
V06   ДВУМЕРНЫЕ ДИССИПАТИВНЫЕ СИСТЕМЫ.  

СИСТЕМЫ С ПРЕДЕЛЬНЫМИ ЦИКЛАМИ 

Рассмотренные в предыдущей лекции модели интегрируемых систем были консер-

вативны. Рассмотрение двумерных интегрируемых систем закончим редким, но важным 

примером интегрируемой диссипативной системы.  

§ 01  Модель Лотки - Вольтерра 

  Модель Лотки - Вольтерра задается уравнениями движения 

 
dX

dt
k X a XY

dY

dt
k Y a XY    1 1 2 2, , (1) 

где как динамические переменные X  и Y , так и все параметры положительны.  

  Эта модель введена А. Лоткой [L20] для описания возможной химической реакции, в ко-

торой концентрации веществ испытывают незатухающие колебания. Позже В. Вольтерра 

[V31] интерпретировал ее как модель эволюции численности двух взаимодействующих био-

логических видов – хищников (Y) и жертв (X) (поэтому эту модель также называют моделью 

«хищник-жертва»). Некоторые свойства модели рассмотрены в [Л97, с. 38-39, 89-90]. 

[L20] Lotka A.J. Undamped oscillations derived from the law of mass action. J. Amer. Chem. Soc., 

1920, v.42, no.8, pp.1595-1599. 

[V31] Volterra V. Lecons sur la Theorie Mathematique de la Lutte pour la Vie. – Paris, Gauthier-

Villars, 1931. 

[Л97] Ланда П.С. Нелинейные колебания и волны. – М.:Наука, 1997. – 496 с. 

Выбором единиц измерения переменных X  и Y  и масштаба времени система 

(1) может быть приведена к виду 

 ɺ , ɺx x y y y x    1 1a f a f . (2) 

где   - безразмерный управляющий параметр. Локальная диссипация этой сис-

темы  

  x y y x,a f a f   1 1  (3) 

в общем случае отлична от нуля и знакопеременна. Система (2) имеет две не-

подвижных точки, o1 0 0 ,k p и o2 11 ,k p. Точка o1 является седлом; ее характе-

ристические показатели 1 1 ,  2   . Точка o2  является центром; ее характе-

ристические показатели  1 2,  i .  

Уравнение для фазовых траекторий на фазовой плоскости имеет вид 

 
dy

dx

y x

x y
  




1 1

1
a f
a f . (4) 

Это уравнение допускает разделение переменных и элементарно интегрирует-

ся: 

    1
1 ln 1 lnx x y y E     


 (5) 
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(константы выбраны так, чтобы в неподвижной точке o2 11 ,k p значение инте-

грала движения 0E   при любом значении  ). Таким образом, интегральные 

кривые системы представляют собой линии уровня функции  , ;E x y   - замк-

нутые кривые, окружающие неподвижную точку - центр. 

Подстановкой lnq y , lnp x  система уравнений (2) сводится к канониче-

скому виду с гамильтонианом 

 H p q e p e qp q,a f c h c h     1
1

1


 (6) 

В этих переменных система (как и всякая гамильтонова) является консерватив-

ной, ее энергия численно равна интегралу движения E . 
 

 

 

 

Рис. V06.1 

Фазовые траектории системы Лот-

ки-Вольтерра при 1   при значе-

ниях интеграла движения 0.1E  , 

0.3  и 1.0 . 

 

 

 

 

 

  Аналитическое определение зависимости частоты движения модели Лотка-

Волтерра от параметра E  представляет собой сложную задачу. Она была ре-

шена Фреймом [F74], который вместе с точным решением, имеющем форму 

ряда, получил приближенную формулу для периода  

   0

1
2 1

6

E
T E I

 
    

 
, (7) 

где  0I z  - модифицированная функция Бесселя первого рода. 

