
V15   ДИФФЕРЕНЦИАЛЬНО-РАЗНОСТНЫЕ МОДЕЛИ 

§ 01  Модели с западыванием 

  В этом разделе будут рассмотрены колебания в системах, которые описы-

ваются дифференциально-разностными уравнениями от одной динамической 

переменной ( )x t . Такие уравнения связывают значения функции и ее произ-

водных в момент времени t  со значениями этих же величин, взятых в моменты 

времени, отличающиеся на константу  : 

  x x t    (1) 

Другое название уравнений, описывающих модели этого класса - дифференци-

альные уравнения с отклоняющимся аргументом. В физике такие модели 

обычно используются для описания систем с запаздыванием. Важную роль та-

кие модели также играют в задачах математической биофизики. Приведем два 

примера. 

  Пример 1. В V03 рассматривалась модель численности популяции, введенная Ферхюль-

стом и учитывающая ограниченность ресурсов 

 ɺN aN bN  2  (2) 

В ряде случаев важно учесть, что конкуренция за ресурс сильнее всего между особями раз-

ных возрастов. Модель (2) обобщается уравнением 

  N a bN N ɺ , (3) 

где интервал   - порядка времени жизни одного поколения [СЛ78, с.21]. 

[СЛ78] Свирижев Ю.М., Логофет Д.О. Устойчивость биологических сообществ. М.: Наука, 

1978. – 352 с. 

  Пример 2. Широко известна модель, введенная Мэки и Глассом (Mackey M.C., Glass L. 

1977) для описания численности белых кровяных клеток 

 
1 n

x
x bx a

x





  


ɺ . (4) 

Для здоровых людей -1 -10.1 сут ,  0.2 сут ,  =6 сутb a    и 10n   [ГМ91, с.87]. 

[ГМ91] Гласс Л., Мэки М. От часов к хаосу. Ритмы жизни. М.: Мир, 1991. – 248 с. 

  Решение нелинейных дифференциально-разностных уравнений, подобных 

(3) и (4), представляет очень сложную задачу, часто неподвластную методам 

теории колебаний. Однако при исследовании устойчивости неподвижных то-

чек таких моделей возникает необходимость рассмотрнения линейной модели 

с запаздыванием – которой мы и ограничимся. 

§ 02  Линейная модель первого порядка 

  Рассмотрим простейшую модель с запаздыванием - линейную систему пер-

вого порядка с уравнением движения 



V15. Дифференциально-разностные модели 

-2- 

 1 1

dx
x x

dt
   , (5) 

Уравнение (5) возникает в задаче об исследовании устойчивости неподвижной 

точки общего уравнения первого порядка с запаздыванием вида 

  dx

dt
F x x ,  . (6) 

Для того, чтобы решить уравнение (1), нужно в качестве начальных условий 

задать бесконечное множество значений переменной  x t  в любой момент из 

интервала 0, . Поэтому с формальной точки зрения уравнение (5) обладает 

бесконечной размерностью фазового пространства K  (бесконечным числом 

степеней свободы N ). Однако методы решения таких уравнений во многом 

схожи с методами решения обыкновенных дифференциальных уравнений, а 

поведение решений не очень чувствительно к деталям начальных условий. 

  Выберем в качестве единицы времени величину интервала запаздывания  . 

Решение уравнения 

 
dx

dt
x x   1, (7) 

где    1 ,    1 ,  x x t1 1  , возможно методом последовательного ин-

тегрирования [БК67, с.57-61].  

[БК67] Беллман Р. и Кук К.Л. Дифференциально-разностные уравнения. М.: Мир, 1967. - 548 

с. 

Пусть для примера начальные условия соответствуют постоянству функции на 

интервале 0 1, : 

  x t t  1 0 1 . (8) 

Тогда на интервале 12,  функция  x t  будет удовлетворять уравнению 

 
dx

dt
x   , (9) 

решение которого, непрерывное в точке t 1, имеет вид 
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На следующем единичном интервале 2 3,  функция будет определяться уравне-

нием 
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решение которого имеет вид 
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    
x t Ce t et t   
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1
. (12) 

Константа C  определяется условием непрерывности функции  x t  в точке 

t  2.  
 

 

 

Рис. V15.1 

Решение дифференциально-разностного уравнения 

(7) при значениях параметров   1,   1 2  и на-

чальных условиях  x t  1 (0 1 x ). 

 

 

 

Из этого примера видно, что даже при простейших начальных условиях при-

менение метода последовательного интегрирования мало пригодно для ответа 

на качественный вопрос об устойчивости неподвижной точки - вопрос о том, 

является ли решение  x t  растущим или убывающим по абсолютной величине 

при больших значениях t . 

  Рассмотрим другой подход к решению, основанный на рассмотрении част-

ных решений уравнения (7). По аналогии с обычным линейным дифференци-

альным уравнением с постоянными коэффициентами, решение уравнения (7) 

будем искать в виде экспоненциальной функции: 

  x t A t exp . (13) 

Подстановка (13) в (7) приводит к следующему трансцендентному уравнению 

для характеристического показателя  : 

      e . (14) 

Совокупность корней уравнения (14) будем называть спектром этого уравне-

ния. В общем случае значения   комплексны. Положим 

 u iv   , (15) 

где u  и v  - действительная и мнимая части  . Подстановка (15) в (14) приводит 

к системе трансцендентных уравнений 

 cos 0uu e v     , (16) 

 sin 0uv e v   . (17) 

Непосредственно из них видно, что если  ,u v  - решения системы (16,17), то 

 ,u v  тоже является решением. 

  Рассмотрим численные решения уравнений (16,17) при различных значени-

ях параметров. 
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   1 05, .     1 05, .  

