
V09   СУБ- И СУПЕРГАРМОНИЧЕСКИЙ РЕЗОНАНСЫ 
  В ОСЦИЛЛЯТОРЕ ДУФФИНГА  

§ 01  Моды и конечномодовые приближения  

  Если закон движения  x t  представляется в виде 

    
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где  kf t  - известные функции, то 

– эти функции называются модами (от латинского modus: здесь – тип, об-

разец); 

– коэффициенты kA  называются амплитудами мод; 

– параметр M  называется числом мод; 

– форма (1) называется М-модовым приближением. 

  Для описания свойств диссипативного нелинейного резонанса в системе  

 ɺɺ ɺ cosx x x x F t   2 3   (2) 

в V08 мы использовали двухмодовое синхронное приближение 

 x t a t b t0a f  cos sin  , (3) 

в котором частоты мод совпадали с частотой внешнего воздействия. Стан-

дартная процедура подстановки (3) в (2), Фурье-разложения и приравнивания и 

коэффициентовы при модах приводят к системе кубических («трилинейных») 

уравнений (08.11), (08.12), решения которых отыскивались с помощью искус-

ственных приемов. В §08.5 решение (3) было уточнено с помощью теории воз-

мущений – добавлены малые члены с утроенной частотой. 

  Найденное таким образом решение не описывает всех возможных периоди-

ческих движений в системе (1). Во-первых, частота движения может составлять 

кратную долю частоты воздействия  , n    – так называемый субгармони-

ческий резонанс порядка n  (важнейшим для модели (1) является случай 3n  ). 

Во-вторых, выбор в качестве нулевого приближения двухмодового синхронно-

го приближения (3) предполагает малость амплитуд отброшенных высших 

гармоник. Это предположение может нарушаться, если частота движения   

кратна частоте воздействия   – так называемый супергармонический резонанс 

порядка n : n    (важнейшим для модели (2) является случай 3n  : см. 

(V08.41)). Описание соответствующих законов движения, существенно отли-

чающихся от найденных в предыдущей лекции, возможно при использовании 

четырехмодового приближения 

   cos sin cos3 sin3x t a t b t c t d t         (4) 
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и записи возмущения в виде cos3F t  для субгармонического и cosF t  для 

супергармонического случаев. Прямое использование стандартной процедуры 

приведет к системе четырех трилинейных уравнений для амплитуд a , b , c  и 

d . Исключение всех переменных, кроме одной, даст уравнение высокой 

 81-й?  степени, исследование которого авналитическими методами безнадеж-

но, а численными – обременительно. Задача упрощается, если затухание   

можно считать пренебрежимо малым параметром. Поскольку амплитуды квад-

ратурных компонент b  и d  при этом оказываются малы (обращаются в ноль 

при 0  ), в качестве нулевого можно использовать двухмодовое приближе-

ние 

  0 cos cos3x t a t c t    . (5) 

Основываваясь на этом, в следующих параграфах мы исследвуем простейшие 

движения в субгармоническом и супергармоническом резонансах модели (2). 

§ 02  Субгармонический резонанс: пренебрежимо малое затухание  

  Субгармоническим резонансом порядка n  в неавтономной системе с пе-

риодическим воздействием называется область параметров, в которой сущест-

вует периодическое движение с частотой в n  раз меньше частоты поля. Рас-

смотрим субгармонический резонанс третьего порядка для диссипативного ос-

циллятора Дуффинга, уравнение движения которого запишем в виде 

 ɺɺ ɺ cosx x x x F t   2 33  , (6) 

чтобы сохранить обозначение   за частотой движения. В дальнейшем мы бу-

дем считать силу умеренной, F 1, и будем рассматривать область частот, не-

далеко отстоящих от частоты малых колебаний: 0 1 12   . 

  Начнем со случая, когда затухание   можно считать пренебрежимо малым. 

