
V07  ПРЕДЕЛЬНЫЕ ЦИКЛЫ 

§ 01  Свойства автоколебаний осциллятора Рэлея при 1≫  

  Если значение управляющего параметра   велико, 1≫ , то автоколебания 

осциллятора Рэлея являются релаксационными (см. V01; на рис. V01.3 показан 

закон движения осциллятора Рэлея при   5). Для определения зависимости 

частоты автоколебаний  от управляющего параметра при больших   удобно 

перейти в уравнении движения  

 ɺɺ ɺ ɺx x x x    1 02c h  (1) 

к новым переменным. Введем в качестве независимой переменной приведен-

ное время   t , а в качестве динамической - переменную x z  . В этих пе-

ременных уравнение движения примет вид 

  2 21 0z z z z    ɺɺ ɺ ɺ , (2) 

эквивалентный системе уравнений 

 ɺ , ɺx y y y y x    1 2b g  (3) 

где новый управляющий параметр   2 мал: 1≪ .  

В этом случае движение системы на предельном цикле можно описать как 

последовательность сменяющих друг друга быстрых и медленных движений, 

каждое из которых может быть описано одним уравнением первого порядка. 

Малость параметра   означает, что почти всюду на фазовой плоскости ско-

рость изменения y много больше скорости изменения x . Поэтому почти при 

любых начальных условиях фазовая точка будет быстро приближаться к куби-

ческой параболе 

 x y y  3, (4) 

на которой правая часть второго уравнения системы (3) обратится в ноль, при 

этом фазовая траектория будет близка к вертикальной прямой (x  const).  
 

 

 

 

Рис. V07.1 

Предельный цикл осциллятора Рэлея на фазовой 

плоскости переменных ,  z zɺ  при 5   (сплошная 

линия) и его аппроксимация ветвями кубической 

параболы (4) и прямыми (штриховые линии). 
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Медленное движение точки на кубической параболе (4) может быть описа-

но одним уравнением первого порядка, получающимся из первого уравнения 

системы (3) при подстановке (4): 

  21 3
dy

y y
dt
    (5) 

По достижении точки 
�
H  с координатами 2 3 3 1 3,n s или симметричной ей 

точки 
�

H с координатами  2 3 3 1 3,n s скорость медленного движения, со-

гласно уравнению (5), обращается в бесконечность - разделение на медленные 

и быстрые движения теряет применимость. Вблизи этих точек фазовая траек-

тория переходит из окрестности кубической параболы (4) на почти вертикаль-

ную фазовую траекторию, переводящую систему в окрестность точки 
�
L  с ко-

ординатами 2 3 3 2 3 3, n s (или, соответственно, в точку 
�
L с координатами 

2 3 3 2 3 3,n s). 
Таким образом, при 1≫  предельный цикл осциллятора Релея может быть 

аппроксимирован двумя ветвями кубической параболы (4) и касательными к 

ним вертикальными отрезками. 
 

 

Рис. V07.2 

Зависимость скорости движения фазовой 

точки в осцилляторе Рэлея от положения 

фазовой точки на предельном цикле при 

5  . Предельные значения скорости: 

min 0.683V  , max 4.442V  . 

(рисунок А.А.Никулина) 

 

 

  Движение осциллятора Рэлея на предельном цикле происходит с сильно из-

меняющейся скоростью. Продолжительность интервала медленного движения 

по ветви кубической параболы от точки 
�
L  до точки 

�
H может быть вычислена 

из уравнения (5): 
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ln ln .  (6) 

где a  2 3 3 , b  1 3 . В пределе  0 величина этого интервала не зави-

сит от  . Если пренебречь продолжительностью времени быстрых движений 

системы по вертикальным участкам предельного цикла, то в приведенной шка-

ле времени    T . В исходных переменных 

  


a f  Q
 (7) 

где константа Q   
2 3 2 2 3894

1 ln .a f . 
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Рис. V07.3 

Зависимость частоты автоколебаний осцил-

лятора Рэлея от параметра  . Сплошная ли-

ния - численный расчет, штриховая линия по 

приближенной формуле (7). 