0.768 0   

-1.687 0 -0.315 0 

-2.810 7.377 -2.221 4.444 

-3.368 13.831 -3.091 10.804 

-3.725 20.190 -3.545 17.131 

-3.988 26.518 -3.855 23.441 

 

Из таблицы видно, что наибольшую величину действительной части имеет 

действительный корень уравнения (14). С ростом мнимой части действитель-

ные части корней убывают, становясь отрицательными. 
 

 

 

Рис. V15.2 

Положение спектра дифференциально-

разностного уравнения (7) при значениях пара-

метров 1,  1 2      (A) и 1,  1 2      (B) 

на комплексной плоскости. 

 

 

 

 

Рассмотрим действительные корни уравнения (14). Они определяются 

уравнением 

    u e u  0. (18) 

При   0 действительный корень этого уравнения всегда существует, и притом 

только один. Это следует из того, что непрерывная функция в левой части (18) 

монотонно убывает от неограниченно больших положительных (при u) 

до неограниченно больших отрицательных (при u) значений. 

При   0 уравнение (18) может иметь два корня или не иметь ни одного. 

Граница между этими областями параметров определяется из условия сущест-

вования у уравнения (18) двукратного корня. В точке двукратного корня про-

изводная функции в левой части (18) должна обратиться в ноль. Из системы 

уравнений 

        u e eu u  0 1 0,  (19) 

находим уравнение критической линии 

  
c e  1. (20) 

При   c  уравнение (18) не имеет вещественных корней.  

  Общее решение уравнения (7) можно представить в виде суперпозиции его 

частных решений, имеющих экспоненциальную форму: 
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  x t A tk k

k

 exp   (21) 

Если все принадлежащие спектру значения k  имеют отрицательные действи-

тельные части, то решение вида (21) при произвольных начальных условиях 

при t  будет стремиться к нулю. Область параметров, в которой выполня-

ется это условие, называется областью устойчивости. 

  Границы областей устойчивости на плоскости параметров   ,  определя-

ются системой уравнений (16,17) при значении u  0.  

  Отметим аналогию с определением границ устойчивости линейной системы при парамет-

рическом резонансе (V12).  

Из уравнения (16) следует, что при 0v   одной из границ является прямая  

    0 (22) 

При 0v   границы областей устойчивости на плоскости параметров   ,  оп-

ределяются кривыми, которые в параметрической форме задаются уравнения-

ми 

 ctg ,
sin

v
v v

v
      (23) 

Каждому интервалу изменения v  от n до  n 1   соответствует отдельная 

ветвь этой кривой. 

Ближайшая к началу координат область устойчивости, ограниченная пря-

мой (22) и кривой (23) с 0 v   , пересекающимися в точке    1, пока-

зана на рис. V15.3. 
 

 

 

 

Рис. V15.3 

Границы области устойчивости дифферен-

циально-разностного уравнения (7) на 

плоскости параметров  ,  . 

 

 

 

 

 

  Общее решение (21) уравнения (7) формально включает бесконечное число 

экспоненциальных компонент. Однако экспоненциальные члены с большими 

значениями u  и v  быстро затухают, поэтому практическое решение можно по-

лучить, оставив в сумме (21) лишь несколько компонент с показателями, 

имеющими наименьшие отрицательные вещественные части. 
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Рис. V15.4 

Приближенное решение уравнения (7) при тех 

же значениях параметров в трехмодовом при-

ближении 
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  Решение уравнения (7) хорошо аппроксимируется небольшим числом экс-

поненциальных функций, что указывает на возможность приблизить само 

уравнение обыкновенным дифференциальным уравнением конечного порядка 

с постоянными коэффициентами. В уравнении 

    dx

dt
x t x t    1  (24) 

функцию  x t 1  можно разложить в ряд Тейлора в точке t  и взять конечное 

число членов.  

  Определение характеристических показателей такого уравнения не намного проще, чем 

решение трансцендентного уравнения (14). Однако при некоторых комбинациях параметров 

(например, при  ≪ ) характеристические показатели при таком подходе могут быть вы-

ражены простыми формулами. По существу указанный подход эквивалентен разложению 

экспоненциальной функции в уравнении (14) в ряд и удержанию конечного числа членов. 

В первом приближении получаем 

 
dx

dt
x x

dx

dt
      (25) 

откуда для (единственного) вещественного показателя получаем 

 
 

0 1





. (26) 

При значениях параметров   и  , соответствующих примеру в приведенной 

выше таблице, формула (26) дает 0 100 .  и 0 0 33  . ; точные значения пока-

зателей равны 0 0 768 .  и 0 0 315  .  соответственно. 

Во втором приближении максимальное действительное значение характе-

ристического показателя дается формулой 

 
   

0

21 1 2 2


    
 (27) 

При значениях параметров   и  , соответствующих примеру в приведенной 

выше таблице, формула (27) дает значения 0 0 732 .  и 0 0 317  . . 

  Исследование областей устойчивости в этом параграфе изложено в соответствии с рабо-

той  
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[АМ46] Андронов А.А., Майер А.Г. Простейшие линейные системы с запаздыванием. Авто-

матика и телемеханика, 1946, т.7, №2-3, с. 15-41 (также [А56, с.347-358]). 

  Хотя линейные дифференциально-разностные системы выходят за рам-

ки класса конечномерных динамических моделей, для исследования основных 

свойств таких систем оказываются эффективны стандартные подходы тео-

рии колебаний - представление решения в виде модулированного гармоническо-

го колебания (13) и представление решения в виде суперпозиции мод (21). 

Основная задача исследования спектра и областей устойчивости при 

этом сводится к исследованию комплексных корней трансцендентного урав-

нения (14). 
 


