
V13   ЛИНЕЙНЫЕ СИСТЕМЫ 
 С ДВУМЯ СТЕПЕНЯМИ СВОБОДЫ 

§ 01  Уравнения движения и линеаризация  

  Напомним, что уравнения движения произвольной динамической системы с 

размерностью фазового пространства K  имеют вид  
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системы определяются уравнением 
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а их устойчивость определяется локальными характеристическими показате-

лями  0n x
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 матрицы устойчивости (см. V04) 
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Движение ДС вблизи неподвижной точки можно записать в виде суперпозиции 
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где коэффициенты nС
�

 представляют собой вектора, соотвествующие движе-

нию системы с соотвествующим характристическим показателем и определя-

ются начальными условиями. Неподвижная точка устойчива, если действи-

тельные части всех характеристических показателей неположительны 

  0Re 0n x 
�

. Исследование движения ДС с 4K   вдали от устойчивых не-

подвижных точек может представлять крайне сложную задачу. 

  Исследование многомерных ДС может упростить наличие у них интегралов 

движения, позволяющих понизить размерность системы. Частным случаем ин-

тегрируемых динамических систем с 2 4K N   являются гамильтоновы авто-

номные системы с N  степенями свободы. Обычно функция Гамильтона имеет 

вид 
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K  уравнений движения системы  
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можно также записать в виде N  уравнений второго порядка 
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Неподвижные точки системы определяются условием 
 0 0

j

U q

q





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. Устойчивые 

неподвижные точки соответствуют минимумам потенциала  U q
�

, в их окрест-

ности разложим потенциальную энергию системы в ряд Тейлора с точностью 

до членов второго порядка по 0q q  
� � �

: 
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где k̂  - симметричный положительно определенный тензор  
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с i j N, , ,..., 1 2 . Уравнения движения ДС (7) в этом приближении 
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представляют собой систему N  однородных дифференциальных уравнений с 

постоянными коэффициентами jm  и kij . Решение системы (10) ищем в виде 

  
j j

i tA e . (11) 

Подставляя (11) в (10), получим систему N  однородных уравнений для ампли-

туд Aj : 

 2( ) 0j ij jm k A   . (12) 

Система (12) имеет нетривиальные решения, если ее определитель 

 2
det 0ij jk m  . (13) 

Это уравнение N -ой степени называется характеристическим и имеет N  ве-

щественных положительных корней 
2 , называемыми собственными частота-

ми системы. Вещественность корней уравнения (13) – следствие того, что 

уравнение (12) можно рассматривать как задачу на собственные значения и 

собственные функции эрмитова (самосогласованного) оператора k̂ , а их поло-

жительность – следствие его положительной определенности. 
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§ 02  Нормальные моды  

  Решение характеристического уравнения позволяет определить собствен-

ные частоты   ДС. В случае, если все они различны, для каждой частоты   

решение системы уравнений (12) 

 2( ) 0j ij jm k A    (14) 

представляет собой собственный вектор  A
�

 тензора k̂ , причем вектора, соот-

ветствующие разным собственным частотам, взаимно ортогональны 
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Нормируя собственные вектора на их норму      
e A A

  
� ��

, можно записать 

частное решение системы уравнений (10) в виде  

     i t
t C e e  
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 (16) 

c комплексными, в общем случае, коэффициентами C, определяемыми на-

чальными условиями ДС. Общее решение системы (10) дается суперпозицией 

частных решений вида (16): 

      j jt e t




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где  

    Re
i t

t C e 
   . (18) 

Таким образом, каждая из компонент вектора динамических переменных 
�

  ли-

нейной автономной системы представляется в виде суммы N  периодических 

колебаний, называемых нормальными модами, с собственными частотами сис-

темы, определяемыми характеристическим уравнением, и амплитудами и фа-

зами, зависящими от начальных условий.  

  Нормальные моды удовлетворяют уравнениям 

 ɺɺ    2 0, (19) 

и ортогональны друг другу: временная зависимость отдельной моды  опре-

деляется начальными значениями лишь ее самой и ее скорости. В смысле урав-

нения (19) нормальные моды можно рассматривать как обобщенные, нормаль-

ные, координаты (переменные) ДС. Гамильтониан системы (5), записанный че-

рез координаты и импульсы нормальных мод, распадается на N  гамильтониа-

нов несвязанных гармонических осцилляторов. 

