
V14   НЕЛИНЕЙНАЯ СИСТЕМА  
 С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ 

Ранее рассматривалась задача о синхронизации колебаний автоколебательной сис-

темы под действием внешней гармонической силы. Источником такой силы, вообще го-

воря, является какая-то другая колебательная система. В общем случае эти две системы 

взаимно влияют друг на друга. Иногда можно считать, что в одной из систем запасено 

много больше энергии, чем в другой, и обратным влиянием второй системы на нее можно 

пренебречь. Однако возможны ситуации, когда следует учитывать обоюдное влияние 

систем друг на друга. В случае линейных взаимодействующих систем колебания на час-

тотах нормальных мод происходят независимо. В присутствии нелинейности происходит 

перекачка энергии между модами, что приводит к конкуренции мод. Поэтому нас будет 

интересовать, возможно ли в такой системе квазипериодическое движение с двумя раз-

личными частотами, или же в результате перекачки энергии выживают колебания только 

на одной из них. 

§ 01  Взаимодействие нелинейных диссипативных осцилляторов 

  Характер взаимодействия нелинейных колебательных систем может быть 

весьма разнообразным, установить общие свойства поведения столь сложных 

систем практически невозможно. Поэтому рассмотрим лишь один простейший 

пример – взаимодействие осциллятора Ван дер Поля с гармоническим осцилля-

тором: 
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При этом мы будем считать диссипацию обоих осцилляторов достаточно малой 

, 1, ,   ≪ . Диссипация осциллятора Ван дер Поля знакопеременна – как по-

ложено автоколебательной системе, ее физический прототип должен иметь ка-

кой-то источник энергии. Однако теперь эта энергия в результате 

взаимодействия перераспределяется между двумя осцилляторами. 

  В отсутствие диссипации , 0    собственные частоты взаимодействующих 

систем определяются выражением  

  2 2
1,2 1 1       , (2) 

где  2 1 2     , полученным для частот нормальных мод в примере 2 пре-

дыдущей лекции. В присутствии нелинейности нормальные моды обменивают-

ся энергией. По аналогии с динамикой автоколебательной системы под дейст-

вием внешней силы можно предполагать, что в зависимости от параметров 

возможно как периодическое одночастотное движение, так и квазипериодиче-

ское двухчастотное. 
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§ 02  Периодическое движение 

  Будем искать периодическое движение системы с частотой  , подлежащей 

определению. Если cosx A t  , нелинейный член в осцилляторе Ван дер Поля 

имеет вид: 

 2 3 2 3 sin sin3
sin cos

4

t t
xx A t t A

  
     ɺ . (3) 

Так как нас интересуют колебания на основной частоте, быстрыми колебания-

ми на частоте 3  можно пренебречь и записать 

 
2
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
  ɺ ɺ . (4) 

Тогда исходную систему можно записать в форме линейной системы, в которой 

коэффициент диссипации в первом уравнении дополнительно зависит от ам-

плитуды колебаний: 
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Подставляя в полученную систему решение в виде , i tx y e ∼ , получаем харак-

теристическое уравнение 
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Так как нас интересуют установившиеся колебания с действительной частотой, 

можно выделить в этом уравнении отдельно действительную и мнимую части: 
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Первое уравнение позволяет определить амплитуду колебаний. Подставляя его 

во второе, получаем уравнение, из которого можно найти частоту возможных в 

системе колебаний: 

   
2

2 2 2 2 2 2

2 2

1
1

 
        

 
. (8) 

Относительно 2  это кубическое уравнение, поэтому проще решить его отно-

сительно    : 
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Зависимость     показана на рис. V14.1. Отличие частот колебаний от частот 

нормальных мод системы без диссипации имеет второй порядок малости по  . 

При условии 0      существует диапазон частот  , в котором система имеет 

три различных решения. Можно предположить, что, как обычно в таких ситуа-

циях, средняя ветвь неустойчива, а зависимость частоты колебаний системы от 

разности частот взаимодействующих осцилляторов может иметь гистерезисный 

характер.  

Однако не исключен и другой вариант – в области бистабильности может 

иметь место квазипериодическое движение с частотами колебаний, соответст-

вующих верхней и нижней ветви на рис. V14.1. Эта возможность будет рас-

смотрена в следующем параграфе. 

При больших коэффициентах затухания гармонического осциллятора   

бистабильность пропадает. Отметим, что частота колебаний системы не зависит 

от величины коэффициента диссипации осциллятора Ван дер Поля   - от него 

зависит только амплитуда колебаний, определяемая первым из уравнений (7), 

причем при большой величине отношения      эта амплитуда становится 

мнимой – в этом случае периодического решения системы не существует. 
 

