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Superbunched light in a feedback loop with random properties
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Abstract

The statistical properties of light in a novel type of electrooptic feedback loop are studied both theoretically and
experimentally. The feedback under consideration is closed via the photodetector shot-noise and has, therefore, a random
character. The random fluctuations of the feedback factor lead to enormous fluctuations of light intensity, i.e., to the
generation of superbunched light in the feedback loop. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Feedback is an important part of every amplifier, sta-
biliser, or generator. That is why different radiotechnique

w xdevices with a feedback loop 1,2 as well as mathematical
models of linear and nonlinear self-oscillation systems
w x3,4 are studied in detail. However, usual radiophysics
theories can be insufficient for explaining the properties of
light in certain electrooptic devices with a feedback loop,

w xwhich have been studied during the last years 5–20 .
The possibility of light transformation in a feedback

w xloop is considered since 1986 when Yamomoto et al. 5
w xand Mashida and Yamomoto 6 obtained the reduction of

photocurrent fluctuations below the shot-noise limit by
means of an electrooptic negative feedback. This result

w xwas repeated by Fofanov 7–9 in 1988. The authors of
w xRefs. 10,11 have shown that the Heisenberg uncertainty

relation for light can be changed by the feedback loop.
Masalov et al. confirmed this hypothesis experimentally in

w xRef. 12 , where the photocurrent fluctuations were re-
w xduced below the standard quantum limit. In Ref. 11 , the

term ‘supersqueezed’ was proposed for such light.
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Such a detailed theoretical analysis of the quantum
properties of light is possible only for linear negative
feedback, where all fluctuations are small and one can use
the spectrum analysis. In more complicated nonlinear cases

w xsuch as optical systems with multiplicative noise 17–19
w xor optical turbulence 20 , only a classical analysis based

on the mathematical theories of nonlinear self-oscillation
w x w x3,4 or the dynamic chaos 21 is possible.

In the present paper, we study both theoretically and
experimentally the statistical properties of light in a feed-
back loop with unusual features: the feedback is closed via
the photodetector shot-noise and, hence, has a random
character. We shall show that in this feedback loop, light
has superbunched properties with anomalously large inten-
sity fluctuations.

This paper is organized as follows. In Section 2, we
consider the main features of our feedback and show that
the feedback factor is a random variable. Section 3 is
devoted to the linear analysis of light properties in the
feedback loop. Such analysis leads to a contradiction,
which can be solved only by taking into account the
feedback nonlinearity. The Fokker–Planck equation for the
light intensity distribution function in the nonlinear case is
obtained and solved in Section 4. The experimental results
are considered in Section 5. Finally, we discuss the main
properties of light and electric signal in the system under
consideration.

0030-4018r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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2. Main features of the feedback loop with random
character

Consider the scheme in Fig. 1. The laser beam is
diffracted by an ultrasonic wave in the acousto-optical

Ž .modulator AOM . The diffracted beam with the intensity
Ž . Ž .I t is fed to a photomultiplier tube PMT . The photocur-

Ž . Ž .rent i t is amplified by a resonance amplifier RA with
the central frequency V and the bandwidth D. The0

Ž . Ž . iV 0 telectric signal w t sw t e excites the ultrasound in0
w xthe AOM. This feedback differs from usual systems 11,12

by the absence of a reference beam on the PMT.
The properties of the amplitude of the diffracted light

Ž .beam E t are defined by the properties of the electric
Ž . Ž . Ž .signal w t : E t s´ E w t , where E is the amplitudeP 0 P

of the laser radiation and ´ is defined by the diffraction
efficiency; i.e., the optical frequency v of the diffracted
light shifted by V , and the amplitude of light depends on0

Ž .the amplitude of the electric signal w t . The PMT pho-0

tocurrent is proportional to the diffracted light intensity
Ž . Ž . 2 < Ž . < 2i t sb I t sb´ I w t . Therefore, the fluctuationP 0

spectrum of the photocurrent depends on the intensity
< Ž . < 2fluctuation spectrum of the electric signal w t . How-0

ever, the width of this spectrum is defined by the band-
width of RA D<V . Thus, we can see that the photocur-0

rent fluctuations have frequencies much less than the
central frequency V and cannot be amplified by the RA.0

On the other hand, in the experiment the feedback is
closed. How can it be?

