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Orthogonality of two-photon polarization states belonging to a single frequency and spatial mode is dem-
onstrated experimentally, in a generalization of the well-known anticorrelation “dip” experiment.
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Orthogonality, one of the basic mathematical concepts,
plays an important role in physics, especially quantum phys-
ics and, in particular, quantum optics. A well-known example
including both classical and quantum cases is orthogonality
of two polarization modes of electromagnetic radiation.
Physically, orthogonality of two arbitrary polarization states
means that if light is prepared in a certain(in the general
case, elliptic) polarization state it will not pass through a
filter selecting the orthogonal state.(A filter selecting an ar-
bitrary polarization state can be made of a rotatable quarter-
wave plate and a rotatable linear polarization filter[1].) Or-
thogonality of polarization states has an explicit
representation on the Poincaré sphere where each polariza-
tion state is depicted by a point. The state orthogonal to a
given one is shown by a point placed on the opposite side of
the same diameter. This concept of orthogonality relates to
both classical polarization states of light and single-photon
quantum states of polarized light[2]. Mathematically, or-
thogonality of two quantum states means that the inner prod-
uct of their state vectors is equal to zero.

However, in addition to single-photon states there are
other types of nonclassical light. In quantum optics, one of
the central roles is played by two-photon states, which are
most easily generated via spontaneous parametric down-
conversion(SPDC) [3]. In a two-photon state, radiation con-
sists of photon pairs, often called biphotons, that are corre-
lated in frequency, wave vector, moment of birth, and
polarization. Focusing on the case of collinear frequency-
degenerate SPDC, here we will discuss the so-called single-
mode biphotons. Although even in the frequency-degenerate
collinear case SPDC has a finite frequency and angular spec-
trum, under certain experimental conditions such biphotons
can be treated as relating to a single frequency and angular
mode.

One can show that the polarization state of a single-mode
biphoton[4] can be described as a qutrit, a three-state quan-
tum system. Using qutrits instead of qubits for the transmis-
sion of quantum information has been previously discussed
[5], in particular, in connection with ternary cryptography
protocols[6–8]. The general case of a qutrit represented by a
biphoton in an arbitrary pure polarization state is given by
the state vector

ucl = c1u2,0l + c2u1,1l + c3u0,2l, s1d

whereci are complex amplitudes satisfying the normalization
condition, uc1u2+ uc2u2+ uc3u2=1, and un,ml denotes a two-
photonsn+m=2d state withn photons polarized horizontally

and m photons polarized vertically[9]. In [10], it is shown
that the state(1) allows an explicit representation on the
Poincaré sphere. It can be written in the form of two arbi-
trarily polarized correlated single-photon states,

ucl =
a†su,fda†su8,f8duvacl

ia†su,fda†su8,f8duvacli
. s2d

Here,a†su ,fd anda†su8 ,f8d are operators of photon cre-
ation in arbitrary polarization modes given by the coordi-
natesu ,f ,u8 ,f8 on the Poincaré sphere:

a†su,fd = cossu/2daH
† + eifsinsu/2daV

† , s3d

where aH,V
† are photon creation operators in the horizontal

and vertical linear polarization modes, and similarly for
a†su8 ,f8d. Axial anglesu ,u8 and azimuthal anglesf ,f8 [11]
are in one-to-one correspondence with the four parameters
describing the state(1), which are, for instance,d1= uc1u ,d3
= uc3u ,f1=argsc1d−argsc2d ,f3=argsc3d−argsc2d. Representa-
tion (2) means that a biphoton of arbitrary polarization can
be shown as a pair of points on the Poincaré sphere. It turns
out that the Stokes vector of a biphoton is simply a normal-
ized sum of the Stokes vectors of photons forming it(“bi-
photon halves”), and the polarization degreeP of the pair(in
its classical definition, see Ref.[1]) is given by the angles at
which the pair can be seen from the sphere center.

A question arises: what does orthogonality of two bipho-
ton polarization states mean? As usually in quantum mechan-
ics, it means that the product of their state vectors is equal to
zero. For instance, orthogonality of two biphotonscab
;a†b†uvacl / ia†b†uvacli and ccd;c†d†uvacl / ic†d†uvacli,
with the operators of photon creation in arbitrary polarization
modes denoted now bya†,b†,c†,d†, means that

kvacucda†b†uvacl = 0. s4d

What does orthogonality of two biphotons mean from the
viewpoint of physics? This question was answered in[12]
where an operational criterion of orthogonality for arbitrarily
polarized biphotons was formulated. Namely, orthogonality
of two biphotons can be tested using a simple setup consist-
ing of a nonpolarizing beamsplitter, two detectors installed in
its two output ports, with an arbitrary polarization filter in-
serted at the input of each detector, and a coincidence circuit.
A biphoton is registered if there is a coincidence of photo-
counts from the two detectors. Let a biphotonucabl be at the
input and the filters in the output ports of the beamsplitter
select polarization states corresponding to photon creation
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operatorsc†,d†. Then orthogonality ofucabl and uccdl is
equivalent to the absence of coincidences[13] in such a
setup. Note that orthogonality of any two polarization states
amonga†uvacl , b†uvacl , c†uvacl , d†uvacl is not required.

