
V08   КОЛЕБАНИЯ В ДВУМЕРНЫХ  

 НЕАВТОНОМНЫХ СИСТЕМАХ 

§ 01  Неавтономные системы:  

 силовое и параметрическое воздействия 

  Модели неавтономных динамических систем обычно вводятся для описания 

изменяющегося со временем воздействия на некоторую автономную динами-

ческую систему со стороны ее окружения. Пусть исходные уравнения движе-

ния невозмущенной автономной системы имеют вид 

 
dx

dt
F a x

�
� �

 ,a f (1) 

где 
�
x  - вектор состояния, 

�
a  - вектор параметров. Принято называть исходную 

систему (1) невозмущенной, а воздействие на нее называть возмущением. Как 

правило, учет воздействия окружения приводит к тому, что параметры невоз-

мущенной системы становятся заданными функциями времени, а к правым 

частям уравнений движения добавляются дополнительные члены, описываю-

щие возмущение: уравнения движения приобретают вид 

 
dx

dt
F a t x f b x t

� � � � � � �
 a fb g d i, , ,  (2) 

где 
�
b  - вектор параметров возмущения.  

При анализе таких задач принято выделять два предельных случая. Если 

параметры исходных уравнений движения остаются неизменными, а воздейст-

вие на систему может быть описано только дополнительными членами - воз-

мущениями 
�
f : 

 
dx

dt
F a x f b x t

� � � � � � �
 , , ,a f d i, (3) 

то воздействие на систему называется силовым. Если же воздействие на систе-

му может быть описано только введением зависимости параметров в невозму-

щенных уравнениях движения от времени, 

 
dx

dt
F a t x

� � � �
 a fb g, , (4) 

то такое воздействие называется параметрическим. Такое разделение удобно, 

хотя в определенной мере условно. 

  Пример 1. Для невозмущенной модели гармонического осциллятора с уравнением дви-

жения ɺɺq q 2 0 параметрическое воздействие, приводящее к изменению частоты и к 

уравнению движения 

 ɺɺ cosq t q  2 1 0  , (5) 

может быть также описано моделью осциллятора с силовым воздействием 

 2 2 cosq q q t    ɺɺ . (6) 
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  Пример 2. Рассмотрим математический маятник, у которого частица несет электрический 

заряд e , помещенный в однородное электрическое поле с напряженностью 
�
E tb g , сохраняю-

щей постоянное направление (под углом   к направлению силы тяжести), но изменяющееся 

со временем по величине. Уравнение движения для этой системы таково: 

 ml mg eE t eE tɺɺ cos sin sin cos    b gc h b g   (7) 

При   0  воздействие электрического поля на систему является параметрическим, а при 

   2 - силовым. При промежуточных углах оно имеет общий вид (2). 

  Наиболее важными в теории неавтономных систем являются задачи о пе-

риодическом воздействии. Мы ограничимся рассмотрением случаев, когда 

внешнее воздействие изменяется во времени по гармоническому закону, 

 z t Z ta f  cos . (8) 

Если аттракторами невозмущенной системы являются только положения рав-

новесия, то установившимися движениями возмущенной системы под гармо-

ническим воздействием являются, как правило, периодические движения с час-

тотой, равной частоте воздействия, или близкие к ним движения. В этом случае 

основной задачей является исследование характеристик периодического дви-

жения - его фурье-амплитуд – от амплитуды Z  и частоты   воздействия. 

Если установившееся движение невозмущенной системы является перио-

дическим - с частотой, зависящей от начальных условий (как для интегрируе-

мых систем) или с частотой, зависящей только от параметров системы (как для 

систем с устойчивым предельным циклом), то в ней под действием гармониче-

ского возмущения могут существовать как периодические (одночастотные), так 

и квазипериодические (двухчастотные) движения. Для таких систем основной 

задачей является разделение пространства параметров  ,Z   на области с пе-

риодическим и квазипериодическим движением, и исследование их характери-

стик. 

Последовательность нашего изложения в последующих разделах будет такова. 

