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1. INTRODUCTION

Most of the experiments on quantum optics are
related to the production of nonclassical light of differ-
ent types, i.e., the light whose properties can be
described only within the framework of a consistent
quantum-mechanical approach. However, there exist
only few types of nonclassical light that can be pre-
pared experimentally at present. First of all, it is one-
photon light, which is obtained upon one-photon tran-
sitions in atoms [1], during luminescence of quantum
dots [2, 3], as well as with the help of some transforma-
tion performed with two-photon light [4]. In turn, two-
photon light can be obtained upon two-photon transi-
tions in atoms [5], but much more efficiently - due to
spontaneous parametric scattering [6]. In the limit of a
great number of photons, two-photon light is trans-
formed to squeezed light, which is also nonclassical
[7]. Recently two-photon light was generated due to
hyper-parametric scattering [8]. Not also that both one-
photon and two-photon states of light (belonging to the
Fock states) are generated in all the cases mentioned
above only in a superposition with the vacuum state.

The generation of other types of nonclassical light,
for example, higher-order Fock states is of interest first
of all from the fundamental point of view. The applica-
tions of such states are discussed in connection with the
problem of quantum information [9] and the concept of
quantum lithography [10]; however, these problems are
far from realization at present. The attempts to prepare
experimentally three- and four-photon states are mainly
stimulated by the so-called Greenberger-Horne-
Zeilinger (GHZ) paradox [11]. The paradox appears
when one attempts to describe classically the results of
the interference experiment with the state having the
form
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(the four-photon GHZ state) or
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 denotes the state of four photons with the
right circular polarization, the symbol 
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denotes the state of four photons with the left circular
polarization, etc.

In [12, 13], the GHZ state was obtained from a
group of four photons formed due to a random overlap
of photon pairs upon parametric scattering. One of the
photons serves as “trigger,” while the three remaining
photons form a state with the polarization part of the
type (2). Groups of three photons obtained in this way
were called in many papers the three-photon states.
Similarly, groups of four photons appearing due to a
random overlap of photon pairs are called the four-pho-
ton states [14]. It is affirmed in [14] that such groups of
four photons represent the four-photon entangled
states. The observation of four-photon interference was
reported, i.e., the dependence of the counting rate of
four-photon coincidences on the phase introduced
between different groups of four photons (more exactly,
between the pump pulses generating these groups).
Note here that the presence of the interference pattern
observed in coincidences of photocounts for four pho-
tons is well explained by the interference observed in
coincidences of two photons and typical of two-photon
light.

The question arises: whether the states obtained in
this way can be treated as “true four-photon states”?
Obviously, the answer depends on the problem for
which the four-photon states are prepared. For exam-
ple, the method described above is suitable for the real-
ization the conditions of the three-photon GHZ paradox
because it allows one to prepare polarization state (2).
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However, it seems that parametric scattering cannot be
used to solve the problem of observation of four-photon
interference [14]. Finally, of interest is the character of
four-photon correlations, i.e., a set of fourth-order
intensity correlation functions or, in experimental
terms, the number of coincidences of photocounts for
four photons. It is from this point of view that we ana-
lyze in this paper the parametric scattering of light.
Because it was emphasized in [14] that parametric scat-
tering was stimulated, we consider the case of an arbi-
trary coefficient of parametric amplification. Therefore,
the perturbation theory, which is commonly used for
the description of multiphoton correlations, proves to
be inapplicable.

Three cases can be distinguished in the description
of parametric scattering, which differ from each other
from the point of view of photon statistics. These are
the cases of the one-mode (collinear and frequency-
degenerate) regime, two-mode (nondegenerate in the
frequency, scattering angle or polarization), and four-
mode regime (when, for example, scattering occurs at
two frequency and two polarization modes). The latter
regime was used in [14]. It is this regime that leads to
the generation of the two-photon Bell states, i.e., the
states of the type

(3)

Here, 

 

H

 

 and 

 

V

 

 are the photon states with the horizontal
and vertical polarizations, respectively, and the sub-
scripts 1 and 2 number the frequency (or spatial)
modes.

