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Two-Photon Spectron
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The propagation of a two-photon light in a transparent medium with group velocity dispersion is considered. It
is shown that, even in the stationary case of two-photon light generation by cw pumping, the second-order light
correlation function behaves like a short pulse: when propagating in a medium, this function smears and at large
distances acquires the spectral shape of two-photon radiation. © 2002 MAIK “Nauka/Interperiodica’.
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Two-photon light is ordinarily obtained in experi-
ments with spontaneous parametric scattering (SPS)
[1]; it is of considerable interest in the context of gen-
erating so-called entangled states in optics. At present,
the use of two-photon light for quantum information
transmission is the subject of animated discussion [2].

In the simplest form, the state vector of radiation
generated in SPS can be written, with allowance for the
polarization, as [W;) = |vac) + c[2, 0) for the type-I
matching and |W¥y) = |vac) + |1, 1) for the type-1I
matching. In these expressions, |n, m) denotes the state
with n photons in the polarization mode x and m pho-
tons in the polarization mode y; the parameter ¢ < 1
specifies the amplitude of a two-photon state, and |vac)
stands for the vacuum state. However, this expression is
rather idealistic: in reality, the spectrum, both fre-
quency and angular, of a two-photon light is always of
a finite length. For example, in the case of frequency-
degenerate matching, the state generated in the SPS
from cw pumping has the form of spectral decomposi-
tion [3]:
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where ®, is the pump frequency, and the indices i and s
correspond to the idler and signal modes, respectively.
These may be the polarization (for the type-II match-
ing) or spatial modes. The amplitude F(€2), usually
called the biphoton amplitude,1 determines the spectral
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A biphoton is referred to as a pair of photons with correlated
moments of creation, frequencies, wave vectors, and polariza-
tions.

properties of a two-photon light. It has different forms
for the type-II and type-I matchings:
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where L is the length of nonlinear crystal, D is the dif-
ference in the reciprocal group velocities of the signal
and idler photons in the nonlinear crystal, and D" is the
second derivative of the dispersion relation k(®) in the
nonlinear crystal. One can see from Eq. (1) that, in the
presence of spectral distribution, the light emitted in
SPS always occurs in the entangled state.

The spectrum of a two-photon light in the vicinity of
the degenerate phase-matching frequency ®,/2 is deter-
mined by the square of the modulus of the spectral
amplitude F(€2). Accordingly, the first-order correla-
tion function has the form

¢V(1) = 4|c|2exp{—i%r}jdgw(g)ﬁcos(Qr).(3)

For the second-order correlation function, calculations
give the following expression:

(1) = 4|c|2UdQF(Q)cos(QT)‘2. (4)

For SPS in crystals with a length on the order of 1 cm,
the typical width of the second-order correlation func-
tion is equal to several tens or hundreds of femtosec-
onds.

Let us now consider the propagation of two-photon
light in a transparent dispersion medium. In the vicinity
of degenerate matching, the dispersion relation in this
medium can be written as k(®) = k(®,/2) + k'(®,/2)(® -
®,/2) + k"(®,/2)(® — mp/2)2/2. It is well known that the
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third term in this expansion is responsible for the
smearing of short pulses in the medium. For the
extended dispersion medium, z > [,;, where the disper-

sion length can be defined as [, = 1:5 2pk" and 1, is the
initial pulse duration, the pulse acquires a shape coin-
ciding with its spectrum. Such a pulse has come to be
known in the literature as a “spectron” [4].

Quite the same effect arises for two-photon light
propagating in a dispersion medium. In this case, the

creation operators a:, i (©,/2 Q) in Eq. (1) assume fre-
quency-dependent phase factors, which can be inter-
preted as the appearance of a factor exp{i(k; +

k! )Q?z/2} for the spectral amplitude F(Q). As a result,

the first-order correlation function, as well as the spec-
trum, does not change. However, the second-order cor-
relation function (4), which contains F(€2) instead of
|F(Q)[? under the integral sign, changes. Since the rela-
tion between F(Q) and G®(1) is analogous to the rela-
tion between the pulse spectral amplitude and the
square of the pulse envelope, the second-order correla-
tion function behaves like a short pulse propagating in
a dispersion medium. For z > [, (as in the femtosecond
pulse optics, this condition may be called “far zone”
condition), the correlation function has the form

G (1) ~ [F(Q)]*|q = iz

where k" = k. + k; . As in the case of a short pulse, the

width of the correlation function after passing through
the dispersion medium of length z becomes T =
2mnzk" /1y, where T, is its initial width. Therefore, if the
initial width of the second-order correlation function is
50 fs, its width becomes equal to 6 ns after passing two-
photon light through an optical fiber 1 km in length (it
is assumed that k" for the fiber equals 3 x 1072% s?cm
[4]). As for the shape of the correlation function, it
coincides with the spectrum given by Eq. (2). Such a
two-photon wave packet in the far zone can be called
a two-photon spectron.

The smearing of the biphoton correlation function in
a dispersion medium should necessarily be taken into
account when designing the schemes of quantum infor-
mation transmission by two-photon light. It should be
noted that this smearing in optical fibers can be com-
pensated using the known linear methods of pulse com-
pression [5] (the nonlinear methods are unsuitable
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because of the low intensity of biphoton fields). One
sometimes assumes erroneously that the shape of the
second-order correlation function for biphoton light
manifests itself in the so-called anticorrelation effect
[7], which consists of a sharp decrease (practically to
zero) in the number of coinciding photocounts of two
detectors, which detect both signal and idler beams
(before detection, the signal and idler beams impinge
on a beam splitter, so that the effect can only be
observed if the optical paths of the signal and idler pho-
tons are balanced before beam splitting). However, it is
known that the presence of a dispersion medium,
through which the signal and idler beams propagate
before beam splitting, has no effect on the shape of the
anticorrelation “dip” [7]. This effect can easily be
explained if one considers that the dip shape is associ-
ated not with the second-order but with the first-order
correlation function [8]. However, according to Eq. (3),
the propagation of two-photon light (as well as any
other radiation) in a transparent medium with group
velocity dispersion does not affect the shape of the first-
order correlation function.
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