Тогда решение уравнения 

 ɺɺ cosx x x F t  3 3  (7) 

можно представить в виде суперпозиции первой и третьей гармоники 

 x t t t a t c ta f a f a f      cos cos3 , (8) 

пренебрегая сдвинутыми по фазам компонентами. В нулевом приближении 

пренебрежем нелинейным членом в левой части (7). Тогда компоненту с часто-

той 3  можно описать как вынужденные колебания линейного осциллятора с 

пренебрежимо малым затуханием: 

  


t c t
F

ta f   


cos cos3
9 1

3
2

 (9) 

Подставив решение в виде x t t ta f a f a f    в уравнение (7), для функции  ta f 
получим уравнение 

 ɺɺ           3 3 2 23 3  (10) 
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Подставляя в правую часть выражения для  ta f и  ta f  (8) и сохраняя только 

члены с частотой  , получим уравнение 

 ɺɺ cos       3 2 23

4
2ac a c tb g  (11) 

Теперь задача свелась к определению движения к рассмотренной ранее задаче 

о движении консервативного нелинейного осциллятора Дуффинга с амплиту-

дой силы 

 
~
F ac a c  

3

4
2 2 2b g (12) 

Из уравнения (11) (ср. V08.11) получаем квадратное уравнение для a  

 1
3

4

3

4
2 02 2    a c c a a f  (13) 

корни которого даются формулой 

 a
c

c   
2

4

3
1

7

4
2 2b g  (14) 

  Методом, изложенным в V08.4, можно показать, что устойчивым является только реше-

ние, которому соответствует знак "–" перед корнем: соответствующая амплитуда всегда от-

рицательна.  

Корни уравнения (13) вещественны, если частота возмущения 3  превосходит 

пороговую частоту, приближенно равную 

 221
3 3 1

2048
c F

    
 

 (15) 

 

 

 

Рис. V09.1 

Зависимости амплитуд первой (сплошная и 

штриховая линии) и третьей (штрих -пунктирная 

линия) гармоник движения вблизи порога суб-

гармонического резонанса в осцилляторе Дуф-

финга с пренебрежимо малым трением при F  1. 

 

 

 

Из условия положительности подкоренного выражения в (14) получаем также 

границу области существования субгармонического резонанса на плоскости 

переменных F ,k p в системе с пренебрежимо малым трением: такой резонанс 

существует при  1, если сила не превосходит значения 

 Fl     
4

21
1 9 1 6 983 12 2 2  b g .  (16) 
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На пороге субгармонического резонанса амплитуда первой гармоники конечна 
и равна половине амплитуды третьей гармоники - коэффициент ангармонизма 

колебаний   4 (см. рис. V01.2).  

§ 03  Субгармонический резонанс: конечное затухание  

  Рассмотрим теперь субгармонический резонанс с учетом конечной величи-

ны затухания. Движение можно приближенно описать законом 

 x t a t b t c ta f   cos sin cos  3  (17) 

Поскольку с ростом частоты амплитуда первой гармоники быстро растет, а ам-

плитуда третьей медленно падает, можно пренебречь в выражении для возму-

щающей силы (12) первым слагаемым и рассмотреть задачу о движении дисси-

пативного осциллятора Дуффинга под действием вынуждающей силы 

 
~
F A c

3

4
2  (18) 

где A  - фурье-амплитуда первой гармоники движения ( A a b2 2 2  ). Из урав-

нения (V08.13) получаем 

 1
3

4
4

9

16
2 2

2

2 2 2 2 4 2 F
H

I
K  A A A A c    (19) 

  Возможность использовать это уравнение оправдана предположением о малости затуха-

ния. Поэтому амплитуда квадратурной компоненты мала, b a , и можно пренебречь в пра-

вой части членом, пропорциональным abc, по сравнению с a c2 .  

