
V11   СИНХРОНИЗАЦИЯ В АВТОКОЛЕБАТЕЛЬНЫХ 

 СИСТЕМАХ 

В предыдущих параграфах были рассмотрены задачи о воздействии гармонической 

силы на консервативную систему, совершающую периодические колебания. При этом 

почти всегда движение оказывалось квазипериодическим двухчастотным - одна из частот 

совпадает с частотой внешнего возмущения, а другая определяется начальными усло-

виями и (в резонансном случае) амплитудой возмущения.  

Другим типом систем, совершающих периодическое движение в отсутствие внеш-

него поля, являются диссипативные автоколебательные системы с предельным циклом, 

примеры которых рассмотрены в лекциях V06 и V07. У них появляются качественно 

иные свойства - если внешняя гармоническая сила достаточно мала, а ее частота   не 

совпадает с частотой автоколебаний невозмущенной системы  , то естественно ожи-

дать, что система будет совершать квазипериодическое движение с частотами   и  . С 

другой стороны, при достаточно большой величине силы можно ожидать, что в системе 

удержится только один - периодический - режим движения с частотой внешней силы  . 

Это явление называется синхронизацией или захватыванием частоты (mode locking 

или phase locking), а такие колебания мы будем называть синхронными. С их рассмотре-

ния мы и начнем. 

§ 01  Периодическое движение – синхронные колебания 

  Следуя традиции [ММ+88, §5.6; РТ84, §16.1], рассмотрим модель, описы-

вающую воздействие гармонической внешней силы на осциллятор Ван дер По-

ля - систему с уравнением движения 

  ɺɺ ɺ cosx x x x F t    1 2  (1) 

(Напомним, что осциллятор Ван дер Поля получается из осциллятора Релея за-

меной переменных). В отсутствие внешней силы при малых   движение на 

предельном цикле есть гармоническое колебание с частотой  1 и амплиту-

дой A  2 . 

  x t t0 2 cos  (2) 

  Рассмотрим теперь решения уравнения (1), имеющие частоту внешнего поля 

и описывающие синхронные колебания. Подставляя в уравнение (1) решение в 

виде 

 x a t b t cos sin  , (3) 

раскладывая левую часть в ряд Фурье и приравнивая коэффициенты при функ-

циях cost  и sint , получаем уравнения  
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где A a b2 2 2  . 
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  Отметим аналогию формы этих уравнений и соответствующих уравнений для фурье-

амплитуд первой гармоники в задаче о нелинейном резонансе осциллятора Дуффинга (V08, 

уравнения (11) и (12)): 

 2 2 2 23 3
1 2 ,  1 2 0

4 4
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   

 

где A a b2 2 2  . Сходство уравнений определяет и сходство методов их решения. 

Возводя уравнения (4) в квадрат и складывая, получаем уравнение для квадрата 

амплитуды первой гармоники вынужденных колебаний A2 

  1
1

4
12

2
2 2 2 2

2
2 2






   A A A F    (5) 

Это кубическое уравнение относительно величины 2 4z A  для упрощения 

можно переписать в виде  

    2
1z z z z F     ɶ ɶ , (6) 

где  2
2 2 21     ɶ  - эффективная расстройка, а 2 2 24F F  ɶ  - эффектив-

ная величина внешней силы. Отметим, что оба параметра неотрицательны. При 

условии 1 3 ɶ  кубическая парабола  z  немонотонна – она имеет экстре-

мумы в точках:  
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Рис. V11.1 

Поведение кубической параболы 

 z  (6) при различных значениях 

расстройки ɶ . При малом значении 

расстройки 0.05 ɶ  уравнение (6) 

имеет три корня, если сила находится 

в диапазоне F F F  ɶ ɶ ɶ . При крити-

ческом значении расстройки 1 3с ɶ  

остается лишь один вещественный 

корень уравнения (6) при любых зна-

чениях внешней силы. 

 

 

Это значит, что если частота внешней силы близка к частоте собственных ко-

лебаний 
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уравнение (6) имеет три вещественных (и положительных) корня 

1 2 3z z z z z     , если значение силы находится в интервале F F F  ɶ ɶ ɶ , 

     3 22
1 9 1 3

27
F z        ∓
ɶ ɶ ɶ . (9) 

Минимальное значение величины 0F ɶ  достигается при 0 ɶ . Величина F
ɶ  

принимает максимальное значение 8 27  на границе частотного интервала (8) 

1 3с ɶ . Это соответствует значениям исходных параметров системы 

 2 2 32
1 12 1 ,  1.09

6 273
c c cF

 
              (10) 

Уравнение (6) при этом имеет трехкратный корень 2 3cz  .  