Вначале мы рассмотрим задачи исследования установившегося периодического движе-

ния с частотой внешнего воздействия. При этом будет продемонстрировано явление ди-

намической мультистабильности - возможность в определенных областях параметров на-

личия двух или нескольких различных устойчивых движений с одной и той же частотой.  

Затем мы обратимся к исследованию систем, в которых возможны квазипериоди-

ческие движения - и рассмотрим такие движения сначала в системах, которые в отсутст-

вие возмущения являются интегрируемыми, а затем в системах с предельным циклом. 

§ 02  Нелинейный резонанс в диссипативном 

 осцилляторе Дуффинга 

  В качестве примера периодических колебаний в неавтономной системе с 

одной степенью свободы рассмотрим задачу о движении осциллятора Дуффин-

га D1+ с затуханием под действием гармонической силы. Уравнение движения 

такой системы имеет вид 

 ɺɺ ɺ cosx x x x F t   2 3  . (9) 
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Эта модель характеризуется тремя параметрами -  , F  и  . Далее мы будем 

считать затухание   фиксированным малым параметром, а амплитуду 

внешней силы F  и частоту воздействия   - управляющими параметрами. 

  Представим периодическое решение в виде суперпозиции сдвинутых по фа-

зе на  2  гармонических колебаний с частотой, равной частоте возмущения: 

 x t a t b t0a f  cos sin  . (10) 

Подставляя решение (10) в уравнение (9) и приравнивая коэффициенты при 

cost  и sint , приходим к системе уравнений 

 1
3

4
22 2 F

H
I
K  A a b F  , (11) 

 1
3

4
2 02 2 F

H
I
K  A b a  , (12) 

где A a b2 2 2  . Возводя эти уравнения в квадрат и складывая, получаем урав-

нение для квадрата амплитуды первой гармоники вынужденных колебаний A2 

 1
3

4
42 2

2

2 2 2 2 2 F
H

I
K  A A A F    (13) 

Это - кубическое уравнение относительно величины z A 2. В зависимости от 

значений параметров оно может иметь один или три вещественных корня.  
 

 

Рис. V08.1 

Зависимость амплитуды A периодиче-

ских колебаний диссипативного осцил-

лятора Дуффинга D1+ от частоты   при 

значениях параметров   01.  и 

F Fc 10 7 80. . . Результаты, полученные 

при численном решении уравнения дви-

жения (9), отличаются от полученных по 

формуле (13), не более чем на 2%.  

 

 

Важную роль играют критические значения параметров Fc и c , при которых 

все три вещественных корня совпадают (то есть происходит бифуркация уд-

воения). Обозначим это значение  . Полагая 

 1
3

4
4

9

16
2

2

2 2 2 3 F
H

I
K    z z z F zc c c   a f  (14) 

и приравнивая коэффициенты при одинаковых степенях z , получаем следую-

щую систему уравнений:  

   3
8

3
1 2 cb g, (15) 
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 3
16

9
1

64

9
2 2 2 2 2     c cc h , (16) 

   3 216

9
Fc . (17) 

Исключая   из уравнений (15) и (16), находим для значения критической час-

тоты выражение 

 2 2 4 21 6 2 9 3c        . (18) 

Из уравнений (15) и (17) с помощью (18) находим критическое значение ам-

плитуды внешней силы: 

 Fc   
16

9
3 9 32 4 2

3 2

  e j . (19) 

При малых значениях затухания   выражения (18) и (19) упрощаются: 

 5 4 3 2 3 21 2 3 ,  16 3 4.052c cF          . (20) 

Если амплитуда внешней силы превосходит критическое значение Fc, то куби-

ческое уравнение (13) может иметь три действительных положительных корня 

- в некотором интервале частот в системе возможны периодические (с частотой 

внешнего воздействия) колебания с тремя различными значениями амплиту-

ды. Ниже мы покажем, что только два из этих значений амплитуды соответст-

вуют устойчивым движениям. Диссипативный осциллятор Дуффинга при этом 

является бистабильной системой, а поведение амплитуды колебаний при 

плавном изменении частоты внешней силы имеет гистерезисный характер.  
 