Нетривиальные (отличные от нуля) корни уравнения (19) определяются би-

квадратным уравнением, которое подстановкой z A 2 сводится к квадратному 

 z z c2 2 2 2 2 2 28

3
1

16

9
1

64

9
0  L

NM
O
QP       c h c h  (20) 

Корни этого уравнения вещественны, если положителен дискриминант 

    4 2 2 2 216 256
, 1

3 9
D F c c         (21) 

Поскольку в области, которую мы исследуем, 1c≪ , то первым членом в этом 

выражении можно пренебречь. Тогда условие положительности дискриминан-

та приобретает вид 

 c2 2 2 21
16

3
   c h  (22) 

Используя выражение (9) для c , находим, что уравнение (20) имеет веществен-

ные корни, если сила больше значения 

 F  


 



  

4

3 1
9 1

2

2c h a f  (23) 
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Рис. V09.2 

Функция    , определяющая границу об-

ласти существования субгармонического ре-

зонанса в диссипативном осцилляторе Дуф-

финга. 

 

 

 

Функция  a f в правой части (23) при значении частоты 

  



9 73

12
1209.  (24) 

имеет минимум, равный   a f 49 948. . Таким образом, для возникновения 

субгармонического резонанса в системе с затуханием амплитуда внешней силы 

должна превосходить критическое значение 

 Fc  50 . (25) 

Если cF F≫ , то, используя асимптотики функции F  

 
32 1

( 1 1)
6 1

F    


≪  (26) 

 236
( 1)

3
F    ≫  (27) 

можно найти границы области субгармонического резонанса. Такой резонанс 

существует в полосе частот   L R  , где  

 

2
1

1 ,  1.55
14.6

c
L R

c

F F

F F

      
 

 (28) 

 

 

Рис. V09.3 

Фурье-амплитуды первой (сплошная линия) 

и третьей (штриховая линия) гармоник дви-

жения при субгармоническом резонансе в 

осцилляторе Дуффинга с   0 015.  и 

F Fc 10 133. . . Резонанс существует при 

105 162. .  . 

 

 

Амплитуда первой гармоники конечна всюду в области существования резо-

нанса и, как и было предположено при выводе формулы (11), всюду сущест-

венно превосходит амплитуду третьей гармоники. Отметим, что в условиях 
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рассматриваемого примера зависимость A a f, заданная уравнением (19), во 

всей области субгармонического резонанса хорошо описывается полученной в 

пренебрежении затуханием формулой (14): средняя относительная погреш-

ность такого приближения равна 0.7%. 

  Отметим, что в области существования субгармонического резонанса 

третьего порядка обязательно существует также устойчивое решение, соответ-

ствующее нижней (нерезонансной) ветви нелинейного резонанса, рассмотрен-

ного в V08.  
 

 

Рис. V09.4 

Проекции на фазовую плоскость x x ɺ  
фазовых траекторий периодических 

движений осциллятора Дуффинга с 

  0 015.  и F  15.  и   12. . Внутренняя 

линия - нерезонансное движение, внеш-

няя - движение в субгармоническом ре-

зонансе. 

 

 

Хотя фурье-амплитуды этих движений на частоте действующей силы (3 ) 

близки, движение в субгармоническом резонансе проходит в существенно бо-

лее обширной области фазового пространства (см. рис. V09.4). Кроме того, эти 

решения сильно различаются по степени ангармонизма. 

  Для описания периодических движения типа супгармонического резонан-

са в диссипативном осцилляторе Дуффинга под периодическим воздействием в 

случае пренебрежимо малого затухания эффективно использование двухмодо-

вого (8), а в случае учета затухания – трехмодового приближения (17). 

В этих приближениях возможно последовательное определение амлиуд – 

амплитуда нерезонансной моды находится из модели гармноческого осцилля-

тора (9), после чего задача сводится к исследованию основного нелинейного 

резонанса под воздействыием возмущения, величина которого зависит от ам-

плитуд мод [(12) и (18)], что позволяет определить амплитуду резонансной 

моды решением квадратных уравнений [(13) и (20)]. 

Хотя такой подход есть суррогат самосогласованного решения систе-

мы уравнений для всех учтенных амплитуд мод, его результаты достаточно 

точны. 