Если амплитуда внешней силы превосходит критическое значение Fc, то 

кубическое уравнение (5) имеет единственное решение – внешняя сила навя-

зывает системе движение с амплитудой, возрастающей при приближении к 

частоте движения невозмущенной системы (см. рис. V11.2). Если амплитуда 

внешней силы меньше критического значения, в некотором интервале частот в 

системе возможны периодические (с частотой внешнего воздействия) колеба-

ния с тремя различными значениями амплитуды. Устойчивость этих решений 

будет исследована отдельно. 
 

 

 

Рис. V11.2 

Зависимость амплитуды A синхронных коле-

баний осциллятора Ван-дер-Поля от частоты 

  при значениях параметров 0.2   и 

0.5 2.29 cF F  .  

 

 

 

 

§ 02  Устойчивость синхронных колебаний 

  Для исследования устойчивости синхронных колебаний используем метод 

медленно меняющихся амплитуд. Подставим в (1) решение вида 

 x a t b t cos sin   (11) 

считая, что амплитуды a  и b  суть медленно меняющиеся функции времени. 

Пренебрегая вторыми производными по времени от a  и b  и малыми членами 

второго порядка типа  ɺa  и b ɺ  и собирая коэффициенты при функциях cost  и 

sint , получим систему уравнений 
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Найденные в предыдущем параграфе значения  2 2 2
1,2,3 4 4z A a b    соот-

ветствуют неподвижным точкам этой системы. Для исследования устойчивости 

этих точек необходимо вычислить собственные значения матрицы устойчиво-

сти ɵM  (см. V04, §01) в этих точках. Для некоторого упрощения выражений вы-

берем в качестве единицы времени величину  T  
2

1 . Вычисляя элементы 

матрицы ɵM , получим ее след 
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и детерминант 

  
2 22
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D
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 (14) 

Неподвижные точки системы (12) устойчивы, если 0S   и 0D  . Из первого 

условия сразу получаем 2 4 1 2z A  . Выражение для детерминанта удобно 

снова переписать в использованных ранее обозначениях 

  2 2 1
3 1

3
D z z

          
  

ɶ . (15) 

Отсюда несложно получить, что детерминант отрицателен в интервале 

z z z   , где z  – именно те точки (7), в которых кубическая парабола  z  

(6) имеет экстремумы (рис. V11.1). Отсюда следует, что средняя из неподвиж-

ных точек системы 2z  всегда неустойчива. Точки 1z  и 3z  могут быть устойчи-

вы, если их координаты больше 1 2 . 

Зависимости решений уравнения (6) от эффективной расстройки ɶ  при 

различных значениях эффективной силы Fɶ  показаны на рис. V11.3. Пункти-

ром также показаны границы областей неустойчивости 0S   и 0D  . Кривые 

 z ɶ  могут пересекать границы области неустойчивости один, два или даже 

три раза. 

Рассмотрим сперва верхнюю ветвь зависимости  z ɶ  – точку 3z . При 

больших расстройках 1 3 ɶ  детерминат D  всегда положителен. Поэтому при 

больших расстройках, когда точка 3z  является единственным корнем уравне-

ния (6), она устойчива, если 3 1 2z  . Из уравнения (6) получаем условие на 

значения внешней силы, при которой возможна синхронизация: 
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  1
1 4

8
tF F   ɶ ɶ ɶ . (16) 

В случае малых расстроек 1 3 ɶ  верхняя ветвь теряет устойчивость при пере-

сечении кривой 0D   в точке z . Значение силы в этой точке равно  F ɶ ɶ  (9). 

Таким образом, при малых расстройках синхронизация возможна, если выпол-

няется условие 

   3 22
1 9 1 3

27
F F      ɶ ɶ ɶ ɶ . (17) 

При фиксированном значении силы неравенства (16) и (17) определяют шири-

ну центральной полосы устойчивой синхронизации. При 1ɶ ≪  она имеет вид 

F ɶ ɶ  (или 2 1 2F   ). 

Устойчивые синхронные колебания существуют при любых, сколь угодно 

малых значениях силы F ≪ . Полоса устойчивой синхронизации лежит 

вблизи резонансной частоты   1. Спектральная ширина этой полосы растет 

пропорционально величине силы F . 
 