[F74] Frame J.S. Explicit solutions in two species Volterra system. - J. Theor. Biol. 1974, v.43, 

no.1, p.73-81 

Зависимость частоты движения  E  может быть найдена численно.  

 

 

Рис. V06.2 

Зависимость частоты движения   системы Лот-

ки-Вольтерра при 1   от величины интеграла 

движение E . 
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Отметим, что зависимость частоты от интеграла движения является довольно 

слабой, хотя при значении 2E   фазовая траектория сильно отличается от эл-

липса, а закон движения является сильно ангармоническим (см. рис. V06.3). 
 

 

 

Рис. V06.3. 

Закон движения  x t  одной из динамических пе-

ременных системы Лотки-Вольтерра при 1   и 

2E   на одном периоде. 

 

 

 

 
В двумерных интегрируемых системах фазовые траектории периодических движе-

ний – замкнутые кривые на фазовой поскости – образуют семейства, сплдошь запол-

няющие некоторую часть фазовой плоскости. Альтернативным классом являются систе-

мы, с изолированными замкнутыми траекториями – предельными циклами. 

§ 02  Системы с предельными циклами 

  Предельным циклом называется изолированная замкнутая фазовая траек-

тория. Периодическое движение по такой траектории называется автоколеба-

ниями динамической системы. 

  Понятие предельного цикла (le cycle limite) введено А. Пуанкаре (H. Poincare', 1892). 

Термин "автоколебания" введен А.А. Андроновым (1928) для обозначения движения "уст-

ройств, могущих генерировать незатухающие колебания за счет непериодических источни-

ков энергии" [А56, с.32]. Термин переводился его автором на французский вначале как les 

oscillations autoentretenues (1929), затем как les autooscillations (1930). Фактически в миро-

вой (а значит - англоязычной) литературе термин в формах auto-oscillations или self-

oscillations не закрепился. В частности, он отсутствует в статьях Британской Энциклопедии. 

[А56] Андронов А.А. Собрание трудов. Изд.-во АН СССР, 1956. - 538 с. 

Наличие в фазовом пространстве устойчивого предельного цикла приво-

дит к тому, что при начальных условиях, принадлежащих бассейну притяжения 

этого аттрактора, в системе со временем устанавливается периодическое дви-

жение, форма которого не зависит от начальных условий.  

Периодические автоколебания систем близки по свойствам к устойчивым 

периодическим движениям в неавтономных системах с периодической зави-

симостью параметров от времени. В литературе можно встретить применение 

термина "автоколебания" и к таким движениям [РТ84, с.229-230]. Однако меж-

ду ними есть и отличие: для автономных систем закон движения инвариантен 

при сдвиге по времени: если 
�
x ta f - закон движения на предельном цикле, то 

�
x t  a f тоже есть закон движения на предельном цикле при любых значениях 

 . Иными словами, фаза автоколебаний автономных систем произвольна; она 

определяется начальными условиями. Напротив, для устойчивых периодиче-
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ских движений в неавтономных системах с периодической зависимостью па-

раметров от времени фаза определена однозначно. 

Основными задачами теории систем с предельными циклами являются: 

- определение областей параметров, в которых циклы существуют, и характера 

бифуркации, приводящей к предельному циклу; 

- исследование формы предельного цикла и зависимости частоты автоколеба-

ний от параметров. 

  Хорошо известным примером системы, имеющей предельный цикл, являет-

ся брюсселятор - система с динамическими переменными x  0, y  0 и пара-

метрами a  0, b  0, заданная уравнениями движения 

 ɺ , ɺx a b x x y y bx x y     1 2 2a f . (8) 

  Распределенная модель с приведенными уравнениями движения 
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2
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2

b g ,

,

 (9) 

была впервые рассмотрена в работе Пригожина и Лефевра [PL68]. Эта модель описывает 

эволюцию в пространстве и времени концентраций X r t
�
,b g , Y r t

�
,b g  веществ, изменяющихся в 

ходе некоторой вымышленной (по словам одного из авторов, «Эта модель далека от реаль-

