
V10   КВАЗИПЕРИОДИЧЕСКИЕ ДВИЖЕНИЯ 

 В КОНСЕРВАТИВНЫХ СИСТЕМАХ 

Выше мы рассматривали задачи о периодических движениях в системах с одной 

степенью свободы под действием силового периодического возмущения. Рассматривался 

класс диссипативных систем с затуханием, для которого в отсутствие поля единственны-

ми аттракторами являлись положения равновесия. Поскольку собственные движения в 

таких системах затухают, начальные условия влияют лишь на то, какой из нескольких 

возможных типов периодического движения установится в системе. 

Сейчас мы перейдем к рассмотрению более общих типов движения в системах с 

одной степенью свободы под действием силового периодического возмущения - квази-

периодических движений. Начнем с рассмотрения таких движений в консервативных 

системах. Для них почти при любых начальных условиях движение в отсутствие внеш-

ней силы (собственное движение) является периодическим, а его частота   определяет-

ся начальными условиями. Естественно допустить, что при воздействии на такую систе-

му слабой гармонической силы частоты   спектр движения системы будет содержать 

как компоненты невозмущенной частоты и ее гармоник, так и компоненту на частоте 

возмущения. Ее выделение представляет специальный интерес. 

§ 01  Восприимчивость к слабой гармонической силе 

  Рассмотрим модель, описывающую одномерное движение частицы (массы 

  1) в поле с потенциалом  U x  под действием слабой гармонической силы. 

Уравнение движения такой модели имеет вид 

 ɺɺ cosx
dU

dx
F t   . (1) 

В отсутствие внешней силы невозмущенный закон движения  x t E0 ,  почти 

при всех начальных условиях является периодическим и может быть представ-

лен в виде разложения в ряд Фурье (см. V01)  

    x t E X is ts

s

0 , exp




  , (2) 

где фурье-амплитуды X s и частота движения  являются, в общем случае, 

функциями энергии. Если амплитуда внешней силы F  достаточно мала, то 

можно допустить, что изменение закона движения системы также будет малым. 

Представим закон возмущенного движения в виде 

      x t x t t 0  . (3) 

Поправку   t  будем называть откликом на гармоническое поле. Подставляя 

(3) в (1) и линеаризуя получившееся уравнение относительно  , приходим к 

линейному неоднородному уравнению  

 
  2

0

2
cos

d U x t
F t

dx
    ɺɺ , (4) 
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в котором коэффициент U xx  является периодической функцией времени. Для 

определения частного решения системы (4), пропорционального величине си-

лы и изменяющегося с частотой внешнего поля, необходимо отыскать фунда-

ментальную систему решений однородного уравнения, получающегося из (4) 

при F  0 - два его независимых решения [Э65, с.100; К71, с. 97]. 

[Э65] Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М., Наука, 

1965. - 424 с. 

[К71] Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.; Наука, 

1971. - 576 с. 

В качестве таких решений можно взять функции 

    y t
dx

dt
y t

dx

dE
1

0
2

0 , , (5) 

в чем легко убедиться, продифференцировав уравнение невозмущенного дви-

жения 

 ɺɺx
dU

dx0 0   (6) 

по времени и по энергии и сравнив полученные выражения с уравнением (4). 

Независимость решений y1 и y2 можно установить, продифференцировав закон 

сохранения полной энергии невозмущенной системы, 

  1

2

2
ɺx U x E  , (7) 

по энергии E . В итоге получается выражение 

 ɺ
ɺ

ɺ ɺx
dx

dE

dU

dx

dx

dE
y y y y   1 1 2 1 2 , (8) 

представляющее собой вронскиан решений y1 и y2, тождественно равный 

единице - и потому всегда отличный от нуля.   

Интегрируя уравнение (4) методом вариации постоянных [Э65, с.116, К71, 

с.144] и подставляя в правые части выражений (5) разложение невозмущенного 

движения в ряд Фурье (2), получим частное решение в виде 

       t F t cos . (9) 

Отклик консервативной динамической системы (1) на слабую гармоническую 

силу представляет собой гармоническое колебание с частотой внешней силы, 

амплитуда которого пропорциональна величине внешней силы. Коэффициент 

пропорциональности называется линейной восприимчивостью системы (1) в 

состоянии с заданной энергией E ; он имеет вид 

   

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


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Приведенное выражение для линейной восприимчивости впервые получено в 

работе [ГПЮ67]. 

[ГПЮ67] Гапонов А.В., Петелин М.И., Юлпатов В.К. "Индуцированное излучение возбуж-

денных классических осцилляторов и его использование в высокочастотной электронике." 

Изв. вузов - Радиофиз. 1967, т.X, №9-10, с.1414-53 

  Пример 1. Найдем линейную восприимчивость гармонического осциллятора. Свободное 

движение в этой модели представляет собой гармоническое колебание (отличны от нуля 

только фурье-амплитуды 1 1X X 
 ), а частота колебаний не зависит от энергии: const  . 