To eliminate this contradiction we must find a source
of photocurrent fluctuations at frequencies near V . This0

source is the PMT shot-noise, i.e., the discrete pulse
structure of the photocurrent. The shot-noise is a random
signal with zero mean value and with the mean-square
variation proportional to the instant value of the regular

² 2: Ž . Ž .part of the photocurrent d i ; i t sb I t . The spec-
trum of the shot-noise is defined by the Fourier transfor-
mation of a short single photopulse and has a maximum
frequency f4V . Thus, the RA amplifies the spectral0

components of the shot-noise near the central frequency
V ; these components are modulated by slow fluctuations0

of the diffracted light intensity.
Thus, one can see that the feedback is closed via the

PMT random shot-noise and, hence, diffracted light has a

Fig. 1. The scheme of the feedback loop under consideration:
AOM – acousto-optical modulator; PMT – photomultiplier tube;
RA – resonance amplifier.

random character. It is necessary to use the terms of the
statistical optics for describing the properties of such light.
Usual laser light has coherent statistics whose intensity
does not fluctuate. On the other hand, the radiation of any
hot medium has thermal statistics with an exponential
intensity distribution function. As a measure of light inten-
sity fluctuations, it is convenient to use its variation or the
normalised second moment of intensity

² 2: ² :2g s I r I , 1Ž .2

which is equal to unity for coherent light and to two for
w x Ž .thermal light 22 . Light with g -1 )2 is called2

Ž .antibunched superbunched light. We shall show that light
in the considered feedback loop has superbunched charac-
ter with g 42.2

First let us discuss the properties of the diffracted light
if the PMT is illuminated by coherent light. In this case,

Ž .the electric amplitude w t has Gaussian character because
w xthe RA amplifies the stationary white shot-noise 22 .
wTherefore, the diffracted light has thermal statistics 23–

x25 . Thus, our electrooptic loop transforms light with
nonfluctuating intensity into thermal light with g s2.2

Then we can say that the feedback factor has a random
character with an exponential distribution function, and the
variance of the feedback factor is equal to its mean value.
Fluctuations of this feedback factor cause enormous fluctu-
ations of the light intensity in the feedback loop, i.e., lead
to the generation of superbunched light. Now we formulate
the mathematical model of our feedback loop in order to
express the mean value of the feedback factor via the
parameters of the AOM, PMT and RA.

3. Theoretical analysis of the feedback loop in the
linear approximation

3.1. Mathematical model: mean Õalue of the feedback
factor

One can describe all processes in the feedback loop in
Ž . Ž . Ž .terms of the three functions I t , i t , w t . It is simple to

write connections between them using the classical statisti-
cal optics as listed below.

Ž . Ž . Ž . iV 0 t1 The diffracted electric field E t s´ E w t e .P 0

Then

2 < < 2I t s´ I w t , 2Ž . Ž . Ž .P 0

where I is the intensity of the laser beam.P
Ž .2 The Fourier transformation of the electric signal

1 `
iV t iVt Lw V s w t e d tsK V e i V , 3Ž . Ž . Ž . Ž . Ž .H'2p y`
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where t denotes the delay time in the electrooptic loopL
Žit is convenient to take into account the full delay time in

.this equation . Let the transmission function of the RA,
Ž .K V , be Lorentzian:

D2

K V 'K . 4Ž . Ž .0 2 24 VyV qDŽ .0

Ž .3 At last, the photocurrent consists of photocurrent
pulses:

n

i t s H ty t , 0F t FT 5Ž . Ž .Ž .Ý j j
js1

Ž . Ž 2 2.where H t sA exp yt r2t is the form of a single0

pulse and t is a random moment of the pulse appearance.j

Suppose T is less than the typical time scale of intensity
fluctuations Dy1, then we can use the Poissonian distribu-
tion function for a number of photocurrent pulses n ap-
pearing during the time interval T :

nyb T IŽ t .P n se b TI t rn!. 6Ž . Ž . Ž .Ž .T

By b we denote the efficiency of the PMT. One can
express any moments of the photocurrent in terms of light

Ž . Ž .intensity correlation functions, using Eqs. 5 and 6 . For
example, the autocorrelation function of photocurrent is:

X X2² : ² :i t i t sbt A 2pbt I t I tŽ . Ž . Ž . Ž .0 0

Xtq t2X 2'q p exp y ty t r4t I .Ž .� 40 ž /2

7Ž .

Here the first term corresponds to slow light intensity
fluctuations, which cannot be amplified by the RA. On the
other hand, the second term corresponds to the PMT
shot-noise and determines the power of the electric signal
< Ž . < 2 Ž . Ž . Ž .w t after the RA. Combining Eqs. 2 – 4 and 7 , we0

obtain the linear equation for the time evolution of the
light intensity mean value in the feedback loop:

`
yDtI t sDC I tyt yt q I e dt , 8Ž . Ž .Ž .Ž .H L 0

0

where

p 2 22 yt V0 0Cs ´ AK b I t t D e 9Ž .Ž . Ž .Ž .0 P 0 04

is the mean value of the feedback factor, and I is the total0

value of the additive noise caused by all feedback compo-
nents in light intensity units. The stationary solution of Eq.
Ž .8 is

C
Is I , C-1, 10Ž .01yC

i.e., the feedback amplifies the noise of the RA, the PMT
dark noise and the light of external sources that are fed to
the PMT. Now, in order to analyse the light intensity
fluctuations in the feedback loop, we must take into ac-
count the randomness of the feedback factor.

3.2. Insufficiency of the linear approximation: infinite
moments

Ž .In Eq. 8 , the light intensity in the time interval from
tyt yDy1 to tyt has main influence on the lightL L

intensity at the moment t. However light intensity cannot
change noticeably during this time interval, because the
width of the fluctuation spectrum for the light intensity is

Ž .less than D. Therefore, we can rewrite Eq. 8 approxi-
mately as a recurrent relation,

I t sj I tyt q I , 11Ž . Ž .Ž .Ž .L 0

Ž .where j t is a random feedback factor with an exponen-
tial distribution function, defined by the mean value C:

P j sCy1eyj r C . 12Ž . Ž .
For such a relation, it is simple to obtain the equation for

Ž .the light intensity distribution function P I :

P y I` Ž .
P I s exp y d y. 13Ž . Ž .H ž /C yq I C yq IŽ . Ž .0 0 0

Ž .Solving this equation is complicated; however, Eq. 13
gives the possibility to determine the moments of the light

Ž . nintensity. Multiplying both sides of Eq. 13 by I and
integrating with respect to I and y, we get

nn n² :I sn!C Iq I . 14² : Ž .Ž .0

Ž . Ž .The expression 10 can be derived from Eq. 14 for
Ž² : .ns1, which has physical meaning I )0 for the mean

value feedback factor 0-C-1. At CG1, the feedback
loop operates as a generator rather than an amplifier, and it
is necessary to take into account the nonlinearity of the
feedback loop. Similarly, for ns2 one can obtain the
second normalised moment of light intensity as a function
of C,

2 1yC 2Ž .
g C s . 15Ž . Ž .2 21y2C

According to this relation, light in the feedback loop has
w xthermal character for weak feedback C<1 23–25 , but

its intensity fluctuations increase with the feedback factor
' Ž .and become infinite at Cs1r 2 f0.71. From Eq. 14 ,

Ž n.y1one can see that there is a term 1yn!C in the
expression for the nth moment of the light intensity, i.e.,

n'this moment becomes infinite at Cs1r n! , which tends
to zero at large n. Hence for any C)0 there exists n such

² n:that I is infinite. In such situation, we must insert the
nonlinearity into the model of the feedback loop for any
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C, which limits intensity fluctuations. Only a nonlinear
model can describe our feedback loop correctly.

