
V12   ДВИЖЕНИЯ В СИСТЕМАХ С  
 ПАРАМЕТРИЧЕСКИМ ВОЗДЕЙСТВИЕМ 

Отдельный класс задач о квазипериодическом движении двумерных неавтономных 

систем с возмущением, гармонически зависящем от времени, связан с моделью парамет-

рически модулированного линейного осциллятора. При слабом возмущении движение 

этой модели часто оказывается квазипериодическим двухчастотным – одна из частот 

совпадает с частотой внешнего воздействия, а другая близка к частоте движения невоз-

мущенной системы. Однако в некоторых областях параметров вторая частота движения 

становится мнимой – решение из квазипериодического превращается в гармоническое с 

амплитудой, растущей по экпоненциальному закону. Это явление называется парамет-
рическим резонансом. Выделение областей параметрического резонанса составляет ос-

новную задачу теории. 

§ 01  Параметрически модулированный линейный осциллятор 

  Стандартной моделью для рассмотрения колебаний в параметрических сис-

темах является параметрически модулированный линейный осциллятор – гар-

монический осциллятор, квадрат частоты которого изменяется со временем по 

гармоническому закону. Эта система с уравнением движения 

 ɺɺ cosx t x  1 0   (1) 

характеризуется двумя безразмерными параметрами – глубиной модуляции па-

раметра   и частотой модуляции  .  

  В математике уравнение (1) называется уравнением Матье (Mathieu equation), а его ре-

щения – функциями Матье; они детально изучены и табулированы. 

  Пусть 1≪ . Рассмотрим закон движения системы (1) с помощью теории 

возмущений. Перепишем уравнение (1) в виде 

  ɺɺ cosx x x x t    2 2 1    (2) 

где  - частота, подлежащая определению. В нулевом приближении будем 

считать движение гармоническим колебанием с частотой  и единичной ам-

плитудой (поскольку уравнение (1) линейно, амплитуде можно придать желае-

мое значение выбором единиц измерения): 

 x t0  cos . (3) 

Значение  определится условием отсутствия в правой части возмущающих 

членов на частоте  - это метод исключения резонанса, ранее применявшийся 

нами в §5.03. Подставляя в правую часть (2) решение нулевого приближения 

(3), получаем в первом приближении  1 и 
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Во втором приближении решение принимает вид 
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 (5) 

где частота  определяется соотношением 
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. (6) 

Для того, чтобы получаемые при последовательных итерациях поправки были 

малы, необходимо выполнение условий 

 2 , 1   ≪ ≪ . (7) 

При этих условиях движение параметрически модулированного линейного ос-

циллятора является квазипериодическим, причем одна из частот равна частоте 

  модуляции параметра, а вторая, , близка к частоте колебаний невозмущен-

ного осциллятора, но отличается от нее слагаемым, которое растет с ростом 

глубины модуляции параметра. 

  Движение параметрически модулированного линейного осциллятора при 

частоте модуляции, близкой к удвоенной собственной частоте осциллятора, - в 

области, где нарушено первое из неравенств (7) - можно описать с помощью 

метода медленно меняющихся амплитуд. Представим решение в виде 

      x t a t t b t t cos sin
 
2 2

 (8) 

где  a t  и  b t  - медленно меняющиеся амплитуды. Подставляя решение (8) в 

(1) и приравнивая коэффициенты при  cos t 2  и  sin t 2 , получаем уравне-

ния 
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Решения этой системы уравнений имеют вид 

    1 2 1 2,  t t t ta t A e A e b t B e B e       , (11) 

где  
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Введем расстройку частоты модуляции от удвоенной частоты резонанса 

   2. Если 1 ≪ , то выражение (12) можно переписать в виде 

 


 
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


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2
2  (13) 

Если расстройка по абсолютной величине меньше половины параметра моду-

ляции, то медленно меняющиеся амплитуды  a t  и  b t  в общем случае экспо-

ненциально увеличиваются со временем. Экспоненциальный рост амплитуды 

колебаний в линейных системах с периодической модуляцией параметров на-

зывается параметрическим резонансом. Остановить этот рост могла бы нели-

нейность, но в нашей модели (1) мы ее не учитываем. 