Выражение (10) упрощается и принимает вид 

    
2

2

12 2

2 d
X

dE


  

 
. (11) 

Поскольку 
2 2

1 2X E  , из формулы (11) получаем 

  
2 2

1
  

 
 (12) 

Линейная восприимчивость гармонического осциллятора не зависит от его энергии. Она по-

ложительна на низких частотах (  ) и отрицательна на высоких (   ). На резонансной 

частоте     восприимчивость     имеет полюс первого порядка. 

  Пример 2. Найдем линейную восприимчивость частицы в потенциальном ящике - поле с 

потенциалом  

  
0,  

,  

x a
U x

x a

 
 

 
 (13) 

В противоположность предыдущему примеру, у этой системы фурье-амплитуды движения не 

зависят от энергии (см. V01.10), а частота зависит: 

 2
2

E
a


   (14) 

Выражение (10) в этом случае принимает вид 

  
 

2 2 2
22

2
2 2 2

1

2 s

s

d s
s X

dE s





  
    

 
  (15) 

Линейная восприимчивость частицы в потенциальном ящике отрицательна на всех часто-

тах.  Этот вывод часто вызывает недоверие, особенно в приложении к постоянному полю: 

под действием силы 0F  , влекущей частицы вправо, - она смещается (в среднем) влево. 

Тут все правильно: в области 0x  , где потенциальная энергия частицы U Fx   меньше, ее 

кинетическая энергия, а с нею и скорость больше, чем в области 0x  . Следовательно, час-

тица больше времени проводит в области 0x  , что и ведет к неравенству 0x  .  

На резонансных частотах s   линейная восприимчивость частицы в потенциальном 

ящике имеет полюс второго порядка. 

  Рассмотренные примеры показывают, что для систем общего вида зависи-

мость фурье-амплитуд от частоты ответственна за вклады с полюсами первого 

порядка, имеющих разные знаки по обе стороны от резонансной частоты, а не-
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изохронность (зависимость частоты движения от энергии) ответственна за воз-

никновение вкладов с полюсами второго порядка, имеющих одинаковые знаки 

по обе стороны от резонансной частоты. 
 

 

Рис. V10.1 

Зависимость от частоты линейной восприимчи-

вости консервативного осциллятора Дуффинга 

D1+ в состоянии с энергией 1E  . Частота не-

возмущенного движения системы 1.381  . 

 

 

Вблизи резонансов   s всегда доминируют члены второго типа. Отметим, 

что при любой, сколь угодно малой величине силы F  вблизи резонансов суще-

ствует область частот, в которой основная предпосылка использованного под-

хода - предположение о малости отклика в сравнении с невозмущенным дви-

жением - нарушается. Поведение системы под действием резонансного поля 

требует отдельного рассмотрения. 

§ 02  Консервативный нелинейный резонанс 

  Рассмотрим движение консервативного осциллятора Дуффинга D1+ под дей-

ствием слабой гармонической силы 1F ≪ , частота которой близка к собствен-

ной частоте малых колебаний,   1. Отклонение частоты возмущения от резо-

нанса удобно характеризовать параметром 

  
2

1

2
. (16) 

При   1    1, поэтому мы будем называть   расстройкой. Решение урав-

нения движения 

 ɺɺ cosx x x F t  3   (17) 

будем искать в виде модулированного гармонического колебания на частоте 

внешней силы 

      x t q t t p t t cos sin   (18) 

Функции  q t  и  p t  будем называть медленными амплитудами. Подставляя 

(18) в (17), пренебрегая членами, содержащими вторые производные ( ɺɺq  и ɺɺp) 

медленных амплитуд по времени и собирая коэффициенты при cost  и sint , 

получаем систему уравнений движения для медленных амплитуд 

 
 

 
ɺ ,

ɺ .

q p q p p

p
F

q q p q

   

   

2 3

4

2 3

4

2 2

2 2




 

  

 (19) 
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В лекции V08 были получены уравнения (32,33) для исследования устойчиво-

сти колебаний с различными амплитудами в диссипативном осцилляторе Дуф-

финга под действием внешней силы. В случае 0   эти уравнения переходят в 

систему (19). Однако в отсутствие диссипации движение в осцилляторе Дуф-

финга имеет два важных отличия. Во-первых, верхняя ветвь, соответствующая 

нелинейному резонансу, будет существовать при любых значениях частоты 

1  (см. рис. V10.2).  
 

 

 

Рис. V10.2 

Зависимость амплитуд вынужденных колебаний от 

расстройки   при 0.05F  . Сплошные линии – 

устойчивые ветви, пунктирная линия – неустойчи-

вая ветвь. 