2. THE ONE-MODE REGIME

In this case, the parametric interaction Hamiltonian
has the form

(4)

where 

 

Γ

 

 is the parametric gain, 

 

a

 

†

 

 and

 

 a

 

 are the photon
creation and annihilation operators. In the first order of
the perturbation theory, the state vector of the field
emitted upon parametric scattering is a superposition of
the vacuum and two-photon states

(5)

However, the exact solution is given by the vector of the
state containing, except the two-photon state, also the
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four-photon, six-photon states, etc.:

(6)

It is convenient to characterize the number of groups
of four photons by the fourth-order correlation function

(7)

This function is measured by the number of coinci-
dences of photocounts from four detectors in the exper-
iment similar to the Brown–Twiss experiment (Fig. 1a),
with the normalization to the product of the average
detected intensities. The normalized fourth-order corre-
lation function characterizes the radiation intensity
upon the detection of four-photon effects [15]. For
example, 

 

g

 

(4)

 

 = 1 for coherent radiation, and 

 

g

 

(4)

 

 = 4! =
24 for thermal (Gaussian) radiation. In the context of
this paper, of interest is the value of 

 

g

 

(4)

 

 for four-photon
radiation (in a superposition with vacuum), which
could be obtained upon the parametric decay of pump
photons into groups of four photons. The state vector
for such radiation has the form

The fourth-order correlation function for this state is

(8)
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 is the average number of photons.
Consider now a state generated upon parametric

scattering with the Hamiltonian (3). Within the frame-
work of the Heisenberg approach, the correlation func-
tions can be found exactly for any parametric gain 

 

Γ

 

.
By writing the Heisenberg equations for the creation
and annihilation operators, we obtain the solution in the
form

and similarly for the creation operator. Here,  and 
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are the creation and annihilation operators at the instant
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 = 0 (or neglecting parametric interaction). The
fourth-order correlation function is determined by
expression (7), where 
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), and averaging
is performed over the vacuum state. The second-order
correlation function can be found similarly. As a result,
we obtain

(9)

(10)

ψ| 〉 C0 0| 〉 C1 2| 〉 C2 4| 〉 C3 6| 〉 …+ + + +=

=  Cn 2n| 〉 .
n 0=

∞

∑

g 4( ) a†4a4〈 〉
a†a〈 〉 4

------------------.=

Ψ| 〉 C0 0| 〉 C1 4| 〉 .+=

g 4( ) 6

N3
------,=

a t( ) a0 Γ t( )cosh a0
† Γ t( )sinh+=

a0
†

ga
4 t( ) 24 72 Γ t( )coth

3
9 Γ t( ),coth

4
+ +=

ga
2( ) t( ) 2 Γ t( ).coth

2
+=



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004

FOUR-PHOTON CORRELATIONS UPON PARAMETRIC SCATTERING 229

The average number of photons is N = sinh2(Γt). One
can see that both fourth-order and second-order corre-
lation functions increase infinitely at small parametric
conversion coefficients

when Γt  0. Such asymptotics means that only the
pair correlation of photons takes place: according
to (8), the four-photon states should result in a faster
increase in g(4) at small N. The asymptotics at large
parametric conversion coefficients (Γt � 1) gives

  105 and   3. Therefore, in the limit of
large gains, the output radiation of a degenerate para-
metric amplifier should have the super-Poisson or even
super-Gaussian statistics.

The statistics of the output radiation of a degenerate
parametric amplifier with vacuum at the input was stud-
ied earlier in [16], where the correlations functions of
all orders were obtained in the general form, including
results (9) and (10).