Границы области параметрического резонанса вблизи удвоенной частоты не-

возмущенного движения – главного параметрического резонанса – определя-

ются соотношением 

 
2


    (14) 

Ширина области главного параметрического резонанса пропорциональна 

глубине модуляции. 

§ 02  Теорема Флоке 

  При    2  характеристический показатель   – чисто мнимый, и движение 

(8) может быть описано как квазипериодическое с фундаментальными часто-

тами 2  и  . Частота основной гармоники 2     . При 2 ≫  (ср. не-

равенства (7)) приближенно 21 16     , что согласуется с результатом тео-

рии возмущений (6). 

Отметим, что как внутри, так и вне области параметрического резонанса 

решение уравнения (1) может быть представлено в виде 

      x t t e t et t  1 2
1 2  , (15) 

где функции  k t  - периодические с периодом 2  , а характеристические 

показатели k  вне зоны устойчивости – чисто мнимые  k k
   , а внутри – 

чисто действительные  k k
   .  

Этот результат есть частный случай теоремы Флоке (G.Floquet,1883). Ее 

аналог в трехмерном пространстве называют теоремой Блоха. Согласно этой 

теореме система N  уравнений 
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x w t x


 ɺɺ , (16) 

 1 i N  , коэффициенты которой wij  суть периодические функции времени с 

периодом T , имеет 2N  линейно независимых решений вида 
    x t ei
k

i
k tk  

, 

где функции 
  i
k

t  – также периодические с периодом T . 

  Приведем доказательство теоремы для случая одного уравнения второго по-

рядка с периодическим коэффициентом 

  ɺɺx w t x 2 0 , (17) 

которое называют уравнением Хилла. Рассмотрим два линейно независимых 

решения  x t1  и  x t2  этого уравнения. В силу периодичности коэффициента 

 2
w t  функции  x t Tk   также являются решениями уравнения (17) и могут 

быть представлены в виде суперпозиции решений  x tk : 
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 
, (18) 

Выбирая первоначальные решения так, что k  0 , получаем  

    x t T x tk k k   , (19) 

Далее, для двух линейно независимых решений уравнений (17) справедливо 

тождество 

  1 2 2 1 1 2 2 1 0
d

x x x x x x x x
dt

   ɺɺ ɺɺ ɺ ɺ , (20) 

откуда  

 
       
       

1 2 2 1
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 
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ɺ ɺ

 (21) 

С учетом (19) отсюда получаем  1 2 1 . Вводя новые постоянные  
k

Te k , 

получаем   1 2    и    x t t e t
1 2 1 2, ,   , что завершает доказательство 

теоремы. 

  Для уравнения Хилла (17) с действительным коэффициентом  2
w t  реше-

ниями являются как функции  kx t , так и комплексно сопряженные им функ-

ции  kx t
 , откуда следует, что пара коэффициентов 1

 , 2
  совпадает с парой 

1, 2 . Это эквивалентно утверждению, что характеристический показатель   

либо чисто действительный, либо чисто мнимый, а на границе области устой-

чивости параметрического резонанса обращается в нуль. 



V12 Движения в системах с параметрическим воздействием 

-5- 

§ 03  Уточнение границ первой зоны 
 и вторая зона параметрического резонанса 

  Для уточнения границ зоны устойчивости параметрического резонанса не-

обходимо учесть следующие гармоники в решении (8) – обратиться к пред-

ставлению решения с большим числом мод (см. §9.01). Если интересоваться 

только границами зоны устойчивости, достаточно искать решение в виде сум-

мы тригонометрических функций с постоянными коэффициентами: 

  x t a t b t a t b t   1 1 2 2
2 2

3

2

3

2
cos sin cos sin

   
, (22) 

Подставляя (22) в (1) и приравнивая нулю коэффициенты при каждом из коси-

нусов или синусов, получаем систему уравнений: 
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
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   
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;

;

   

      

 (23) 

Решая ее, получаем уточненные границы зоны устойчивости: 

 
2

2
2 32


 

    , (24) 

Параметрический резонанс существует в области 2 22      . 

