussed in
detail in Ref.@4#; for its theoretical proof, see Ref.@5#.

Light scattered at the Bragg angle is analyzed by means
of the Brown-Twiss interferometer. It is split by a beam
splitter ~BS! and the two beams are fed to a pair of photon
counting photomultipliers~PMT1 and PMT2!. The output
pulses of the PMT’s are sent to a digital correlator CORR
that provides the coincidence counting rateRc and the count-
ing rates of both detectorsR1 and R2 . An IBM personal
computer calculates the normalized second intensity mo-
ment, the bunching parameterg(2)5^I 2&/^I &2, which is re-
lated toRc asg

(2)5Rc /R1R2t, time parametert being de-
termined by the resolution of the correlator. The distance
between the sample and each of the detectorsL55 m; that
is, the scattering is observed in the far field zone. A 0.4-mm
diaphragm ~D1! at the input of PMT1 selects radiation
scattered at the Bragg angle. At the input of the other PMT
the angle of scattering is scanned by means of an adjustable
0.4-mm diaphragmD2 connected by fiberF with the PMT.
The diaphragm can be displaced within the vicinity of 15
mm, this corresponding to the scattering angle variation
by 0.2°.

The experimental results are represented byRc /R1R2 and
R2 plotted against the coordinate ofD2. The first value is
equal tog(2) multiplied by the effective coincidence resolu-
tion t, which was equal to 7.5 ns. We obtained a set of such
dependences for the following diameters of the pump beam:

FIG. 1. The experimental setup. LD, light-emitting diode;
PMT0, PMT1, PMT2, photomultiplier tubes; AF, active filter;
SA, spectrum analyzer; PE, piezoelectric element; FS, fused
silica; D0, diaphragm with variable diameter; BS, beam splitter;
D1 and D2, pinholes;F, fiber; CORR, correlation circuit; PC,
computer.
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0.8, 1.5, 2, 2.5, and 3 mm. For the beam of 0.8 mm width
the normalized correlation function has rather weak de-
pendence on the angle of scattering, and the bunching pa-
rameter is near 2 in the whole area where the signal is
observed. For largerD0 apertures the normalized correlation
function has oscillating angular dependence. At the same
time, corresponding angular intensity (R2) distributions
contain no or almost no oscillations. Three typical plots re-
lating to the beam diameters 1.5, 2, and 2.5 mm are shown
in Fig. 2 ~separate points!. The oscillations become more
frequent with the increase of the aperture ofD0. For
the beam diameter 1.5 mm, the oscillations become less fre-
quent.

In order to describe the oscillating behavior of the corre-
lation function, we calculate the total field scattered at a
given direction. The scattering volume is formed by the in-
tersection of the pump beam with the area where the acoustic
wave is propagating. Due to the geometry of the experiment,
the scattering volume has cylindrical shape, its axis coincid-
ing with the pump direction, and the diameter is determined
by the size ofD0 ~see Fig. 1!. The longitudinal size of the
cylinder is much larger, so the angular spectrum of scattering
can be described in terms of transverse wave-vector mis-
match D[ks

z1ka, where ks
z is the wave-vector transverse

component for the scattered wave.~The axisz is transverse
for the pump propagation; it coincides with the direction of
the acoustic wave.! The wave vector of the acoustic wave is
denoted byka . The acoustic signal is determined by the volt-
age applied to the piezoelectric element. The voltage de-

pends on time as a random Gaussian signal and can be writ-
ten in the form

U~ t !5U0~ t !exp@ if~ t !#exp@ iVt#,

U0(t) andf(t) representing the random amplitude and ran-
dom phase of the signal, respectively. Hence, the acoustic
wave propagating alongz is also characterized by the ran-
dom amplitudeQ0(z) and random phasef(z),

Q~z!5Q0~z!exp@ if~z!#exp~ ikaz2 iVt !. ~1!

Its coherence lengthL is determined byd f and equals 1.5
mm.

The scattered light is then described by the analytic signal
@6#,

Es~D!}E
2 l /2

l /2

Q0~z!exp$@ if~z!1 iDz#dz%. ~2!

The integration is done over the aperture of the diaphragm
D0. For simplicity we consider here the case of a one-
dimensional diaphragm, although in the experiment the dia-
phragm is round.

The intensity measured by each PMT can be written as

FIG. 2. Upper plots: angular distributions of the normalized correlation function; lower plots: normalized intensity distributions for the
diffracted beam. Experimental points are shown as squares; theoretical dependences are plotted as solid curves. Displacement of fiber 2 in
the far field zone corresponds to the difference between the angle of observation and the Bragg angle. Diameters of the diaphragmD0 are
1.5 mm~a!, 2 mm ~b!, and 2.5 mm~c!.
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l /2

^Q0~z!Q0~z8!exp$ i @f~z!2f~z8!#

1 iD~z2z8!%&dz dz8, ~3!

the indexi51,2 relating to the PMT. The intensity correlator
g(2)5^I 1I 2&/^I 1&^I 2& can be calculated quite similarly.