Such an experiment is the most general case of the well-
known anticorrelation experiment[14]. Earlier, a particular
case of this polarization version of anticorrelation experi-
ment has been performed for type-II SPDC[15]. The ab-
sence of coincidences in the anticorrelation experiment[15]
can be interpreted as orthogonality of the statesuHVl
;aH

† aV
†uvacl and uDD̄l;a45

† a−45
† uvacl, a pair of photons po-

larized linearly at angles ±45° to the vertical axis. Similarly,

in [16], orthogonality of the statesuHVl anduDD̄l to the state
of right- and left polarized photons,uRLl, has been demon-
strated. In both cases, orthogonal biphotons had zero polar-
ization degree, which means that they were pairs of orthogo-
nally polarized photons. Another example of a basis formed
by three mutually orthogonal biphotons with zero polariza-
tion degree was demonstrated in[17].

Several examples of orthogonal biphotons of other polar-
ization degrees are shown in Fig. 1. Figure 1(a) shows three

mutually orthogonal statesuHVl , uDD̄l , uRLl of biphotons
with zero polarization degree studied in[15,16]. All three
states are biphotons consisting of two orthogonal photons; at
the same time, no photon forming a biphoton is orthogonal to
any photon of the other two biphotons. Three biphotons
shown in Fig. 1(a) form an orthogonal basis.

Whenever a biphoton is fixed(two points are fixed on the
Poincaré sphere), there are infinitely many biphotons or-
thogonal to it. Replacing the Poincaré sphere by the globe,
one can pick two spots denoting a biphoton to be, for in-
stance, Moscow(Russia) and Turin(Italy). Then, one should
make a choice for the third point. Let it be Baltimore(MD,
USA). Then the fourth point is found from Eq.(4), and it
turns out to be near New Zealand and the Bounty isles. So,
the biphoton “Moscow-Turin” is orthogonal to the biphoton
“Baltimore-Bounty!”

The idea of our experiment was to prepare some arbitrary
input biphoton state, to make the registration part select the
state orthogonal to it, and to demonstrate orthogonality by

scanning the parameters of the input and registered states
around the minimum of coincidence counting rate. We chose
the input biphoton state to be a pair of photons polarized
linearly at the opposite angles to the horizontal direction, the
polarization degree beingP=0.5. On the Poincaré sphere,
this is shown as two points on the equator placed symmetri-
cally at the angles ±74.5° with respect to the “H” axis, which
corresponds to photons polarized linearly at the angles
37.25° to the horizontal axis. For the reasons that we will
explain later, it is convenient to make one of the polarization
filters in the registration part select the state polarized lin-
early at the angle 45° to the horizontal axis. The other filter,
as one can easily find, should then select linear polarization
at the angle 60° to the horizontal axis. This configuration,
which is used in one of our experiments, is shown in Fig.
1(b). Finally, Fig. 1(c) gives an example of two orthogonal
biphotons with polarization degreeP=0.5 in a “nonplane”
configuration. This time, the points denoting the biphoton
“ab” are placed on the “Greenwich meridian,” if we follow
the globe terminology. Again, one of the polarizers selects
the state polarized linearly at 45°. However, the position of
the other polarizer is changed: now, it should select linear
polarization at the angle −60° to the horizontal axis. Under
each Poincaré sphere in Fig.1, the corresponding polarization
states are shown schematically. In all these examples, there is
no orthogonality between separate photons, or “halves of bi-
photons.”

The experimental setup is shown in Fig. 2. Collinear
frequency-degenerate SPDC is generated in two similar
type-I lithium iodate crystals of length 1 cm, cw radiation of
argon laser at wavelength 351 nm used as the pump. The
optic axis of the first crystal is in the vertical plane while the
optic axis of the other crystal is in the horizontal plane. The
two-photon state generated after the crystals is of the form
(1), with c2=0, the amplitudesd1 and d3 can be varied by
rotating thel /2 plate in the pump beam, and the phase
Df;f3−f1 can be varied by tilting the two quartz plates
QP, whose optic axes are oriented in the vertical plane. The
pump after the crystals is cut off by a UV mirror UVM.