4. Nonlinear description of the feedback loop: the
Fokker–Planck equation

Now we change the light intensity under the integral in
Ž . Ž .Eq. 8 to the nonlinear function F I , which cannot be

greater than a certain value. This function describes the
feedback nonlinearity,

`
yDtI t sDj t F Iq I e dt . 16� 4Ž . Ž . Ž .Ž .H 0

tyt yt0 L

Ž . Ž Ž ..Here j t is a random feedback factor Eq. 12 ,
which is delta-correlated because the shot-noise correlation
time t is shorter than other time scales of the feedback0

y1 Ž .loop t and D . Solving the nonlinear Eq. 16 is veryL

complicated and cannot be obtained by direct methods.
Consider, therefore, the equation for the electric current

Ž .x t in the RA oscillatory circuit which is influenced by
the random shot-noise:

xqDxqV 2 xsh t . 17Ž . Ž .¨ ˙ 0

Ž .Here, h t is a random Gaussian delta-correlated func-
² Ž .2: 2 Ž < Ž . < 2 .tion with variance h t sV DCF x tyt q I .0 L 0

Ž .Using Eq. 17 , one can obtain an integral equation for the
< Ž . < 2time evolution of the squared current amplitude x t ,

Ž .which is equivalent to Eq. 16 . On the other hand, proper-
Ž .ties of the random process x t can be analysed by means
w xof the Stratonovich method 3,4 for the investigation of

the fluctuations in nonlinear self-oscillation systems.
Ž . Ž .Rewrite Eq. 17 for the quadrature components x t and1

Ž . Ž . Ž . Ž . Ž . Ž .x t , such that x t sx t cos V t qx t sin V t :2 1 0 2 0

D D
x q x sh t , x q x sh t , 18Ž . Ž . Ž .˙ ˙1 2 1 2 2 22 2

Ž . Ž .where the random Gaussian noise sources h t and h t1 2

with zero mean values have the following correlation
functions:

² X : ² X :h t h t s h t h tŽ . Ž . Ž . Ž .1 1 2 2

D
X2 2 <s CF x qx q I d ty tŽ .� 4Ž .tyt1 2 0L2

² X :h t h t s0. 19Ž . Ž . Ž .1 2

Suppose the delay time t is negligible; then we canL

obtain the Fokker–Planck equation for the distribution
w xfunction of quadrature components 3,4 ,

2E P x , x EŽ .1 2 Ž .1sy K P� 4Ý i
E t E xiis1

2 21 E
Ž .2q K P , 20Ž .� 4Ý i j2 E x E xi ji , js1

D
Ž1.K x , x sy xŽ .i 1 2 i2

21 E`

² :q h t h tqt dtŽ . Ž .HÝ i j2 E xy` ijs1

D d
s x C F Iq I y1 ,Ž .i 0½ 52 d I

`
Ž2. ² :K x , x s h t h tqt dtŽ . Ž . Ž .Hi j 1 2 i j

y`

D
s CF Iq I d ,Ž .0 i j2

< < 2 2 2where Is x sx qx .1 2
Ž .From the stationary solution of Eq. 20 we get the

distribution function of light intensity

2 d I
P I sQ exp y , 21Ž . Ž .H

C F Iq IŽ .0

where Q is a normalisation constant. As we shall see in
Ž .the next section, the function F I must be taken in the

Ž . Ž .form F I s Ir 1q IrI , which is bounded above by theS

constant intensity I . Using this function, we obtainS

2rCyIr ISe
P I sQ . 22Ž . Ž .