 

Рис. V08.2 

Проекции на фазовую плоскость x x, ɺ  фа-

зовых траекторий периодических движений 

осциллятора Дуффинга с   01. , 

F Fc 10 7 80. .  и   192. . Внутренняя ли-

ния - нерезонансное колебание, внешняя - 

резонансное. 

 

 

§ 03  Границы нелинейного резонанса в диссипативной системе 

  Найдем границы частотного интервала, в котором система является биста-

бильной, при F Fc . На этих границах касательная к кривой A a f вертикальна 

(см. рис. V08.1), а следовательно, производная dA d  обращается в бесконеч-

ность. Дифференцируя уравнение (13) по   и приравнивая нулю коэффициент 

при dA d , получаем уравнение 

143 0.9359 1.1106 -3.1242
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2
2 2 2 23 3 3

1 1 4 0
4 2 4

z z z
               
   

 (21) 

Совместное решение уравнения (21) и уравнения (13), которое мы перепишем в 

виде 

 1
3

4
42

2

2 2 2 F
H

I
K  z z z F    (22) 

при заданных значениях   и F  определяет значения частот, соответствующих 

границам интервала бистабильности. 

  Найдем приближенные выражения для этих границ при малом затухании  . 

Пренебрежем в уравнении (21) членом, содержащим  . Тогда корни упрощен-

ного уравнения суть 

 z z1
2

2
24

9
1

4

3
1    b g b g,  (23) 

Из уравнения (22) видно, что при 1≫  подходит второй корень z2. При этом 

значении z  первая скобка обращается в ноль, и остается уравнение 

 4 2 2
2

2  z F  (24) 

Подставляя выражение для z2 из (23) в (24), находим выражение для границы 

области бистабильности: 

 F  
4

3
12   (25) 

Разрешая это уравнение относительно  , находим выражение для верхней час-

тотной границы нелинейного резонанса: 

 
 

3

2

1 4 F
 (26) 

  Вторая граница области бистабильности определяется корнем z1. Подстав-

ляя его в первую скобку уравнения (22), получаем 

 
4

9
1 42 2

1
2

1
2   c h z z F , (27) 

откуда 

 z
F

1

2

2 2 2

9

36 4 1


  c h
 (28) 

Подставляя z1 из (23) в (28), находим выражение для второй границы области 

бистабильности 

 F    
4

9
1 1 92 2 2 2  c h  (29) 

Разрешая его относительно   при малых  , находим выражение для нижней 

частотной границы нелинейного резонанса: 

  2 3 2 31 9 4 1 1.72F F      (30) 
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Использованный подход теряет применимость, если величина силы близка к 

критическому значению Fc, однако этот случай может быть рассмотрен от-

дельно. 
 

 

Рис. V08.3 

Границы области бистабильности пе-

риодических колебаний диссипативного 

осциллятора Дуффинга D1+ на плоско-

сти F   при значении затухания 

0.1  , найденные численным решени-

ем системы уравнений (22) и (23). Об-

ласть бистабильности лежит между 
границами, сходящимися в точке 

c cF,l q . 
 

§ 04  Устойчивость периодического движения 

  Для исследования устойчивости периодических колебаний используем ме-

тод медленно меняющихся амплитуд. Подставим в (9) решение вида 

 x a t b t cos sin   (31) 

считая, что амплитуды a  и b  суть медленно меняющиеся функции времени. 

Пренебрегая вторыми производными по времени от a  и b  и малыми членами 

второго порядка типа  ɺa  и  ɺb  и собирая коэффициенты при функциях cost  и 

sint , получим систему уравнений 

 ɺa A b a  F
H

I
K L

NM
O
QP

1

2
1

3

4
22 2


  , (32) 

 ɺb A a b F   F
H

I
K  L

NM
O
QP

1

2
1

3

4
22 2


  , (33) 

Найденные в §02 значения a  и b  описывают неподвижные точки этой системы. 

