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Investigations into photorefraction, i.e., into the pro-
cesses of light-induced change in the refractive index of
a medium, have allowed one to discover many new
photorefractive materials in the last several decades and
find numerous applications for them [1, 2]. However,
with the development of the hologram record technique
and information storage in such media, it has become
clear that wave-mixing processes may be much more
complicated than was assumed previously [3].

In this work, we discuss certain features of wave
mixing in a photorefractive medium in the course of
recording volume holographic grating by two crossing
light beams. The time dependence of the diffraction
efficiency of the recorded grating, as a rule, is smooth
and practically monotonic at low light intensities or in
media with weak photorefractive nonlinearity [4, 5].
However, an increase in the light intensity or the use of
stronger nonlinearities may be accompanied by sharp
differentials in the diffraction efficiency and their sen-
sitivity to the experimental conditions. In this work, it
is shown that such a jumpwise behavior of diffraction
efficiency of a volume holographic grating is a conse-
quence of the formation of a regular spatiotemporal
structure in the course of recording grating in an inertial
photorefractive medium.

 

Description of the model.

 

 We consider the standard
model of recording holographic grating in a medium
with photorefractive response. Two coherent light
beams intersect in a medium to form an interference
pattern. Due to the diffusion or photovoltaic effect, the
electric-charge carriers are rearranged in the medium to
produce an electrostatic field which modulates the
refractive index through the electrooptical effect.
Therefore, the state of light and medium is specified by
three complex field variables: slowly varying field
amplitudes of two beams 
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) and spatially oscil-
lating amplitude of electrostatic field 

 

�

 

(

 

x
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). In the
approximation of a perfectly transparent medium, their

spatiotemporal evolution is described by a set of partial
differential equations, which can be written in the form
[6–8]
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response time of the medium, 
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 is its dielectric constant,
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 is the effective photore-
fraction coefficient, which includes a combination of
the photovoltaic and electrostatic tensor components
and the diffusion coefficient.

From the second and third equations, it follows that
the total light intensity in the system is constant: 
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. Taking into account this conservation
law, it is convenient to make the change of variables 
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 = sin(
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/2). In the new
variables, system (1) takes the form
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time and length scales
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are introduced. Therefore, the behavior of the system
depends qualitatively on a single parameter 
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, which
determines the ratio between the real and imaginary
components of the photorefraction coefficient 

 

γ

 

. The
behavior of all remaining parameters can be taken into
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account by changing the space and time scales. In par-
ticular, the variation of light intensity 

 

I

 

0

 

 is equivalent to
changing the thickness of photorefractive medium.

It is known [9, 10] that the recorded holographic
grating for real 

 

γ

 

 is not shifted relative to the interfer-
ence pattern. In this case, stationary energy exchange is
impossible; after the termination of recording grating,

the beam intensities in the photorefractive medium are
not rearranged. In all other cases, the intensity of one
beam will transfer to another (in our notation, energy
transfer occurs from the first to the second beam if 0 <

 

ϕ

 

 < 

 

π

 

).
In the case of imaginary photorefractive nonlinear-

ity 

 

ϕ

 

 = 

 

π

 

/2 (which corresponds, in particular, to the dif-
fusional photorefraction mechanism), the system can
be simplified, because there is a stable solution of the
form arg
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 = 
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n

 

 – 
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 = const. The rest of the set of
Eqs. (2) amounts to the equation

(4)

which has the form of a modified sine-Gordon equation
with the additional first derivative. The analytic solu-
tion to this equation and to the complete set of Eqs. (2)
cannot be found. For this reason, we present here only
numerical solutions.

 

Results of numerical integration.

 

 The set of
Eqs. (2) consists of four real equations, two of which
contain only time derivatives and the other two contain
only spatial derivatives. Due to this, one can easily
develop a computational algorithm based on the numer-
ical integration of the two parts of system (2), similar to
the usual differential equations, to obtain the solution
by specifying the intensity ratio 
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 and phase difference ψ|y = 0 ≡ ψ0 for two

light beams at the medium input as boundary condi-
tions and the absence of electrostatic field � at τ = 0 as
the initial condition. The numerical integration gave the
spatiotemporal dependences for the second-beam
intensity normalized to the total intensity I0, with the
boundary conditions ψ0 = 0, I02/I0 = 10–4 and various
phases of the photorefractive nonlinearity coefficient ϕ.
For such a low initial input intensity of the second
beam, its output intensity is a measure of the diffraction
efficiency of the recorded grating.

Figure 1a shows the three-dimensional intensity
profile of the second beam for the imaginary coefficient
γ (ϕ = π/2). It demonstrates the dependence of intensity
on both time and length. One can see that the obtained
solution describes a smooth increase in the intensity of
the second beam at the output of photorefractive
medium with small damping oscillations near the max-
imum. This is precisely the behavior that was consid-
ered classical for the processes of recording holograms
and photoinduced light scattering at the dawn of photo-
refraction [5].