Iq I0

Thus we obtain the distribution function for the light
intensity in the feedback loop. Now we can evaluate any
moment of light intensity for any given feedback factor C

Fig. 2. Theoretical dependence of the second normalised intensity
moment g on the feedback factor C for different ratios I r I :2 0 S
Ž . y3 Ž . y4 Ž . y4a 10 ; b 3=10 ; c 10 .
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and the ratio I rI . For example, the dependence of the0 S

second normalised moment on the feedback factor C for
different I rI ratios is shown in Fig. 2. In the next0 S

section, we compare these theoretical results with the
experimental data.

5. Experimental results: intensity correlation and
photocounts statistics

5.1. Measurements of the mean Õalue feedback factor C

The scheme of the experimental setup is shown in Fig.
3. The He–Ne laser beam is diffracted by the ultrasound in
the AOM. The diffracted beam is fed to the PMT. The

Ž .photocurrent is amplified by the broad-band amplifier BA
and by the RA with the central frequency V s50 MHz0

and the bandwidth Ds3 MHz. The amplified electrical
signal excites the ultrasonic wave in the AOM. The feed-
back factor value is controlled by the system of crossed

Ž .polarisers CP .
The mean value of the feedback factor C can be

defined from the dependence of the diffracted light inten-
sity I on the light intensity I at the PMT input in thed in

Ž .opened feedback loop. The typical dependence I I isd in

shown in Fig. 4. At low input intensity, I is proportionald

to I . By definition, the feedback factor C is equal to thein

proportionality coefficient in this region. Further, the feed-
back nonlinearity starts to limit the diffracted light inten-

Fig. 3. The scheme of the experimental setup. I – feedback loop:
AOM – acousto-optical modulator, BS – beam-splitter, CP –
crossed of polarisers, PMT – photomultiplier tube, BA – broad-

Ž .band amplifier DV G100 MHz , RA – resonance amplifier
Ž .V s50 MHz, Df3 MHz ; II – Brown–Twiss intensity inter-0

Ž .ferometer: CS – coincidence scheme T f1 ns , C1, C2, C3,C

C4 – photocount counters; III—Device for the measurement of
Ž .the photocount statistics: G—gate t f0.5 ms .

Fig. 4. A typical dependence of the diffracted light intensity I ond

the light intensity at the PMT input I in the opened feedbackin
Ž .loop b – the same, in a smaller scale ; and the theoretical

Ž .dependence 23 with Cf65 and I f0.1.S

sity as input light intensity increases. This dependence is
well described by the nonlinear function

Iin
I sCF I sC , 23Ž .Ž .d in 1q I rIin S

which was used in the previous section. The slow decrease
Ž .of I at I 4 I in Fig. 4 b was not taken into account ind in S

the theoretical model.

5.2. Intensity correlation: the second moment g2

Part of diffracted light in Fig. 3 was extracted from the
Ž .feedback loop by means of a beam-splitter BS . The

properties of the intensity fluctuations of this light beam
were studied by means of the Brown–Twiss intensity

w xinterferometer 26,27 and by the method of photocounts
w xstatistics 28 . We used the Brown–Twiss interferometer

Ž Ž ..Fig. 3 II , that consists of a beam-splitter, two PMTs and
Ža coincidence scheme with the characteristic time T f1C

.ns , for measuring the second normalised intensity moment

N322² : ² :g ' I r I s , 24Ž .2 N N T1 2 C

where N , N are the photocount rates at two PMTs and1 2

N is the coincidence counting rate. The experimental3
Ž .dependence g C , shown in Fig. 5, corresponds well to2

Ž .the theoretical one, obtained from Eq. 22 for I rI s0 S

3.2=10y4.