ной, но удобна для исследования благодаря своей простоте.» [ГП73, с.214]) «тримолекуляр-

ной» химической реакции: 

 
2 3

A X

B X Y D

X Y X

X E



  

 



 (10) 

Реальной, но более сложной химической реакцией, обладающей сходными свойствами, яв-

ляется реакция Белоусова-Жаботинского. При больших значениях коэффициентов диффу-

зии Di  пространственной неоднородностью концентраций можно пренебречь, и модель (9) 

сводится к модели (8). Название брюсселятор по имени города, где работали Пригожин и 

Лефевр, дано этой системе в 1973 г. [T73]. Теория распределенного брюсселятора (9) под-

робно изложена в монографии [НП79] 

[PL68] Prigogine I., Lefever R. Symmetry breaking instabilities in dissipative systems. II. J. Chem. 

Phys., vol. 48, no. 4, pp. 1695-1700 (1968). 

[T73] Tyson J. Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys., 

vol. 58, no. 9, pp. 3919-3930 (1973). 

[ГП73] Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и 

флуктуаций. - М.: Мир, 1973. - 280 с. 

[НП79] Николис Г., Пригожин И. Самоорганизация в неравновесных системах. От 

диссипативных структур к упорядоченности через флуктуации. М.: Мир, 1979. - 512 с. 

Диссипация брюсселятора 

  x y b xy x,a f    1 2 2 (11)  

отрицательна в области, лежащей над кривой C , заданной уравнением 
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 y
x b

x
 


2

1

2
, (12) 

и положительна под этой кривой. 

  Уравнения (8) имеют одну неподвижную точку с координатами 

 x a y
b

a0 0 ,  (13) 

Тип этой точки определяется значением величины управляющего параметра 

    b a1 2. (14) 

Обычно значение a  фиксируют и считают управляющий параметр функцией b . 

Неподвижная точка (13) является устойчивым узлом при   2a , 

устойчивым фокусом при   2 0a  , неустойчивым фокусом при 0 2  a  и 

неустойчивым узлом при 2a   . Заметим, что изменению устойчивости 

неподвижной точки соответствует изменение знака локальной диссипации 

 x y,a f  в неподвижной точке; это свойство является общим. При 

положительных значениях   брюсселятор (8) обладает предельным циклом. 

Исследование свойств предельного цикла брюсселятора требует громоздких 

вычислений, поэтому мы не будем их рассматривать. 

  Еще одним примером модели, обладающей предельным циклом, является 

осциллятор Рэлея - модель с уравнением движения  

 ɺɺ ɺ ɺx x x x    1 02c h  (15) 

(динамическими переменными являются x  и ɺx) и одним управляющим пара-

метром   0. 

  Эта модель была построена Дж.В. Стреттом, лордом Рэлеем (J.W. Strutt, third Baron 

Rayleigh) в 1877 г. [С55, с.101] для демонстрации возможности существования в автономной 

системе незатухающих колебаний, форма которых не зависит от начальных условий. Рэлей 

построил приближенный вид предельного цикла системы (8) при 1≪ . Доказательство су-

ществования у осциллятора Рэлея предельного цикла при любых   было получено А.Г. 

Майером в 1935 г. [М35]. 

[С55] Стретт Дж. В. (Лорд Рэлей) Теория звука. т.1. М.: ГТТИ, 1955. - 503 с. 

[М35] Майер А.Г. "Доказательство существования предельных циклов у уравнений Рэлея и 

Ван дер Поля." Учен. записки ГГУ, 1935, вып. 2. 

Наиболее распространенная в современной литературе модель осциллятора с 

предельным циклом - осциллятор Ван дер Поля с уравнением движения 

 ɺɺ ɺz z z z    1 02c h  (16) 

эквивалентна осциллятору Рэлея, так как уравнение (16) получается из (15) 

дифференцированием по времени и последующей заменой переменных 

3z x ɺ . 