FIG. 1. Different cases of orthogonal biphotons:(a) three or-

thogonal nonpolarized biphotons,uHVl , uRLl, and uDD̄l; (b) two
orthogonal biphotons formed by linearly polarized photons. The
input biphoton has polarization degreeP=0.5 and the polarizers are
at 45° and 60° to the horizontal axis.(c) The “nonplane” version:
the input state also hasP=0.5 but is formed by elliptically polarized
photons.

FIG. 2. The experimental setup. SPDC is excited in two type-I
LiIO3 crystals with the optic axes in orthogonal planes; the first
crystal generatesu2,0l and the second one,u0,2l. Quartz plates QP
enable variation of the phase between the two states from 0 top.
UVM is a UV mirror, P a pinhole, IF an interference filter, BS a
nonpolarizing beamsplitter, QWP1,2 are quarter-wave plates, P1,2
rotatable polarizers, and D1,2 detectors.
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Spatial and frequency filtering of the SPDC radiation is per-
formed by a pinholeP and an interference filter IF with 702
nm central wavelength and 3 nm bandwidth. The right-hand
side of the setup shows the registration part(the Brown-
Twiss interferometer). It includes a nonpolarizing beamsplit-
ter BS and two detectors(photomultiplier tubes) D1, D2 in-
serted in its output ports. At the input of each detector, there
is a polarization filter consisting of a rotatable quarter-wave
plate QWP1,2[18] and a rotatable polarizer P1,2. Coinci-
dences between the photocounts of the detectors are regis-
tered using a coincidence circuit with a resolutionTc
=5.5 ns.

The measurements were performed for two configurations
shown in Figs. 1(b) and 1(c). The plates QP were tilted so
that the phaseDf was equal top. Then the anglex of the
l /2 plate was scanned from 0° to 90°. As a result, the two
points corresponding to the produced biphoton state traveled
on the Poincaré sphere: first, from the “VV” point sx=0°d to
the “HH” point sx=45°d symmetrically along the opposite
sides of the equator, then again to the “VV” point sx=90°d
but this time, along the opposite sides of the “Greenwich
meridian.” This way, both cases shown in Figs. 1(b) and 1(c)
were realized. In the first run, the polarizer P1,2 orientations
were fixed as in Fig. 1(b): z1=45° andz2=60°. In the depen-
dence of coincidence counting rate onx [Fig. 3(a)], the mini-
mum was atx=30°, which corresponded tod1

2/d3
2=3. For

this point, the ratiod1
2/d3

2 was measured using the tomogra-

phy procedure developed in[19]; this ratio turned out to be
3.4±0.8. The 45° orientation of P1 is convenient since in this
case, rotation of the half-wave plate in the pump beam does
not lead to the variation of D1 single counting rateR1.

In the next run, the orientations of P1, P2 were fixed as in
Fig. 2: z1=45° andz2=−60°. In this case, the minimum was
achieved for x=60° [Fig. 3(b)], corresponding tod1

2/d3
2

=1/3.
Finally, orthogonality of two biphoton states was checked

by fixing all parameterssx ,z1,2,Dfd in the configuration
shown in Fig. 1(b) and then scanning them around their op-
timal values. The plot in Fig. 4 shows the dependence of the
coincidence counting rate on the orientation of polarizer P1,
with the other polarizer fixed at 60° and the half-wave plate
in the pump beam fixed atx=30°. Similar dependencies
were obtained for scanningz2 andDf.

Two important notes should be made about the measure-
ment procedure. First, when the anglex is scanned with
fixed positions of the two polarizers[Fig. 3(a)], a consider-
able modulation in the singles counting rateR2 of detector
D2 is observed(Fig. 5). This is quite natural since in the
course ofx variation the state of biphoton light changes from
being vertically polarized through completely nonpolarized
state(at x=22.5°) to being horizontally polarized. With the
polarizer P1 oriented at ±60°, the intensity of transmitted
light should vary three times, as it indeed does in Fig. 5.
However, the minimum of the coincidence counting rateRc
does not correspond to the point whereR2 is minimal; ac-
cording to the calculation, it occurs atx=30°. The second
remark is that in all kinds of anticorrelation experiments, the
coincidence counting rate in the minimum is given by the
level of accidental coincidence counting rate, which corre-
sponds to the normalized second-order Glauber’s correlation
function gs2d=1. To demonstrate this, instead of the coinci-
dence counting rate, in all plots we presentgs2d [20] instead
of Rc.

To find the dependence of the coincidence counting rate
Rc on all parameters, one can write

Rc , ukvacucda†b†uvaclu2. s5d

FIG. 3. Normalized second-order correlation function versus the
angle x for Df=p and the polarizers P1,2 fixed at 45° and 60°,
respectively(a) and at 45° and −60°, respectively(b).