  Рассмотрим теперь область частот 1 , в которой нарушается второе из 

неравенств (7). Для нахождения границ зоны устойчивости параметрического 

резонанса в области 1 1   ≪  необходимо искать решение в виде 

  x t a a t b t a t b t    0 1 1 2 22 2cos sin cos sin    , (25) 

Подставляя (25) в (1) и приравнивая нулю коэффициент при каждой тригоно-

метрической функции, получаем 

      
   

a a
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     




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
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;

;

   

   

, (26) 

Решая ее, получаем для зоны параметрического резонанса вблизи единичной 

частоты следующие значения грничных расстроек: 

 2 2
1 1

5 1
;  

24 24
        , (27) 
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  Найденные выше границы зон устойчивости параметрического резонанса 

относятся к консервативной модели параметрически модулированного гаром-

нического осциллятора. Рассмотрим теперь влияние затухания на границы зон 

параметрического резонанса. Для модели с уравнением движения 

  ɺɺ ɺ cosx x t x   2 1 0   , (28) 

будем искать решение в виде  

      x t a t t b t t cos sin
 
2 2

, (29) 

При этом затухание будем считать малым 1; ≪ . Подставляя выражение (29) 

в уравнение (28), приравнивая коэффициенты при  cos t 2  и  sin t 2  и пре-

небрегая членами вида  ɺa , получаем систему уравнений 
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, (30) 

Отсюда находим значение показателя 

  


 
   



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 

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1
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2

. (31) 

Приравнивая значение показателя нулю, находим положение границ зоны па-

раметрического резонанса 

 2 21
16

2
      . (32) 

Для гармонического осциллятора с затуханием возникновение параметриче-

ского резонанса при 2  возможно, только если глубина модуляции превос-

ходит пороговое значение 2 4c     . 

  Для учета влияния затухания на границы второй зоны параметрического ре-

зонанса необходимо, как и в предыдущем пункте, записать уравнения для мед-

ленно меняющихся амплитуд, входящих в решение (25). Подставляя (25) в (28) 

и приравнивая коэффициенты при каждой из тригонометрических функций, 

получаем систему дифференциальных уравнений: 
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Для характеристических показателей   из этой системы получаем алгебраиче-

ское уравнение  

 

          
         

2 24 24 2 2 2 2 2

42 2
2 2 2 2 2 2 2

64 4 4 1 4 1 2 1

4 1 1 4 1 2 1 1 8 3 0
16

                  


                

 (34) 

Граница зоны параметрического резонанса определяется условием  Re   0 , 

т.е.  Re     . Однако при   0  любые корни этого уравнения с 

 Re    0  - вещественны, так как при   0  система (33) переходит в систе-

му (26), определяющую границы зоны параметрического резонанса для осцил-

лятора без затухания. Это позволяет искать границы зоны параметрического 

резонанса, подставляя в (34)   0 . Тогда в первом приближении по   и   по-

лучаем: 

 
2 4 2

1
12 64 9

  
      (35) 

Для гармонического осциллятора с затуханием возникновение параметриче-

ского резонанса при 1  возможно, только если глубина модуляции превос-

ходит пороговое значение 1 8 3c     . При малых значениях   1 2c c ≫  - 

условия возбуждения параметрического резонанса на единичной частоте су-

щественно более жесткие. 

 

 

 

Рис. V12.1. 

Границы первой и второй областей пара-

метрического резонанса в первом при-

ближении для консервативного гармони-

ческого осциллятора (1) и гармоническо-

го осциллятора с затуханием 0.05   (2). 