  Эта модель была введена Б. Ван дер Полем в 1920 г. [VdP20, ВдП35, с.11] для описания 

электрических колебаний в триодном генераторе с контуром в анодной цепи. Величина z  
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имеет в физической модели-прототипе смысл переменной части анодного напряжения. В 

своих работах Ван дер Поль не ссылается на Рэлея. 

[VdP20] Van der Pol B. A theory of the amplitude of free and forced vibrations. Radio Review, 

1920, vol. 1, pp. 701-754. 

[ВдП35] Ван-дер-Поль Б. Нелинейная теория электрических колебаний. М.: Гос. изд-во по 

технике связи. - 1935. - 42 с. 

  Перепишем уравнение (15) в виде системы уравнений первого порядка 

 ɺ , ɺx y y y y x    1 2c h . (17) 

Эта система инвариантна при замене переменных x x y y  , . Поэтому все 

фазовые траектории инвариантны при инверсии координат. 

Единственная неподвижная точка системы (17) - начало координат - неус-

тойчива при любых   0. Рассмотрим эволюцию расстояния фазовой точки от 

начала координат - величины R x y 2 2 . Из уравнений (17) следует 

 
dR

dt
y y

2
2 22 1  c h. (18) 

Правая часть положительна внутри полосы y 1. Следовательно, если в на-

чальный момент фазовая точка находилась от начала координат на расстоянии 

R 1 - то с течением времени расстояние будет увеличиваться, и точка покинет 

окружность единичного радиуса навсегда. Таким образом, если у системы есть 

предельный цикл, то он не имеет точек внутри окружности единичного радиу-

са. 

§ 03  Свойства автоколебаний осциллятора Релея при 1≪  

  Если значение управляющего параметра   мало, 1≪ , то осциллятор Рэ-

лея может быть описан как линейный осциллятор, находящийся под действием 

малого возмущения: 

 ɺɺ ɺ ɺx x x x   1
2c h. (19) 

В этом случае - который называется томсоновским - автоколебания осцилля-

тора будут близки к гармоническим колебаниям. 

  Термин «томсоновский случай» известен по крайней мере с 1939 г. [Т39], употребляется 

только в отечественной литературе и кажется странным, ибо ни один из великих Томсонов 

теорией автоколебаний не занимался. Эксперты объясняют его происхождение так: в этом 

случае поведение системы близко к поведению гармонического осциллятора – например, 

идеального колебательного контура, частота колебаний которого описывается формулой 

Томсона LC   (С  - емкость конденсатора, L  - индуктивность соединяющего его пла-

стины линейного проводника пренебрежимо малого сопротивления). 

[Т39] Теодорчик К.Ф. Энергетическое рассмотрение систем томсоновского типа. ЖТФ, 1939, 

т.9, в.11, с.1005. 
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  Если пренебречь пропорциональным   членом в уравнениях, то система 

(19) перейдет в гармонический осциллятор с единичной частотой свободных 

колебаний. Его закон движения может быть представлен в виде 

 x t A ta f  cos . (20) 

Рассмотрим движение системы, учтя, что значение   конечно и положительно. 

Будем описывать движение системы модулированным гармоническим колеба-

нием с законом 

         cos cosx t A t t t A t    , (21) 

где  A t  и  t  - медленно меняющиеся функции времени  , 1A  ɺ ɺ ∼ ≪ . Под-

ставляя решение (21) в уравнение (22) и пренебрегая членами второго порядка 

по    2
, , ,A A  ɺɺ ɺ ɺ ɺɺ ɺ , получим уравнение: 

  2 2
sin 2 cos sin 1 sinA A A A         ɺ ɺ . (23) 

Умножая это уравнение на sin  и усредняя по периоду движения, с учетом 

значений 

 2 41 3
sin ;  sin

2 8
    , (24) 

получаем 

 23
1

4
A A A

    
 

ɺ . (25) 

Это уравнение (оно рассматривалось ранее – см. V03.1, пример 3) имеет одну 

устойчивую точку  

 
2

3
A  . (26) 

Умножая уравнение (22) на cos  и усредняя по периоду, получаем 0 ɺ , что 

означает отсутсвие поправок к частоте движения в первом порядке по  . 