 

 

 

  Для системы с предельным циклом основной задачей является исследова-

ние формы цикла и зависимости частоты автоколебаний от параметра. 

Описание автоколебаний осциллятора Релея в томсоновском случае при 

1≪  основано на близости закона движения к гармоническим колебаниям и 

чаще всего использует модель слабомодулированного гармонического колеба-

ния, позволяющего свести задачу к рассмотрению одномерной автономной 

системы (V06.25). Альтернативой служит модель слабо ангармонического 

периодического колебания (V06.32). 

Описание релаксационных автоколебаний осциллятора Релея при 1≫  

также достигается путем разделения движений на быстрые и медленные и 

исключением быстрых движений в предположении ничтожности времен их 

осуществления. В результате задача сводится к рассмотрению одномерной 

автономной системы (5). 

§ 02  Общие условия существования предельных циклов 

  Предельные циклы осциллятора Рэлея и брюсселятора окружают непод-

вижные точки этих систем; внутри этих предельных циклов диссипация меняет 

знак. Оба этих свойства являются общими (что будет показано в этом парагра-

фе) и могут быть использованы при исследовании условий существования пре-

дельных циклов. 

  Пусть 
�

V x y,a f есть векторное поле на плоскости и S  - замкнутая кривая (кон-

тур) на ней. Величина угла поворота вектора 
�

V  поля при обходе по контуру, 

деленная на 2 , называется индексом замкнутой кривой по отношению к век-

торному полю. 
  Обход контура проводится в положительном направлении - против часовой стрелки. Это 

же направление вращения вектора считается положительным. 

Уравнения движения автономной двумерной системы 

 ɺ , , ɺ ,x F x y y G x y a f a f  (8) 

задают в каждой точке фазовой плоскости векторное поле локальной скорости 
�

V x y x y, ɺ, ɺa f k p . В соответствии с (8) индекс кривой S  дается выражением 

 j d
G x y

F x y
S
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Если внутри области, охватываемой кривой S , подынтегральная функции и ее 

производные существуют и непрерывны, то этот интеграл равен нулю. Непре-

рывность подынтегральной функции и ее производной может нарушаться 

только в особых точках, где одновременно G x y,a f  0 и F x y,a f  0. Эти точки 

являются неподвижными точками системы (8). 

Индексом особой точки называется индекс простой замкнутой кривой, 

охватывающей эту и только эту особую точку. Легко убедиться, что индекс не 

зависит от формы и положения кривой S . Для седловой особой точки j  1, а 

для узла, фокуса и центра j  1. 

Легко показать, что индекс замкнутой кривой равен сумме индексов нахо-

дящихся внутри нее особых точек. Если кривая S  является замкнутой фазовой 

траекторией, то ее индекс j  1. Следовательно, 

Внутри предельного цикла динамической системы (8) находится по меньшей 

мере одна неподвижная точка системы, при этом не являющаяся седлом. 

  Пусть S  - замкнутая фазовая траектория на плоскости, и A  - ее внутренняя 

область. Проинтегрируем по области A  величину диссипации системы (см. 

V02.3) 

 
�
x

F

x

G

y
a f   







. (10) 

По формуле Грина, интеграл может быть сведен к криволинейному: 

  FH
I
K   zzz  


F

x

G

y
dxdy Fdy Gdx

SA

a f. (11) 

Поскольку на фазовой траектории в силу уравнений движения величина 

Fdy Gdx  0, то интеграл в правой части равен нулю. Следовательно, интеграл 

от диссипации по внутренней области, границей которой является фазовая тра-

ектория, обращается в ноль: 

 
�
x dxdy

A

a f zz 0. (12) 

Если в некоторой односвязной области фазовой плоскости диссипация 
�
xa f не 

равна тождественно нулю и не меняет знака, то в этой области нет замкнутых 

фазовых траекторий системы - нет предельных циклов. 