Если характеристическое уравнение имеет кратные корни - вырожденные 

частоты, то решения  
A

�
 уравнения (14), соотвествующие вырожденной час-
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тоте, могут быть неортогональными, но несложно построить из них взаимно 

ортогональные линейные комбинации (ортогонализация Шмидта). Каждой вы-

рожденной частоте кратности s  соответствует s  нормальных мод. 

  Пример 1. Колебания ядер атомов в твердом кристаллическом теле около их положений 

равновесия описывается системой N  взаимодействующих осцилляторов, где N  - макроско-

пически большое число атомов в криталле. После выделения собственных мод и их кванто-

вания колебания ядер в кристалле описываются на языке системы невзаимодействующих 

фононов с различными частотами. 

  Пример 2. Рассмотрим систему двух гармонических осцилляторов с гамильтонианом 

  
2 2 2

2 21

2 2

x y
H x y xy


   ɺ ɺ . (19) 

Из уравнений движения  

 0x x y  ɺɺ , 2 0y y x  ɺɺ  (20) 

получаем систему алгебраических уравнений для амплитуд в виде: 

  21 0x yA A   ,  2 2 0y xA A    . (21) 

Решения характеристического уравнения  

  4 2 2 2 21 0       , (22) 

имеют вид: 

  2 2
1,2 1 1       , (23) 

где приведенная расстройка 
2 1

2

 
 


. Зависимость частот от приведенной расстройки по-

казана на графике V13.1. График такого типа называют также графиком Вина – подобное 

«расталкивание» ветвей нормальных мод характерно для любых взаимодействующих коле-

бательных процессов вблизи области совпадения их собственных частот. 

 

 

 

Рис. V13.1 

Зависимость частот нормальных мод двух 

взаимодействующих гармонических осцил-

ляторов от приведенной расстройки  . 

Пунктиром показаны собственные частоты 

осцилляторов, параметр 0.1  . 

 

 

 

 

Амплитуды колебаний осцилляторов на частоте каждой нормальной моды связаны со-
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которое можно получить из любого из уравнений (21). 

В случае совпадения собственных частот осцилляторов 1   и слабой связи 1≪  

1,2 1 2   : колебания представляют собой биения с основной частотой 1   и модули-

рующей частотой  . 

§ 03  Маятник Фуко  

  В качестве еще одного примера рассмотрим маятник Фуко. Как известно, 

плоскость колебаний математического маятника, подвешенного на поверхно-

сти Земли и совершающего малые колебания, медленно вращается и за сутки 

поворачивается на угол, зависящий от географической широты. Это связано с 

тем, что мы рассматриваем колебания маятника в неинерциальной системе от-

счета и на него действует сила Кориолиса 2F m r   
��
ɺ , где 

�
 - вектор угловой 

скорости вращения Земли. В частности, плоскость колебаний маятника, под-

вешенного на полюсе, неизменна в инерциальной системе отсчета, а в системе 

отсчета, связанной с Землей, за сутки повернется на 2 . 

  Уравнения движения маятника Фуко в двух направлениях имеют вид 

 

2
0

2
0

2

2

x x y

y y x





   

    

ɺɺ ɺ

ɺɺ ɺ

 (25) 

где 0  - собственная частота колебаний маятника, а 2 sin T     - частота, 

зависящая от широты   и периода обращения Земли вокруг своей оси T . 

Можно показать, что уравнения (25) описывают движение системы с гамиль-

тонианом 

      
2

22 2 201 1

2 2 2
x yH p y p x x y 


       . (26) 

Хотя форма этого гамильтониана несколько сложнее, чем классический вид 

(5) – кинетическая энергия зависит не только от импульсов, но и от координат 

(как для заряженной частицы в постоянном магнитном поле), однако это не ме-

шает применить развитую выше схему решения уравнений. Из уравнений (25) 

получаем систему алгебраических уравнений 

    2 2 2 2
0 02 ;  2x y y xA i A A i A            . (27) 

Решения характеристического уравнения  2
2 2 2 2
0 4       имеют вид  

 2 2
1,2 0        . (28) 
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Подставляя их в одно из уравнений (27), получаем собственные вектора, соответ-

ствующие этим частотам колебаний: 

 
 1,2 11

2

x

y

A
A

A i

   
      

�
. (29) 

Легко видеть, что собственные моды имеют вид движения по окружности в про-

тивоположных направлениях с частотами (28), различающимися на величину 

2  . Колебания в одной плоскости можно представить как суперпозицию этих 

двух вращений.  