Таким образом, при малых   предельный цикл осциллятора Рэлея на фазо-

вой плоскости близок к окружности радиуса A  2 3 ; этот цикл устойчив, а 

автоколебательное движение может быть описано как гармоническое колеба-

ние с единичной частотой. 

Для осциллятора Ван дер Поля устойчивый предельный цикл близок к ок-

ружности радиуса 2A  . 

  Рассмотрим автоколебания в томсоновском случае с точки зрения баланса 

энергии системы. Правую часть уравнения (19) можно рассматривать как вы-

ражение для малой вынуждающей силы F , действующей на гармонический 

осциллятор. Мощность этой силы 
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 P Fx x x  ɺ ɺ ɺ 2 21c h . (26) 

Вычислим работу Q , совершаемую этой силой за период колебаний: 

 Q A t A t dt A A   FH
I
Kz 

0

2

2 2 4 4 2 2

2
1

3

4
sin sinc h . (27) 

Потребовав, чтобы работа за период обращалась в ноль, Q  0, находим нетри-

виальное значение амплитуды периодического движения A  2 3  в согласии с 

выражением (25). 

  Найдем поправку к частоте автоколебаний осциллятора Релея в томсонов-

ском случае. Зависимость частоты от управляющего параметра     можно 

связать с ангармонизмом движения, а эквивалентность осцилляторов Рэлея и 

Ван дер Поля позволяет искать эту зависимость для второго из них.  

Начнем с важной леммы («точка-тире теоремы»): если система совершает 

периодическое движение, то среднее по периоду значение производной по 

времени любой функции динамических переменных равно нулю: 

 0z ɺ  (28) 

Доказательство: 

     1 1
0

t T

t

z zdt z t T z t
T T



    ɺ ɺ  (29) 

в силу условия периодичности движения. ■ 

Умножая уравнение движения осциллятора Ван дер Поля 

 ɺɺ ɺz z z z    1 02c h  (30) 

на z , усредняя по времени и используя (28), получаем соотношение: 

 ɺz z2 2  (31) 

Средние значения квадрата динамической переменной z  и квадрата ее скоро-

сти равны прилюбых значениях параметра  . Представим теперь решение 

уравнения (30) в виде периодического движения 

 z t A n tn n

n

a f b g 




 cos  
1

 (32) 

где  - неизвестная частота автоколебаний. Подстановка этого выражения в 

соотношение (31) приводит к (точному) равенству 

 A n An

n

n

n

2 2 2

1

2

1










  . (33) 

Считая колебания слабо ангармоничными, можно записать приближенное вы-

ражение квадрата частоты через Фурье-амплитуды 
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 2

1
2

2

2

21
1

1  





A

n A
n

nd i  (34) 

С ростом ангармонизма автоколебаний осциллятора Ван дер Поля частота ав-

токолебаний уменьшается. 

Считая в низшем приближении движение гармоническим, а частоту 1  , в 

нулевом приближении имеем  1 1 cos 2cosz t A t t  . Подставляя это выражение 

в правую часть уравнения  2
1z z z z   ɺɺ ɺ  и выделяя в ней третью гармонику 

(которая дает основной вклад в ангармонизм колебаний), получаем для по-

правки первого приближения  

 
3
1 sin3
4

A
t    ɺɺ  (35) 

откуда A A3 1
3 32 4   . В итоге получаем зависимость частоты от управ-

ляющего параметра: 

  
a f  1
16

2

. (36) 

 

 

Рис. V06.4 

Зависимость частоты автоколебаний осциллятора 

Рэлея от параметра  . Сплошная линия - числен-

ный расчет, штриховая линия по приближенной 

формуле (36). 
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