We use a Gaussian correlation function for the distribu-
tion of the quasithermal acoustic wave,

B~z2z8![^Q0~z!Q0~z8!exp$ i @f~z!2f~z8!#%&

5
1

L
A2

p
expF2~z2z8!2

2L2 G . ~4!

After simple calculations, we obtain the following expres-
sions for the intensity and the correlation function:

I i52E
0

l

yB~y!~ l2y!cos~D i y!dy, g~2!511
uJ12u2

I 1I 2
, ~5!

where

J125
2

DE0
l

B~y!@sin~D1y1D l /2!2sin~D2y2D l /2!#dy,

D[D12D2 .

Distributions ofI i andg
(2) have been calculated numerically

as functions of the dimensionless phase mismatchx5DL.
Note that the phase mismatchD i is related to the displace-
ment of the corresponding PMT,xi , as D i52pxi /lsL,
wherels is the scattered light wavelength~633 nm!.

The calculated intensity and correlation function distribu-
tions depend on the ratiol /L. When the beamwidth is
smaller than the coherence length of the acoustic wave, then
light scattered at different points of the scattering volume
interferes and forms an oscillating intensity distribution close
to sinc(D l ). At the same time, the acoustic wave amplitude
fluctuates in this case synchronously in the scattering vol-
ume, which is smaller than the coherence volume. Then the
normalized correlation function should be equal to ‘‘2’’ in a
wide angular range, as for a pointlike thermal source. This
explains why for small diaphragm apertures~0.8 mm! we
observed a broad distribution of the normalized correlation
function, its maximal value being equal to 2. As the beam
diameter becomes larger than the coherence length of the
acoustic wave, the intensity line shape loses its interference
character and acquires the form of a single peak. However,
according to our calculations, the corresponding normalized
correlation function should have noticeable oscillations even
at values ofl /L about 3–5. The normalized correlation func-
tion equals 2 in its principal maximum; additional peaks are
lower. As the ratiol /L grows larger, the additional peaks
become weaker, and atl /L@1 both the intensity and the
correlation function distributions have a one-peak shape with
half width equal toL in the case of intensity andl in the case
of the correlation function.

The experimental dependences presented in Figs. 2~a!–~c!
correspond tol /L equal to 1, 1.3, and 1.7, respectively. For
comparison, corresponding theoretical dependences calcu-
lated according to Eq.~5! are plotted in the same figure as
solid curves. We had to take into account the noise~parasite
Poissonian light!. The signal-to-noise ratio, according to our
measurements, was of order 100 in the maximum, and there-
fore the noise did not influence the intensity distribution.
However, this noise turned out to be important for the cor-
relation function distribution. It leads to the fast decay of
correlation at large values of phase mismatch. The asymmet-
ric shape of the correlation function distribution can be ex-
plained by a small phase mismatch in channel 1.~The corre-
sponding fiber displacement is measured from the position of
the correlation function central maximum; for all three spec-
tra it was between 0.5 and 1 mm.! Also, the theoretical
curves take into account the finite size of the measurement
apertures~0.4 mm!.

Thus, the oscillating character of the correlation function
manifests itself under conditions when the intensity distribu-
tion shows no interference effects. It follows that measure-
ment of the intensity correlation function together with the
intensity distribution provides information about both the co-
herent length of the scattering excitations and the size of the
scattering volume. To illustrate this, we measured the coor-
dinates of the minima at the left-hand side of all threeg(2)

distributions from Fig. 2.~The right-hand-side minima are
too few to make any conclusions.! According to the calcula-
tions, the distances between the minima should be inversely
proportional to the beam diameterl : xn2xn115p/ l . Calcu-
lating the values ofl from the average distances between the
minima in Figs. 2~a!–~c! we obtain 1.4360.08, 2.160.1, and
2.460.2, respectively. Thus, the angular distribution of the
correlation function indeed provides information about the
scattering volume.

In our experiment, we used externally induced acoustic
waves with quasithermal statistics. The same consideration
can be given to any phase-matched scattering by equilibrium
excitations. Certainly, in this case measurements of the in-
tensity correlation function would require fast~picosecond!
electronics. However, we hope that future experimental stud-
ies would allow this technique to be applied to the investi-
gation of equilibrium excitations in spatially limited media.
The observed oscillations have much in common with the
speckles in the mean-square intensity distribution for light
emitted by an incoherent source, calculated in Ref.@7#. Fi-
nally, it should be stressed that the fourth-order interference
structure observed in the present paper has a purely classical
nature. Fourth-order interference of fields with nonclassical
correlation would provide a larger visibility@8,9#.
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