Для исследования устойчивости этих точек необходимо вычислить собствен-

ные значения матрицы устойчивости ɵM  (см. V04.1) в этих точках. Для некото-

рого упрощения выражений выберем в качестве единицы времени величину 

 T  
2

1 . Вычисляя элементы матрицы ɵM , получим ее след  

 4S     (34) 

и детерминант: 

 

2
2 2 2 2 2 2 23 3 3

1 1 4
4 2 4

D A A A
              
   

 (35) 

F1
n 1

F2
n 1

F1
n 0

F2
n 0


0 2 4

0

1

2
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След всегда отрицателен, поэтому устойчивость будет определяться знаком де-

терминанта. Однако уравнение 0D   совпадает с полученным в §03 уравнени-

ем (21), являющимся производной уравнения (13) на неподвижные точки сис-

темы и определяющим бифуркационные значения частоты . Таким образом, 

точки бифуркации всегда лежат на границе области устойчивости стационар-

ных значений амплитуд. Поэтому в области параметров, где амплитуда 

периодических колебаний имеет три возможных значения, максимальное и 

минимальное соответствуют устойчивым периодическим движениям, а 

промежуточное - неустойчивому. 

Таким образом, мы доказали, что в интервале частот       осцилля-

тор Дуффинга с малым затуханием, находящийся под действием внешней си-

лы, зависящей от времени по гармоническому закону, является бистабильной 

системой.  

§ 05  Уточнение решения: третья гармоника 

  Уточним теперь решение x t0a f, заданное формулой (10). Представим закон 

движения в виде 

 x t x t ta f a f a f 0   (36) 

где  ta f - малая поправка. Подставив это решение в (9) и учитывая, что при оп-

ределении (10) учтены все члены на первой гармонике, для поправки получим 

уравнение 

 ɺɺ ɺ cos sin         2
1

4
3 3

1

4
3 33 2 2 3a ab t a b b tc h c h  (37) 

Это - уравнение колебаний линейного осциллятора с вязким трением под дей-

ствием гармонической силы. Его решение, которое можно представить в виде 

   t c t d ta f  cos sin3 3 , (38) 

определяет третью гармонику в законе движения нелинейного осциллятора при 

установившихся колебаниях под действием гармонической силы. Подставляя 

решение (38) в (37) и приравнивая коэффициенты при cos3t  и sin3t , получа-

ем систему линейных уравнений 

 1 9 6
1

4
32 3 2    c h c hc d a ab  (39) 

 1 9 6
1

4
32 2 3    c h c hd c a b b  (40) 

Возводя эти уравнения в квадрат и складывая, для амплитуды C c d 2 2  

третьей гармоники установившихся колебаний получаем выражение 

 C
A


 

3

2 2 2 24 9 1 36  c h
 (41) 
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где A  - амплитуда первой гармоники колебаний. Отношение C A почти всегда 

мало: так, в условиях примера, показанного на рис. V08.1 C A  0 0442. ; расче-

ты по формуле (41) дают C A  0 0293. . Поэтому пренебрежение высшими гар-

мониками при выводе уравнений для a  и b  оправдано, а основанные на них 

расчеты имеют достаточно высокую точность. Из формулы (41) видно, что 

предположение о малости отношения C A может быть нарушено при   1 3 и 

достаточно малом затухании, когда знаменатель правой части становится мал. 

Этот случай супергармонического резонанса должен быть рассмотрен отдель-

но. 

  Для описания периодического движения в диссипативной системе, нахо-

дящейся под периодическим воздействием, эффективны простейшие кинаме-

тические модели – гармонического колебания (10), медленно модулированного 

гармонического колебания (31) и слабо ангармонического периодического коле-

бания (36). 

Необходимое для исследования устойчивости движения использование 

модели слабомодулированного гармонического колебания сводит задачу к мо-

дели двумерной автономной системы, которая исследуцется известными 

методами.  
 