However, in the general case, the behavior of light
intensity at the output of the photorefractive medium
may be much more complicated. Figure 1b shows the
three-dimensional intensity map for the second beam in
the case of γ with equal real and imaginary parts (ϕ =
π/4). One can see that the evolution of beam intensity at
short lengths is almost the same as in the case of imag-
inary γ. Recall that, on the scale adopted, the effective
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Fig. 1. Three-dimensional intensity profile for the second-
ary light beam I2 as a function of time τ and thickness y of
the photorefractive medium for (a) purely imaginary coeffi-
cient γ of photorefractive nonlinearity (ϕ = π/2) and
(b) equal real and imaginary parts of this coefficient
(ϕ = π/4).
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length unit depends both on the total light intensity and
on the magnitude of photorefractive nonlinearity (3).
Since the laser intensity in the early studies of photore-
fraction was too low to produce a strong light field, the
effective thicknesses of photorefractive media were
rather small, so that almost all observed dependences
were smooth and monotonic. However, for the larger
interaction lengths (or beam intensities), the time

dependences contain a strongly fluctuating region,
whose length increases approximately proportional to
the interaction length.

Let us consider a set of spatiotemporal dependences
for the intensity of second beam and various values of
phase ϕ. The corresponding dependences are shown in
Fig. 2 in the form of two-dimensional brightness distri-
butions (Fig. 2a corresponds to Fig. 1a, and Fig. 2d cor-
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Fig. 2. Two-dimensional intensity distribution for the second beam I2 as a function of time τ and thickness y of the photorefractive
medium for different phases ϕ of the photorefractive nonlinearity coefficient γ: ϕ = (a) π/5, (b) π/4, (c) 3π/10, (d) 2π/5, and (e) π/2.
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responds to Fig. 1b). One can see that, if the photo-
refraction coefficient has a nonzero real part, the whole
τ–y plane can be separated into two regions divided by
a near-straight line emerging from the origin of coordi-
nates. In the upper part adjacent to the time axis, the
intensity I2 rapidly and more or less monotonically
increases and becomes saturated at I2 = I0. At the same
time, the two-dimensional structure formed in the
region adjacent to the spatial axis is rather complicated
and has a regular quasiperiodic character. It should be
noted that the slope of the line separating the regions
increases with decreasing phase ϕ.

Let us now compare these results with the experi-
mental data.

Comparison with experiment. The experimental
curves presented below were obtained while studying
two-wave mixing, photoinduced light scattering, and
parametric scattering of holographic type in photore-
fractive copper-doped lithium niobate crystals [11, 12].
Two light beams were brought together in a photore-
fractive crystal, with the intensity of one of them being
approximately four orders of magnitude higher than for

the other. The Maxwellian time in such crystals equals
several tens of minutes and decreases with increasing
light intensity because of an increase in the photoelec-
tron conductivity. As the process of holographic grating
evolves, the intensity of the first beam is partly trans-
ferred to the second beam.

To compare with the experimental data, the I2(τ)
dependences were extracted from the complete solution
to Eqs. (2) with various effective thicknesses of the
photorefractive medium.

The experimental curves for the intensity I2 of the
second beam at the output of a photorefractive crystal
are shown in Figs. 3a and 3b for relatively low intensi-
ties of the first beam, and the appropriate theoretical
curves obtained for various effective thicknesses are
shown in Figs. 3c and 3d. As was pointed out above, the
length scale depends on the total light intensity;
because of this, the increase in the effective thickness
corresponds to the increase in the intensity of the first
beam for a fixed crystal thickness. Figures 3e and 3f
and Figs. 3g and 3h show, respectively, the correspond-
ing theoretical curves for higher intensities of the first
beam; I1 in Fig. 3e is higher than the intensity of the first
beam in Fig. 3a by almost an order of magnitude, and I1
in Fig. 3e is one order of magnitude higher than the
analogous intensity in Fig. 3b. It is seen from these
graphs that the theoretical curves obtained by the
numerical integration of Eqs. (2) describe not only the
smooth evolution of the energy-exchange process at
low intensities but also the sharp changes in the diffrac-
tion efficiency of holographic grating at high light
intensities or large thicknesses of the photorefractive
medium (Fig. 3e).

Thus, it is shown in this work that the spatiotempo-
ral dependence of the diffraction efficiency of a holo-
graphic grating may have a complex quasi-regular
structure if the coefficient of photorefraction nonlinear-
ity is complex and the pumping is strong enough
(Fig. 2). This is manifested experimentally in the form
of sharp intensity differences in the intensity of dif-
fracted light (Fig. 3e). The boundary of this structure in
the τ–y plane is a straight line emerging from the origin
of coordinates. Its slope depends on the phase of the
coefficient of photorefractive nonlinearity. This, in
principle, provides an original method of measuring the
ratio between the real and complex parts of the photo-
voltaic tensor components.
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