 

 

 

Рис. V11.3 

Решения уравнения (6)  z ɶ  при 

различных значениях эффективной 

силы Fɶ . Штриховыми линиями по-

казаны границы области устойчиво-

сти 0S   и 0D  . 

 

 

 

 

 

Теперь рассмотрим нижнюю ветвь зависимости  z ɶ , существующую при 

1 3 ɶ . Из условия 1 1 2z   получаем 1 4 ɶ . Таким образом, дополнительная 

полоса устойчивой синхронизации существует в узком частотном диапазоне 

1 4 1 3  ɶ . Величина 1z  при этом лежит в интервале 11 2 z z  . Подставляя 

границы этого интервала в уравнение (6), получаем, что такие решения суще-

ствуют, если величина силы лежит в диапазоне 

     3 21 2
1 4 1 9 1 3

8 27
tF F F          ɶ ɶ ɶ ɶ ɶ . (18) 

На рис. V11.4 показаны границы областей синхронизации, задаваемые нерав-

нествами (16-18). Видно, что дополнительная полоса устойчивых синхронных 
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колебаний рождается внутри полученной нами ранее центральной полосы 

синхронизации. 

Осциллятор Ван дер Поля под действием гармонической силы обладает бис-

табильностью: при значениях силы F F Ft c    109.  и при частоте 

внешней силы, лежащей в интервале 22 1 3      , в системе могут 

существовать два устойчивых колебания с частотой  , различающихся ам-

плитудами и фазовыми сдвигами по отношению ко внешней силе.  
 

 

 

Рис. V11.4 

Границы области синхронизации 

колебаний для осциллятора Ван-

дер-Поля на плоскости перемен-

ных F ɶ ɶ . Синяя линия показы-

вает область бистабильности. В 

увеличенном виде в приведенных 

координатах она показана на 

врезке. 

 

 

 

 

Хотя размеры области бистабильности незначительны, а степень устойчивости 

синхронных колебаний весьма мала, их наличие представляет принципиальный 

интерес. 

  Задача об устойчивости синхронных колебаний для осциллятора Ван дер Поля при малых 

значениях параметра 1≪  была решена Андроновым и Виттом еще в 1930 году [AW30, 

A56]. В своей пионерской работе эти авторы отметили наличие у системы области биста-

бильности, в которой "существует одновременно два устойчивых периодических решения" 

[A56, с. 64], но отказались от ее рассмотрения. Хотя и сама задача, и предложенный в работе 

[AW30] метод ее решения, основанный на уравнениях для медленно меняющихся амплитуд, 

вошли в стандарт учебного курса теории колебаний [РТ84, с.251-258; ММ+88, с. 214-219], 

утверждение о бистабильности синхронных колебаний осталось без внимания и со временем 

было забыто настолько, что стало отрицаться [Л80, с.75-76]. 

[AW30] Andronow A., Witt A. "Zur Theorie des Mintnehmens von van der Pol." Archiv für 

Electrotechnik, 1930, Bd. XXIV, S. 99-110 

[А56] Андронов А.А. Собрание трудов. - Изд.-во АН СССР, 1956. - 538 с. 

[Л80] Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Нау-

ка, 1980. - 360 c. 

§ 03  Квазипериодические движения 

  Обратимся теперь к рассмотрению квазипериодических движений в осцил-

ляторе Ван дер Поля под воздействием гармонической внешней силы (1). В 

дальнейшем мы ограничимся рассмотрением томсоновского случая 1≪ , при 

котором в отсутствие внешней силы движение осциллятора хорошо описыва-
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ется моделью гармонического колебания с частотой  1 и амплитудой A  2 : 

x t t0 2a f  cos  (2). 

  Рассмотрим квазипериодическое движение вблизи границы полосы синхро-

низации при условии F ≪ , когда расстройка немного превышает граничную 

расстройку полосы синхронизации (17) 

 

2 1

2 4
c

F 
     , (19) 

то есть тоже удовлетворяет условию 1 ≪ ≪ . Ограничимся рассмотрением 

случая   0 (рассмотрение противоположного случая требует минимальных 

изменений). Для описания движения используем метод медленно меняющихся 

амплитуд. Представим решение как модулированное колебание с частотой 

внешней силы, вводя с помощью переменных амплитуды A  и фазы  решение 

 x A t cos  a f. (20) 