5.3. Photocounts statistics

In the previous sections, we saw that for the feedback
factor C;1, the second normalised moment for the light
in the feedback loop g 41, i.e., the intensity variance is2
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much higher than its mean value. Then the intensity distri-
bution function must have a very long ‘tail’. Such a tail
can be observed by the method of the photocounts statis-

w xtics 28 . To this aim, the output light beam was fed to an
Ž Ž .. Ž .additional PMT Fig. 3 III . A fast gate G operated by

CAMAC allows to measure the number of photocounts
appearing during a short time interval tf0.5 ms;Dy1.
The experimental distribution function of the photocount

Ž . Ž .number P n is shown in Fig. 6 solid dots . For compari-t

son in the same graph we show the Poissonian distribution
Ž .function corresponding to the coherent light crosses , with

the same mean value. One can see that the experimental
function is constant approximately for 2FnF7 whereas
the Poissonian function decreases very rapidly.

The theoretical photocount distribution function can be
Ž . w xobtained from Eq. 22 using the Mandel formula 22 :

n
bt I` Ž .

ybt IP n s P I e d I. 25Ž . Ž . Ž .Ht n!0

However, we have to take into account the dead time of
the PMT t (80 ns, which is only six times less than thed

gate time t . To obtain the effective distribution function
efŽ .P n , we must multiply the real distribution function byt

w xthe dead-time matrix 28 :
`

ef nP n s p P k , 26Ž . Ž . Ž .Ýt k t

ksn

where the matrix pn has the following properties:k

pn shng kyn 1yg . . . 1y ny1 g ,Ž . Ž .Ž .k k

h0 s0; hn s0 at n)k ,k k

h1 s1; hn snhn qhny1 , 27Ž .1 k ky1 ky1

Žwhere gst rtf0.16. The theoretical points open cir-d
. Ž . Ž . Ž .cles in Fig. 6 were obtained from Eqs. 22 , 25 – 27 ,

where Cs1, I rI s10y4 and the PMT efficiency0 S

b was chosen such that the mean photocount number

Ž y4 .Fig. 5. The experimental and theoretical I r I s3.2=100 S

dependence of the second normalised intensity moment g on the2

feedback factor C.

Fig. 6. The photocount distribution function for the light in the
Žfeedback loop solid dots correspond to experiment, open circles

. Ž .to theory and the Poissonian distribution function crosses with
the same mean photocount number nf0.01.

efŽ .nsÝ jP j was equal to the experimental one. From thist

graph one can see that the theoretical distribution function
Ž .22 describes the experimental long tail of the photocount
distribution very well. This tail demonstrates the super-
bunched properties of light in the feedback loop: there is a
considerable possibility to find any number of photocounts
nF7 for very small light intensity nf0.01, i.e., the light
intensity fluctuations are much higher than the intensity
mean value. Observation of the large photocounts number
n)7 is impossible due to the dead-time effect.

6. Conclusion

In this paper we have studied the statistical properties
of light in an electrooptical feedback loop, which is closed
via the PMT shot-noise and has, therefore, a random
character. It was found that this light has superbunched
properties, i.e., the light intensity variance is much higher
than the intensity mean value. The degree of superbunch-
ing can be controlled by the value of the feedback factor C
Ž Ž ..Eq. 9 , which can be easily changed experimentally

Ž .using the system of polarizers Fig. 3 .
In the theoretical description, we have used the

w xStratonovich method 3,4 , which can be applied for our
feedback loop under the assumption of negligibly small
delay time t . This assumption is not valid since t 0Dy1;L L

Ž .nevertheless, the stationary solution of Eq. 20 for the
light intensity distribution function describes very well the
experimental results obtained by means of the Brown–
Twiss interferometer and the photocount statistic method
Ž .Figs. 5 and 6 . However, for studying the light intensity
autocorrelation function one has to use an equation, that
takes into account the delay time of the feedback loop.

Finally, note that the generation of superbunched light
in the feedback loop can be explained by the classical
statistical optics, i.e., superbunching is not a quantum
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w xeffect in contrast to squeezing 10,11 and antibunching
w x22 .
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