3. THE TWO-MODE REGIME

Consider now parametric scattering in the nonde-
generate (two-mode) case. This case is realized either
upon collinear frequency-nondegenerate parametric
scattering or upon noncollinear frequency-degenerate
scattering or upon parametric scattering of the type II in
the collinear frequency-degenerate regime. Corre-
spondingly, photons from one pair belong to two differ-
ent frequency, spatial or polarization modes. Let us
denote the creation and annihilation operators in these
modes by a†, a and b†, b. Then, the interaction Hamil-
tonian has the form

(11)

By solving the Heisenberg equation, we obtain

(12)

The exact expressions for the fourth- and second-order
correlation functions are
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(the scheme for measuring  is shown in Fig. 1b).
One can see that the asymptotics of correlation func-
tions at small parametric gains is also has a “two-pho-

ton” character, i.e.,  has the order 1/N2 and (t)
has the order 1/N. For large parametric gains, we obtain

  24 and   2. Such statistics could be

gab
4( )

gab
4( ) gab

4( )

gab
4( ) gab

2( )

p s

i

BS1 BS3

BS2

CC

(a)

(b)

BS1s

i

p

BS2

CC

(c)

p
s

i

PBS1

PBS2

CC

Fig. 1. Scheme of the experiment for measuring g(4) for the
output radiation of a parametric converter. Only pump radi-
ation (p) is incident on a nonlinear crystal; the signal (s) and
idle (2I) modes correspond to vacuum. (a) The one-mode
regime: the signal and idle photons belong to one spatial
and one frequency mode. The fourth-order correlation func-
tion is measured using three nonpolarizing beamsplitters
BS1, BS2, and BS3, four photodetectors, and the fourfold
photocount coincidence scheme CC. (b) The two-mode
regime: the signal and idle photons belong to different
modes (in this case, different spatial modes). The fourth-
order correlation function is measured using two nonpolar-
izing beamsplitters BS1 and BS2, four photodetectors, and
the fourfold photocount coincidence scheme CC. (c) The
regime of generation of the Bell states. The signal and idle
photons are emirred to two spatial and two polarization
modes. The fourth-order correlation function is measured
using two nonpolarizing beamsplitters BS1 and BS2, four
photodetectors, and the fourfold photocount coincidence
scheme CC

1

1

2

1



230

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 98      No. 2      2004

IVANOVA, CHEKHOVA

inherent in thermal radiation, but we should take into
account that in this case two different modes a and b are
involved. Therefore, the statistics can be called super-
Gaussian in the two-mode case as well.

4. GENERATION OF THE BELL STATES

Consider now the regime of parametric scattering
that was used in [14] and leads, in the limit of small
parametric conversion coefficient, to the generation of
one of the Bell states (3), namely, the state Ψ– in a
superposition with vacuum. As above, we consider the
case of an arbitrary parametric conversion coefficient.
The interaction Hamiltonian has the form

(15)

Here, a† and b† are, as before, the creation and annihi-
lation operators for the two modes, which can be fre-
quency or spatial modes, and the subscripts H and V
denote vertical and horizontal polarizations, respec-
tively.

The solution for the creation and annihilation oper-
ators has the form

(16)

For the fourth- and second-order correlation functions,
we obtain

(17)

One can see that statistics in this case is characterized
by even lower value of four-photon correlations than in
the two-mode case, but, nevertheless, is super-Gauss-

ian:   4 and   2 for Γt  0. The
scheme for measuring the corresponding fourth-order
correlation function is shown in Fig. 1c. We can also
consider the case when the fourth-order moment is
measured in the same regime of parametric scattering
(Fig. 1c):
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This correlation function is equal to 4 + 16coth2(Γt) +
4coth4(Γt), as in the two-mode case.

Therefore, the state generated upon parametric scat-
tering is characterized by substantially weaker four-
photon correlations than the “true four-photon state”,
which could be obtained, for example, due to the decay
of pump photons into groups of four photons in a
medium with the fourth-order nonlinearity (of course,
the probability of such process is extremely low). Nev-
ertheless, four-photon correlations for this state even in
the limit of large parametric gains are substantially
stronger than those for classical sources with the Pois-
son or Gaussian statistics. In this sense, the strongest
correlations should be observed in the degenerate
regime of parametric scattering.
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