Подставляя это выражение в уравнение движения (1) и пренебрегая членами 

второго порядка малости  2
, , , , ,A A A A A A     ɺɺ ɺ ɺɺ ɺɺ ɺ ɺ , после простых, но громозд-

ких преобразований получаем уравнения для амплитуды и фазы 

 
2

1 sin
2 4 2

A F
A A

 
    

 
ɺ . (22) 

 cos
2

F

A
    ɺ  (23) 

В силу неравенства F ≪  в уравнении (22) можно пренебречь вторым членом, 

и в низшем приближении принять амплитуду колебаний равной амплитуде не-

возмущенных автоколебаний: 

 A A 0 2. (24) 

Уравнение (23) может быть элементарно проинтегрировано: 

    
2 2

02arctg tg
2

cc

c

t t t
           

       

 (25) 

Скорость изменения фазы дается выражением 

  
  

2 2

2 2
0cos

c

c c

t
t t

  
 

      
ɺ  (26) 

Из формулы (26) видно, что фаза монотонно растет, а скорость ее роста изме-

няется периодически с периодом T c 


2 2 2
1 2

  c h . 

  Характер квазипериодического движения существенно зависит от парамет-

ра 
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   

c

1 (27) 

При малых 1≪ , что соответствует близости к границе полосы синхрониза-

ции, скорость изменения фазы на большей части периода ее изменения T  мно-

го меньше граничной расстройки: ɺ  c. На коротком временном интервале 

продолжительности t T~   скорость изменения фазы имеет пик, достигая 

максимального значения max ɺ  2c . 

 

 

 

Рис. V11.5 

Скорость изменения фазы решения (26) 

вблизи границы области синхронизации на 

одном периоде, нормированная на гранич-

ную расстройку. Значение параметра   01. . 

 

 

 

 

Поэтому вблизи границы области синхронизации, при 1≪ , квазипериодиче-

ское движение системы содержит большое число N ~ 1 2  спектральных ком-

понент с частотами  k ck   , заполняющих всю полосу синхронизации. 

  При 1≫  скорость изменения фазы можно считать постоянной: ɺ   . То-

гда решение (25) с постоянной амплитудой A  2  описывает просто невозму-

щенные автоколебания осциллятора с частотой     1. Для учета влия-

ния внешней силы в этом случае надо уточнить приближение (24). Полагая 

A  2  , подставляя это выражение в уравнение (22) и линеаризуя по  , полу-

чаем  

 
x t

F
t t

t
F

t
F

t

a f

a f

 LNM
O
QP 

   

2
2

2
4 4

1








sin cos

cos sin sin .




 (28) 

Таким образом, спектр квазипериодического движения осциллятора Ван дер 

Поля под действием слабой гармонической силы F ≪  при больших рас-

стройках c ≫  содержит три компоненты: на частоте невозмущенного дви-

жения 1 1 , на частоте внешней силы 2    и на комбинационной частоте 

  3 1 22  . 

  Обратимся теперь к рассмотрению квазипериодического движения вблизи 

границы полосы синхронизации при противоположном условии F ≫ . В этом 

случае в уравнении движения (1) в первом приближении можно пренебречь 

членами, пропорциональными  . Тогда осциллятор Ван дер Поля превращает-

ся в консервативный гармонический осциллятор, и его вынужденные колеба-

ния описываются законом 

2.1

0.1

F t
n

2 0 t
n

0 2 4 6
0

1

2

3
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 x t
F

ta f 
1 2

cos  (29) 

В следующем приближении представим решение в виде 

 x t
F

t a ta f 



1 2

cos cos , (30) 

где  a t  - медленно меняющаяся амплитуда. Подставляя решение (30) в (1), 

пренебрегая членами второго порядка малости  ,a aɺɺ ɺ , умножая уравнение на 

sin t  и устредняя по периоду, получаем уравнение для амплитуды в виде 

 

 
2 2

2
2

1
2 4 2 1

a F
a a

 
     
   

ɺ , (31) 

откуда для стационарной амплитуды получаем значение 

 a
F

 4
2

2

2
 (32) 

При уменьшении расстройки амплитуда уменьшается, обращаясь в ноль при 

значении  

 c

F
 

2 2
 (33) 

что соответствует найденной ранее (16) границе полосы синхронизации в слу-

чае F ≫ . Такой тип перехода от квазипериодического движения к периоди-

ческому носит название синхронизации гашением. При больших значениях 

расстройки амплитуда автоколебаний, как и следует, принимает невозмущен-

ное значение 0 2a  . 

 