Колебания маятника Фуко допускают оптическую аналогию. В свободном 

пространстве поляризацию света можно описывать как в базисе линейных взаим-

но-ортогональных поляризаций, так и в базисе правой и левой круговых поляри-

заций. Аналогично можно описать распространение света в волноводе, сохра-

няющем поляризацию. Однако если этот волновод механически закрутить вдоль 

его волокна, плоскость линейной поляризации в нем будет постепенно поворачи-

ваться, а правая и левая поляризации будут иметь немного разные периоды. 

Так как 0  ≫ , колебания маятника и в x , и в y  плоскости имеют вид ко-

лебаний с его собственной частотой, испытывающих биения на частоте 2  . Из-

за этих биений плоскость колебаний будет постепенно поворачиваться: 

 
 
   2 2

0 0

cos
cos

sin

tx t
x t

ty t






  
             

. (30) 

За сутки она повернется на угол 2 sinT      , то есть угол поворота 

плоскости колебаний определяется географической широтой места, в котором ус-

тановлен маятник.  

  Вращение плоскости колебаний маятника связано с дополнительным набе-

гом фазы t , который в неинерциальной системе отсчета связан с действием 

силы Кориолиса. А в инерциальной системе отсчета маятник Фуко представля-

ет собой математический маятник, колеблющийся под действием силы, на-

правление которой медленно меняется. Адиабатически медленное изменение 

параметров системы не приводит к изменению характера движения, но приво-

дит к возникновению так называемой геометрической фазы, величина кото-

рой напрямую связана с телесным углом, который описывает конец вектора 

силы. При этом, вообще говоря, неважно, по какому закону он меняется – он 

может изменяться и не равномерно, как в нашем случае, важна лишь форма 

замкнутой траектории, которую он описывает. 

Геометрическая фаза возникает в различных физических ситуациях и имеет 

различные названия. Наиболее общее описание геометрической фазы, возни-

кающей в различных квантовых системах, было сделано Берри [B84], поэтому 
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часто ее называют фазой Берри, а в приложении к маятнику Фуко ее обычно 

называют углом Ханни [H85]. 

[B84] Berry M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond., 

1984, v. A392, p. 45-57.  

[H85] Hannay J.H. Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. 

of Physics A: Mathematical and General, 1985, v. 18, № 2, p. 221-230. 

  Собственные моды маятника Фуко, представляющие собой движение по ок-

ружности, наводят на мысль, что систему уравнений движения полезно рас-

смотреть в полярной системе координат. Делая в системе уравнений (25) заме-

ну  

 cos ;  sinx y      , (31) 

можно получить уравнения: 

 
 

 

2 22 0

2 0





         

      

ɺ ɺɺɺ

ɺɺ ɺɺ

. (32) 

Второе из уравнений можно домножить на   и проинтегрировать: 

  2 const M    ɺ . (33) 

В этом выражении несложно узнать закон сохранения полного момента им-

пульса, учитывающего как круговое движение маятника, так и вращение Зем-

ли. Если возбуждать колебания маятника с нулевым моментом импульса, то со-

гласно (33) угол плоскости колебаний будет изменяться по закону   ɺ .  

Выражая из (33) ɺ  и подставляя в первое уравнение (32), получаем уравне-

ние для радиуса  : 

  
2

2 2
03

0
M

      


ɺɺ . (34) 

Это уравнение описывает одномерный нелинейный осциллятор, который также 

можно проинтегрировать: 

  
2 2 2

2 2
02

const
2 22

M
E

 
      



ɺ
. (35) 

Таким образом, исходная система (25) имеет два интеграла движения, что по-

зволяет (аналогично описанию движения в центральном поле) разделить пере-

менные и по-отдельности описать изменения полярного угла (33) и радиуса 

(35). Из последнего уравнения можно найти период колебаний – вычисляя ин-

теграл 
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 
max

min

2 2 2 2 2
0

2
2

d
T

E M



 




      
 , (36) 

где min,max  – точки, в которых знаменатель обращается в ноль, можно пока-

зать, что он, как и для обычного гармонического осциллятора, не зависит от 

энергии и всегда равен 2 2
02T     . 

 