Граница первой области во втором 

приближении (3). 
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0.0

0.5

1.0
 1

 2

 3


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  Как было отмечено выше, экспоненциальный рост амплитуды колебаний в 

параметрическом резонансе может быть ограничен нелинейностью системы. 

Частота движения нелинейного осциллятора зависит от его амплитуды (см. 

§5.03), поэтому по мере роста амплитуды колебаний система может выйти из 

области параметрического резонанса. 

  Линейный осциллятор с квадратом частоты, изменяющимся по гармони-

ческому закону, всегда совершает «формально квазипериодическое» двухчас-

тотное движение, одна из частот которого равна частоте модуляции, 

1   , а вторая, 2 , может быть как действительной, так и мнимой. 

Если частота модуляции   (и ее гармоники k ) далека от удвоенной 

частоты движения невозмущенной системы 2 , то система совершает ква-

зипериодическое движение, вторая частота движения которого 2   и 

слабо зависит от глубины модуляции   (6). Движение системы эффективно 

описывается суперпозицией нескольких периодических движений (8 и 22). 

Если частота модуляции   (или ее гармоника k ) близка к удвоенной 

частоте движение невозмущенной системы 2 , то движение системы эф-

фективно описывается моделью медленно (экспоненциально) модулированного 

гармонического движения (11). 

Граница между этими двумя случаями определяется шириной парамет-

рического резонанса по частоте (24, 27), которая растет с глубиной модуля-

ции; для главного параметрического резонанса  2    ∼ . 

§ 04  Маятник Капицы 

  Отдельного внимания заслуживает описание движение нелинейного осцил-

лятора, параметрически модулированного возмущением с частотой, много 

большей частоты движения невозмущенной системы. Обычно в этом качестве 

рассматривают маятник Капицы [К51] – математический маятник, точка под-

веса которого вибрирует с высокой частотой. 
[К51] Капица П.С. Маятник с вибрирующим подвесом. УФН, 1951, т.44, в.1, с.7-20. 

  Рассмотрим систему, описывающуюся уравнением 

  21 cos sin 0t     ɺɺ , (36) 

где частота модуляции 1≫ . Параметр   имеет физический смысл отношения 

амплитуды вибраций точки подвеса a  к длине математического маятника L  и 

предполагается малым 1a L  ≪ , однако произведение 2  не обязательно 

мало. 

Анализ поведения маятника Капицы основан на разделении быстрых и 

медленных движений (см. §2.05): 

    0 cost t A t     , (37) 
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где функция  0 t  описывает медленное движение маятника, не содержащее 

членов с частотой порядка  . В масштабе быстрых движений с частотой   эту 

функцию можно считать константой. Подставляя (37) в уравнение (36) и при-

равнивая члены при cos t , получаем амплитуду быстрых колебаний маятника  

 0sinA    . (38) 

Для описания медленных движений маятника следует снова подставить реше-

ние (37) в (36) и усреднить по периоду быстрых колебаний. В результате полу-

чаем уравнение для медленной части движения системы  0 t : 

 0 0 0 0sin sin cos 0       ɺɺ , (39) 

где 2 2 2    . Уравнение (39) описывает движение консервативной системы с 

эффективным потенциалом 

  0 0 0cos cos2
2

W


      . (40) 

Возникновение второго члена в потенциале связано с влиянием высокочастот-

ных вибраций. Система (39) всегда имеет неподвижные точки 1,2 0;   , а если 

1   - еще две неподвижные точки  

 3,4

1
arccos   


. (41) 

Анализ устойчивости показывает, что пока 1  , точка 1  является центром, а 

точка 2  - седлом, как и для обычного математического маятника. Однако в 

точке 1   происходит бифуркация удвоения (см. §3.02): точка 2   , в кото-

рой маятник находится в своем наивысшем состоянии, становится устойчивой, 

а рядом с нею возникают две новые неустойчивые точки (41). 
 