FIG. 4. Normalized second-order correlation function versus the
angle of the polarizer P1 orientation with the half-wave plate fixed
at x=30° and the phaseDf=p.
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The operatorsa†,b†,c,d are substituted in Eq.(5) in the
form (3), with the anglesf taking the values 0,p, 0, 0,
respectively. The axial angles fora,b can be expressed as
functions ofx via the relations given in[12] and the formu-
lasd1=sins2xd , d3=coss2xd. The axial angles forc,d can be
calculated as functions ofz1,2, the angles of P1,P2 orienta-
tions. Then we obtain the coincidence counting rate,

Rc , fcosz1cosz2sins2xd − sinz1sinz2coss2xdg2, s6d

and the single-photon counting rate in detector 2,

R2 , cos2z2sin2s2xd + sin2z2cos2s2xd. s7d

Equations(6) and (7) were used to plot the theoretical
dependencies shown in Figs. 3 and 4.

Since in the cases of both “planar” and “nonplanar” ge-
ometry, the experimentally measured coincidence counting
rates in the minima exceed the theoretically predicted ones, it
is important to find the measured value of the squared scalar
product of the prepared state and the measured state. This
can be done by using as references the maxima of dependen-
cies shown in Figs. 3(a) and 3(b). Calculation shows that for
the case of Fig. 3(a), the value ofukcabuccdlu2 in the maxi-
mum is equal to 0.39±0.04, and in the case of Fig. 3(b), to
0.74±0.1. Hence, the observed values of squared scalar
products in the minima are equal, respectively, to
0.05±0.015 and 0.09±0.02.

To conclude, we have experimentally demonstrated or-
thogonality of two biphotons having polarization degree be-
tween 0 and 1. Our experiment is a generalization of the
“anti-correlation dip” experiment to the case of arbitrarily
polarized photon pairs. The observed effect can find applica-
tions in ternary quantum cryptography protocols[21].

This work was supported in part by the Russian Founda-
tion for Basic Research Grant Nos. 02-02-16664, 03-02-
16444, INTAS Grant No. 01-2122, and the Russian program
of scientific school support(No. 166.2003.02).

[1] W. A. Shurkliff, Polarized Light (Harvard University Press,
Cambridge, MA, 1962).

[2] D. N. Klyshko, JETP84, 1065(1997).
[3] D. N. Klyshko, Photons and Nonlinear Optics(Gordon &

Breach, New York, 1988).
[4] A. V. Burlakov and D. N. Klyshko, JETP Lett.69, 839(1999).
[5] K. Mattle et al., Phys. Rev. Lett.76, 4656(1996).
[6] H. Bechmann-Pasquinucci and W. Tittel, Phys. Rev. A61,

062308(2000).
[7] D. Bruss and C. Macchiavello, Phys. Rev. Lett.88, 127901

(2002).
[8] H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett.85,

3313 (2002).
[9] Here, it is important that the two photons may differ only in

polarization. In the case of distinguishable photons, the state
u1,1l is replaced by two Bell statesC±.

[10] A. V. Burlakov and M. V. Chekhova, JETP Lett.75, 505
(2002).

[11] u is measured with respect to the “H” axis, giving the state of
horizontal polarization andf is measured with respect to the
“D” axis giving 45° linear polarization.

[12] A. A. Zhukov, G. A. Maslennikov, and M. V. Chekhova, JETP
Lett. 76, 696 (2002).

[13] Coincidences are not completely absent but their rate corre-
sponds to the Poissonian(accidental) level.

[14] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett.59,
2044 (1987).

[15] Y. H. Shih and A. V. Sergienko, Phys. Lett. A186, 29 (1994);
191, 201 (1994).

[16] A. V. Burlakov et al., Phys. Rev. A60, R4209(1999).
[17] T. Tsegayeet al., Phys. Rev. Lett.85, 5013(2000).
[18] Although quarter-wave plates are necessary in the general

case, in the measurements performed here they could be omit-
ted.

[19] L. A. Krivitsky et al., JETP 97, 846 (2003).
[20] To calculate the normalized second-order correlation function

in experiment, one divides the coincidence counting rateRc by
the product of two single-photon counting ratesR1,2 and the
coincidence circuit resolution timeTc.

[21] G. A. Maslennikovet al., J. Opt. B: Quantum Semiclassical
Opt. 5, 530 (2003).

FIG. 5. Single-photon counting rates at detectors D1(circles)
and D2(squares) versus the anglex for Df=p and the polarizers
P1.2 fixed at 45° and 60°, respectively. The total decrease in the
counting rates is caused by a gradual decrease in the pump power.

CHEKHOVA et al. PHYSICAL REVIEW A 70, 053801(2004)

053801-4