 

Рис. V14.1  

Решение     характеристическо-

го уравнения (8) для совместной 

частоты колебаний осциллятора 

Ван дер Поля и гармонического ос-

циллятора при различных значени-

ях отношения   . Случай 0    

соответствует частотам нормаль-

ных колебаний осцилляторов без 

диссипации и совпадает с графиком 

на рис. V13.1. 

 

 

 

§ 03  Квазипериодическое движение 

  Будем искать квазипериодическое движение обоих осцилляторов в виде раз-

ложения по нормальным модам системы без диссипации 
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Здесь 1,2  - частоты нормальных мод (2), а 1,2f  - соотношения между амплиту-

дами колебаний двух связанных осцилляторов на частотах нормальных мод: 

 2
1,2 1f      . (11) 

Амплитуды A  и B  и фазы   и   в случае ненулевой диссипации следует 

считать медленно меняющимися функциями времени. Изменение амплитуд 

описывает перекачку энергии между нормальными модами за счет 

нелинейности системы, а зависимость от времени фаз – поправку к частотам 

колебаний. Подставляя решение в виде (10) в уравнения (1) и пренебрегая величинами 

второго порядка малости , , , , ,A A B B   ɺɺ ɺ ɺɺ ɺɺ ɺɺ ɺ ɺɺ , а также произведениями   и   на 

первые производные амплитуд и фаз, получаем систему уравнений, описываю-

щих изменения амплитуд и фаз в решении (10): 
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а фазы 1 1t      и 2 2t     . Производные амплитуд и фаз входят в эти 

уравнения только в виде комбинаций a  и b . Выражая их из уравнений (12), по-

лучаем: 
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В этих выражениях все еще присутствуют «быстрые» компоненты с частотами 

1,2 . Домножая их на 1,2cos  и 1,2sin , и, усредняя по быстрым осцилляциям, 

получаем уравнения для медленно меняющихся величин: 
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Из уравнений (16) следует, что фазы остаются постоянными, то есть в данном 

приближении, имеющем первый порядок малости по величинам ,  , поправок 

к частотам нормальных мод нет. Как мы видели раньше (9), поправки к частоте 

возникают во втором порядке малости по величине диссипации, и в данном ре-

шении не учтены. А вот амплитуды будут меняться в соответствии с системой 

уравнений (15). 

§ 04  Конкуренция мод 

  Можно домножить первое уравнение (15) на A , а второе на B  и перейти к 

системе уравнений для квадратов амплитуд 2F A  и 2G B . Учитывая, что 

1 0f   и 2 0f   (11), удобно ввести обозначение 2 1f f   . При изменении 

частоты   от нуля до бесконечности этот параметр уменьшается от бесконеч-

ности до нуля. Тогда система (15) принимает вид: 
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  Полученная двумерная динамическая система (17) поддается привычному 

нам анализу структуры фазового пространства, которая определяется значе-

ниями двух параметров   и      (коэффициент перед фигурными скобками 

определяет только скорости изменения амплитуд). Система имеет четыре не-

подвижных точки:  

 1 0F  , 1 0G  ;  (18) 

 2 0F  ,  2 4 1G   ; (19) 

  3 4 1F    , 3 0G  ; (20) 

  4 4 1 2 3F       ,  4 4 1 2 3G       . (21) 

Матрица устойчивости системы (17) имеет вид 
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Для определения типа неподвижных точек следует найти след и детерминант 

матрицы устойчивости в этих точках. 
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   1 1 1S     ;  1

1
D

 
       

. (23) 

Если собственные частоты исходных систем существенно различаются 

,1    , детерминант 1 0D  , то есть точка является седлом. В обратном слу-

чае    min ,1 max ,1        точка является узлом, устойчивость которого 

зависит от знака следа. Если 1  , то 1 0S  , и узел устойчив. Таким образом, 

точка, в которой амплитуды колебаний на частотах обеих мод равны нулю, ус-

тойчива, только если частоты исходных систем достаточно близки друг к другу, 

а диссипация энергии в гармоническом осцилляторе больше, чем приток энер-

гии в осцилляторе Ван дер Поля. 