§ 04  Супергармонический резонанс  

  Супергармоническим резонансом порядка n  в неавтономной системе с пе-

риодическим воздействием называется мультистабильность периодических 

движений, возникающая в области, где частота внешней силы в n  раз меньше 
частоты малых колебаний. Рассмотрим супергармонический резонанс третьего 
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порядка для осциллятора Дуффинга, при этом ограничимся случаем, когда за-

тухание   можно считать пренебрежимо малым: 

 ɺɺ cosx x x F t  3  , (29) 

В дальнейшем мы будем считать силу умеренной, F 1, и будем рассматривать 

область частот, недалеко отстоящих от частоты малых колебаний, деленной на 

три:  ~ 1 3.  

  Тогда решение уравнения (29) можно представить в виде суперпозиции 

первой и третьей гармоники 

      x t t t a t c t      cos cos3 , (30) 

пренебрегая сдвинутыми по фазам компонентами. Подставляя решение (30) в 

уравнение (29) и приравнивая коэффициенты при cost  и cos3t , приходим к 

системе уравнений 

 
   
   

a a a c ac F

c a a c c

1
1

4
3 3 6

1 9
1

4
6 3 0

2 3 2 2

2 3 2 3

    

    





,

.

 (31) 

Эта система уравнений может быть сведена к одному уравнению девятой сте-

пени для c  и решена численно. 

  Для получения приближенных аналитических зависимостей пренебрежем 

нелинейным членом в первом из уравнений (31). Тогда компоненту с частотой 

 можно описать как вынужденные колебания линейного осциллятора под 

действием внешней силы: 

   


t a t
F

t  


cos cos
2 1

 (32) 

Тогда второе из уравнений (31) принимает форму кубического уравнения для c  

 c a c a3 2 2 34

3
1 9

3

2

1

3
0  






    (33) 

Зависимость действительных корней этого уравнения от параметров F  и  нам 

и предстоит исследовать.  

  Уравнение (33) всегда имеет по крайней мере один вещественный корень. 

При малых 1c a≪ ≪  этот корень можно приближенно найти, опустив член c3: 

 c
a

a

 
 





3

2 24 1 9
3

2


 (34) 

Из сравнения с формулой (V08.41) видно, что формулы (30), (32) и (34) описы-

вают уже известное нам нерезонансное движение. В области   1, которую мы 

исследовали ранее, знаменатель (34) велик по абсолютной величине. Выраже-
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ние (34) заведомо теряет применимость вблизи значения частоты r , при кото-

ром его знаменатель обращается в нуль: при F  1 

 r F2 21

9

27

128
  . (35) 

Это значение лежит как раз в той области   1 3, которую мы собирались ис-

следовать. Из уравнения (33) следует, что на частоте r  амплитуды первой и 

третьей гармоник близки по величине: 

      c a ar r r     
1

3
0 693

3
.  (36) 

Коэффициент ангармонизма таких колебаний 0.48  .  

  Рассмотрим условия существования других решений уравнения (33). Куби-

ческое уравнение имеет один или три вещественных корня. На пороге бифурк-

ции оно имеет двукратный корень: 

   23x px q x a x b     . (37) 

Раскрывая скобки и приравнивая коэффициенты при разных степенях x , полу-

чаем: 

  
3 2

, 0
27 4

p q
D p q    . (38) 

Это известное из формул Кардано выражение для дискриминанта кубического 

уравнения, который должен быть отрицателен для того, чтобы оно имело три 

вещественных корня. Для уравнения (33) это означает, что два дополнительных 

корня существуют при условии 

 
4

3
1 9

3

2

3

4

2 2
1 3

2 





  






 a a  (39) 

Таким образом, дополнительные корни существуют при условии, что величина 

силы не превосходит значения 

 
 

  
 

2 2

2 2

1 3

2 1 9 1
0.677 1 9 1

3 2 3 4
lF F

  
      


 (40) 

Функция  lF   достигает максимума, равного Fc  0 655.  при значении частоты 

 c  
11

27
0 638.  (41) 

При заданной величине силы F Fc  супергармонический резонанс существует 

в диапазоне частот      , границы которого 
∓
 определяются условием 

 lF F 
∓

. На границах супергармонического резонанса амплитуда третьей 
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гармоники, заданная дополнительными корнями уравнения (33), конечна и 

связана с амплитудой первой гармоники соотношением 

      
3

1
0.55

6
c a a      

∓ ∓ ∓
. (42) 

Коэффициент ангармонизма таких колебаний 0.3  .  
 