 

 

 

 

Во-вторых, как мы увидим далее, устойчивые неподвижные точки системы 

(19), соответствующие движению с частотой внешней силы с амплитудами 

верхней резонансной или нижней нерезонасной ветви, являются центрами. По-

этому помимо движения с частотой внешней силы система будет совершать 

относительно медленное незатухающее движение, которое описывается авто-

номной системой с одной степенью свободы (19). Можно показать, что эти 

уравнения образуют систему канонических уравнений для гамильтониана 

      H p q T p q V q, ,  , (20) 

где  T p q,  есть зависящая как от импульса, так и от координаты кинетическая 

энергия системы, 

    T p q p q p,    








2 2 2
1

3

16
2 , (21) 

а  V q  есть зависящая только от координат потенциальная энергия:  

  V q
F

q q q   
  

 2 43

16
. (22) 

Поскольку мы ограничиваемся рассмотрением области малых расстроек, в 

дальнейшем в выражениях (19-22) будем заменять  на 1 . 

  Неподвижные точки системы (19), соответствующие периодическим дви-

жениям системы с частотой, равной частоте внешней силы, лежат на линии 

p  0 в точках, где потенциал  V q  имеет экстремум. Последние определяются 

корнями кубического уравнения 

 q q F3 8

3

4

3
0   , (22) 
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совпадающее с (V08.13) при 0  . Это уравнение всегда имеет по крайней ме-

ре один вещественный корень. Наличие дополнительных вещественных корней 

зависит от знака дискриминанта кубического уравнения (ср. V09.38), который 

равен 

  D F F ,  





 

8

9

4

9

3
2 . (23) 

Таким образом, при заданной величине внешней силы F  и (положительной) 

расстройке, превосходящей значение 

 c F F 





 

81

128
0858

1 3
2 3 2 3.  (24) 

потенциал  V q  имеет три точки экстремума, а система (19) - три неподвижных 

точки. 
 

 

Рис. V10.3 

Вид эффективного потенциала  V q  для 

консервативного осциллятора Дуффинга 

D1+ под действием гармонической силы 

величины 0.05F   при расстройке 

0.2 1.72 c    . Синим цветом выделе-

на область, где эффективная масса от-

рицательна. 

 

 

 

  Определим типы этих неподвижных точек. Для консервативных систем (а 

система (19), как автономная гамильтонова, относится к таковым) возможны 

неподвижные точки двух типов - центры и седла. При малых p  кинетическая 

энергия  ,T q p  (21) имеет вид кинетической энергии частицы знакоперемен-

ной массы 

  
1

2 8

3
m q q


    
∼ , (25) 

Пусть   F . Тогда корни кубического уравнения (21) приближенно равны (в 

порядке увеличения их абсолютного значения): 

 1 2 3

8 8
, ,

2 3 4 3 4

F F F
q q q        

  
 (26) 

Эффективная масса (25) отрицательна в точках 1,2q  и положительна в точке 3q  

(см. рис. V10.3). Поэтому точки  q1 0,  (соответствующая максимуму потен-

циала) и  q3 0,  являются центрами; в их окрестности система совершает орби-
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тально устойчивое квазипериодическое движение. Частота медленного движе-

ния определяется начальными условиями для переменных q  и p. Точка  q2 0,  

(соответствующая минимуму потенциала) является седлом. Линия уровня га-

мильтониана (20), соответствующая седловому значению энергии, 

 24 8

3 3
sE F     , (27) 

является сепаратрисой, которая делит фазовую плоскость  q p,  на три облас-

ти. Область, содержащая точку  3,0q , является консервативным нелинейным 

резонансом.  

Отметим, что точка  1,0q  описывает нерезонансное решение, которое мо-

жет быть определено пренебрежением нелинейностью - заменой осциллятора 

Дуффинга на гармонический осциллятор (ср. (12)). 
 

 

 

Рис. V10.4 

Фазовый портрет системы медленных 

амплитуд для консервативного осцилля-

тора Дуффинга D1+ под действием гармо-

нической силы величины 0.05F   при 

расстройке 0.2 1.72 c    . 

 

 

 

 

  Гамильтонова система с одной степенью свободы под воздействием сла-

бого  1F ≪  гармонического возмущения cosF t  почти всегда совершает 

квазипериодическое двухчастотное движение, одна из частот которого, 1 , 

равна частоте возмущения  . 

Если частота возмущения   далека от частоты движения   невозму-

щенной системы с теми же начальными условиями (движение вдали от нели-

нейного консервативного резонанса), то вторая частота 2    и слабо за-

висит от амплитуды возмущения F . Движение системы эффективно описы-

вается суперпозицией двух периодических движений. 

Если частота   близка к частоте   движения невозмущенной системы 

(движение внутри консервативного резонанса или вблизи него), то вторая 

частота 2  мала, зависит от начальных условий и от величины возмущения 

F . Движение системы эффективно описывается моделью слабомодулирован-

ного (периодически) гармонического движения. 

Граница между этими случаями определяется интервалом частот, в ко-

тором возможен консервативный нелинейный резонанс.  
 
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