  2

1
2 1

2
S

  
       

;   2
2 1 2D       . (24) 

Учитывая, что F  и G  - квадраты амплитуд, требуется дополнительно наложить 

условие их неотрицательности. В данном случае 0G   при 1   . След 2S  

меняет знак при  1 2     , а детерминант 2D  – в точке 1   , а также в 

точках, являющихся корнями квадратного уравнения 22 0     
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
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Меньший из этих корней 1  лежит в недостижимой для параметра   отрица-

тельной области. Если 1  , то для значений  , в которых след или детерми-

нант меняют знак, выполняется цепочка неравенств  21 1 2 1        . От-

сюда следует, что условия устойчивости точки  2 0S   и 2 0D   одновремен-

но выполняются, если 2   . Если 1  , то порядок ключевых значений   ме-

няется на обратный:   21 1 2 1        . В этом случае точка  устойчива, 

если 1   . 
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         
. (26) 

Несложно заметить, что эти выражения (с точностью до положительных мно-

жителей) могут быть получены из выражений (24) заменой   на 1  . Условие 

0F   выполняется, если    , а след 3S  меняет знак при  2 1     . Де-

терминант меняет знак в точке     и еще в двух точках, из которых одна от-

рицательна, а вторая  
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 
. (27) 
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Если 1  , то   32 1 1        , и точка  устойчива при 3   . В обрат-

ном случае 1   точка  устойчива при условии    . 

  4

1

4
S F G    ; 4 0D  . (28) 

Учитывая, что квадраты амплитуд F  и G  больше нуля, след всегда отрицате-

лен, то есть точка находится на границе между седлом и устойчивым узлом: 

один характеристический показатель у нее отрицателен, а второй равен нулю. 

Несложно проверить, что 0F   и 0G   при условии 3 2      (что возможно 

только при 1  ).  

Однако этот результат получен в первом порядке малости по величинам ко-

эффициентов диссипации. Учет следующих порядков малости мог бы уточнить 

отличие детерминанта от нуля – вероятно, эта точка все-таки является седлом, 

то есть квазипериодическое движение в данной системе всегда неустойчиво. На 

практике проверить устойчивость неподвижной точки в такой ситуации обычно 

проще с помощью численного моделирования динамики системы. 

  Таким образом, система (17) может иметь различное поведение в зависимо-

сти от значений параметров   и  . Для удобства знаки следа и детерминанта 

матрицы устойчивости для всех четырех неподвижных точках при различных 

значениях параметра   показаны на рис. V14.2 (при 1  ) и V14.3 (при 1  ).  

Во всех случаях вдали от резонанса, когда собственные частоты систем су-

щественно различаются, устойчивым является решение, при котором отлична 

от нуля только амплитуда колебаний на той частоте нормальной моды, которая 

близка к частоте колебаний осциллятора Ван де Поля. В случае малой диссипа-

ции     вблизи резонанса существует область бистабильности, в которой 

возможны колебания на любой из частот нормальных мод. В обратном случае 

большой диссипации вблизи резонанса все колебания затухают. Этот вывод ка-

чественно совпадает с анализом поведения системы в одночастотном прибли-

жении на рис. V14.1.  

 

Рис. V14.2. Знаки следа и детерминанта матрицы устойчивости в неподвижных точках сис-

темы (17) при 1  . Ячейки со знаками, соответствующими неустойчивым точкам 

 0,  0S D   заштрихованы, в плотно заштрихованных ячейках квадраты амплитуд F  и G  

отрицательны. Желтым цветом выделены области устойчивости. 
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Рис. V14.3. Знаки следа и детерминанта матрицы устойчивости в неподвижных точках сис-

темы (17) при 1  . Ячейки со знаками, соответствующими неустойчивым точкам 

 0,  0S D   заштрихованы, в плотно заштрихованных ячейках квадраты амплитуд F  и G  

отрицательны. Желтым цветом выделены области устойчивости. 

  Квазипериодические колебания, при которых отличны от нуля амплитуды 

колебаний на частотах обеих нормальных мод, судя по всему, соответствуют 

центральной части S-образной зависимости на рис. V14.1.  

Зависимость амплитуд колебаний в различных режимах от частоты гармо-

нического осциллятора   показана на рис. V14.4. Легко видеть, что 

амплитуды, полученные в одночастотном (7) и квазипериодическим 

двухчастотном (19,20) приближениях, практически совпадают. 
 

Рис. V14.4. 

Зависимость амплитуд колебаний с 

частотами, близкими к частотам 

верхней (A) и нижней (B) ветвям 

нормальных мод при 0.5  . 

Сплошными линиями показаны 

амплитуды, соответствующие ус-

тойчивым точкам  и . Пункти-

ром показаны амплитуды колеба-

ний, полученные в одночастотном 

приближении (7). Синим и зеленым 

показаны амплитуды неустойчивой 

неподвижной точки . 
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