 

 

Рис. V09.5 

Функция  lF  , определяющая границу об-

ласти существования супергармонического 

резонанса в консервативном осцилляторе 

Дуффинга. 

 

 

 

  Вдали от границ суперагрмонического резонанса дополнительные вещест-

венные корни уравнения (33) можно найти, приняв, что c a≫ . Тогда, опуская в 

уравнении свободный член и пренебрегая слагаемым с a2  в скобках, получаем 

для амплитуд третьей гармоники значения 

 c2 3
22

3
9 1,    . (43) 

  Найденные нами решения основаны на рискованных предположениях. При 

их построении предполагалось, что амплитуда первой гармоники a  не зависит 

от амплитуды третьей гармоники c  и может быть описана тем же выражением 

(32), что и для вынужденных колебаний линейного осциллятора. Полученное 

решение (43) противоречит этой предпосылке: значения c  настолько велики, 

что пренебрегать их влиянием на амплитуду первой гармоники уже нельзя. 

(A) 

B
n 3

H 
m

B
n 0


m


0 0.5 1

0

2

4

 (B) 

B
n 2

c F 
m



B
n 0


m


0.2 0.4 0.6 0.8

0

0.05

 

Рис. V09.6 

Зависимости от частоты резонансной (A) и нерезонансной (B) амплитуд третьей гармоники 

движения в супергармоническом резонансе в осцилляторе Дуффинга с пренебрежимо малым 

затуханием при F Fc 0 2 0 305. . , найденные численным решением системы (31) (красные 

линии) и по формулам (43) (A) и (04) (B) (синие линии). На рис. A различить линии можно 

только вблизи низкочастотной границы резонанса: для системы (31)  r  0 348. . На рис. B 

F x
n

x
n

0 0.5 1
0

0.5

1
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согласие ухудшается с приближением к частоте основного резонанса (  1), где формула 

(32) утрачивает применимость. 

Численное решение исходной полной системы уравнений (31) для амплитуд 

обеих мод показано на рис. V.09.6. Несмотря на рискованные приближения, 

вблизи нижней частотной границы супергармонического резонанса найденные 

нами приближенные решения вполне удовлетворительны. Следует отметить, 

что из системы (31) вытекает отсутствие верхней спектральной границы супер-

гармонического резонанса для систем с пренебрежимо малым затуханием. Это 

объяснимо: при больших значениях частоты 1≫  резонансное супергармони-

ческое движение можно представить как суперпозицию свободных колебаний 

большой амплитуды c  с частотой 3  и нерезонансных вынужденных колеба-

ний малой амплитуды a  с частотой . 
 

Рис. V09.7 

Проекции на фазовую плоскость x x ɺ  
фазовых траекторий периодических 

движений осциллятора Дуффинга с 

пренебрежимо малым затуханием и 

F  0 2.  и   0 36. , найденных числен-

ным интегрированием уравнения дви-

жения (29). Внутренняя (синяя) линия - 

нерезонансное движение, внешняя 

(красная) - движение в субгармониче-

ском резонансе. 

 

  В заключение следует отметить, что полученные и для суб-, и для супергар-

монического резонанса решения требуют проверки их устойчивости. Для этого 

к уже полученным решениям в форме (8) или (30) следует добавить малое воз-

мущение: 

    x t a t c t y t  cos cos 3  (44) 

и проверить, не будет ли оно возрастать. Подставляя решение (44) в уравнение  

 3 cosx x x F t   ɺɺ , (45) 

где     для супергармонического или 3   - для субгармонического резо-

нанса, и лианеризуя его относительно y , получаем для функции  y t  линейное 

дифференциальное уравнение с параметрическим воздействием. Исследование 

поведения этого уравнения оказывается слишком громоздким, поэтому мы не 

будет этого делать. Однако общие методы исследования параметрически моду-

лированного осциллятора будут рассмотрены в одной из следующих лекций. 
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