Это утверждение называется критерием Бендиксона для существования пре-

дельных циклов. 

  Необходимые условия наличия предельных циклов состоят в наличии не-

подвижных точек с 0D   и знакопеременности диссипации. 

Достаточные условия в общем виде неизвестны: для обнаружения всех 

предельных циклов двумерной автономной системы надлежить провести пол-

ное исследование ее глобального фазового портрета. 
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§ 03  Бифуркации рождения предельного цикла 

  Предельные циклы в динамических системах в общем случае существуют 

не при произвольных значениях параметров, а возникают при переходе пара-

метра через критическое значение в результате бифуркаций. 

Для осциллятора Рэлея при переходе управляющего параметра   через би-

фуркационное значение c  0 скачком возникает цикл конечного размера - 

амплитуда автоколебаний вблизи точки бифуркации имеет конечную величи-

ну: 2 3 ~ 1A  . Такое поведение автоколебательной системы при изменении 

параметра называется жестким режимом возбуждения автоколебаний. 

  При другой параметризации модели иной оказывается и бифуркация. Рас-

смотрим уравнение для осциллятора Релея в форме 

  2
0y y y y    ɺɺ ɺ ɺ , (13) 

где динамическая переменная связана с динамической переменной исходного 

осциллятора Релея соотношением y x  . Пусть 1≪ : положим, что реше-

ние имеет тот же вид, что и при 0  : 

 siny A t . (14) 

Величину амплитуды A  определим, потребовав, чтобы работа силы трения за 

период равнялась нулю: 

   
2

2

0

0Q x x xdt


    ɺ ɺ ɺ . (15) 

Подстановка (14) в (15) дает два решения: 

 1 2

4
0;  

3
A A


  . (16) 

При 0   решение 1A  устойчиво. При 0   устойчиво решение 2A .  

Если при изменении управляющего параметра   в области H    сущест-

вует устойчивая неподвижная точка, при H    неподвижная точка неустой-

чива, а аттрактором является близкий к ней устойчивый предельный цикл, то в 

точке H  происходит бифуркация Хопфа. 

В приведенном примере при 0   происходит бифуркация Хопфа. Ампли-

туда автоколебаний вблизи точки бифуркации имеет сколь угодно малую ам-

плитуду 2A ∼ . Такое поведение автоколебательной системы при изменении 

параметра называтся мягким режимом возбуждения автоколебаний. Этот же 

режим возникновения предельного цикла характерен для брюсселятора. 

  Приведенные примеры не исчерпывают всех возможных способов рожде-

ния предельного цикла. Укажем еще один механизм, относящийся к жесткому 

режиму возбуждения автоколебаний. При таком способе в критической точке 
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одновременно рождаются два совпадающих предельных цикла конечного раз-

мера - устойчивый и неустойчивый.  

Примером системы является автогенератор с уравнением движения 

 ɺɺ ɺx x x x x     1 02 4c h  (17) 

представляющая обобщение осциллятора Ван дер Поля и переходящая в него 

при значении   0. В дальнейшем мы будем предполагать значение   положи-

тельным и малым, 0 1  , и рассматривать   как управляющий параметр. 

Полагая x t A t ta f a f cos , где A ta f - медленно меняющаяся со временем ам-

плитуда, найдем для последней уравнение 

 ɺA A A A   F
H

I
K

 
2

1
1

4 8
2 4  (18) 

При 0 1 8   это уравнение имеет, кроме неустойчивого тривиального реше-

ния  0 0A   два стационарных нетривиальных решения с амплитудами  

 A1 2

1 1 8
, 

  


 (19) 

Устойчивым является только решение с большей амплитудой. Этим доставля-

ется еще один пример жесткого режима возбуждения автоколебаний. 
 


