
V05   ДВУМЕРНЫЕ ИНТЕГРИРУЕМЫЕ СИСТЕМЫ 

Перейдем к рассмотрению периодических движений в двумерных автономных сис-

темах. Фазовые траектории периодических движений представляют собой замкнутые 

кривые на фазовой плоскости. Такие кривые могут образовывать семейства, сплошь за-

полняющие некоторую часть фазовой плоскости – или быть изолированными. Начнем с 

первого случая, который свойственен интегрируемым двумерным системам. 

§ 01  Консервативные интегрируемые (гамильтоновы) системы 

  Если для двумерной динамической системы  

 ɺ , , ɺ ,x F x y y G x y a f a f  (1) 

существует функция динамических переменных E x y,a f, сохраняющая при дви-

жении свое значение: 

 ɺ ,E x ya f  0 (2) 

то эта функция называется интегралом движения, а система (1) - 

интегрируемой системой. Фазовые траектории интегрируемой системы пред-

ставляют собой линии уровня интеграла движения. В общем случае такие 

линии либо замкнуты, либо уходят на бесконечность. Таким образом, типичное 

финитное движение интегрируемой системы является периодическим. Основ-

ной задачей теории является определение частоты колебаний от величины ин-

теграла движения   Ea f. 
  К интегрируемым системам с двумерным фазовым пространством относятся 

гамильтоновы автономные системы с одной степенью свободы, для которых 

уравнения движения имеют вид 

 ɺ , ɺp
H

q
q

H

p
  







 (3) 

Системы такого типа консервативны: диссипация (см. V02.3) равна нулю во 

всех точках фазового пространства. Значение функции Гамильтона H p q E,a f   

называется энергией; энергия является интегралом движения: 

 ɺ ɺ ɺE
H

p
p

H

q
q  







0 (4) 

  Для любых автономных гамильтоновых систем с одной степенью свободы 

матрица устойчивости (см. V04.1) имеет вид 

 ɵ ,M p q
H H

H H
pq pp

qq qp

a f   
 (5) 

След S  этой матрицы равен нулю, как и сумма характеристических показате-

лей:  1 2 0  . Поэтому для автономных гамильтоновых систем в фазовом 

пространстве возможны неподвижные точки только двух типов - центры 
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(Re i  0,  1 2  ) или седла (Im i  0) с равными по модулю характеристиче-

скими показателями. 

  Закон сохранения энергии (4) часто позволяет понизить порядок гамильто-

новой динамической системы, описав ее с помощью уравнения первого поряд-

ка. Так, функция Гамильтона H p q,a f, описывающая одномерное движение час-

тицы массы m в потенциальном поле U qa f [ЛЛI, §40], имеет вид  

 H p q
p

m
U q,a f a f 

2

2
 (6) 

Разрешив уравнение H p q E,a f   относительно p и используя второе из канони-

ческих уравнений (3), получаем пару уравнений первого порядка 

   2
q E U q

m
  ɺ . (7) 

К этому же результату можно прийти, интегрируя уравнение движения части-

цы в потенциале U qa f: 

 
 dU q

mq
dq

 ɺɺ . (8) 

Точки, в которых правые части уравнений (7) обращаются в ноль, называются 

точками остановки. Если в точке остановки dU dq  0, то она называется точ-

кой поворота. Фазовый портрет движения в потенциале U qa f строится элемен-

тарно: минимумы потенциала соответствуют центрам, максимумы – седлам. 

  Задача 05.1 Найти закон движения вблизи точки остановки sq , если она не является точ-

кой поворота. 

  Форма гамильтониана (6) является весьма распространенной, но все же не универсальной. 

Могут встретиться гамильтонианы, в которых кинетическая энергия T pa f выражается слож-

ной функцией, так что импульс не удается явно выразить через координату подобно (7). Ин-

тегрируемость системы и возможность проинтегрировать уравнения ее движения в квадрату-

рах – не синонимы. 

Если область движения ограничена точками поворота q qL R , то движение 

системы периодично, а его период T Ea f дается выражением 

 T E m
dq

E U q
q

q

L

R

a f a f
z2  (9) 

Частота движения, 

  E
T E

a f a f
2

, (10) 

как правило зависит от энергии. Важнейшее исключение представляет гармо-

нический осциллятор - система с гамильтонианом 
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 H p q
p

m

m
q,a f  

2 2
2

2 2


 (11) 

Для него при любых начальных условиях частота движения постоянна и равна 

; это свойство гармонического осциллятора называется изохронностью. 

  Задача 05.2 Доказать, что для одномерного движения частицы в потенциальном поле  

  
2

0

a x
U x U

x a

   
 

 (12) 

период движения не зависит от энергии – существует изохронность.  

§ 02  Стандартные модели 

  Важнейшей стандартной моделью нелинейной консервативной интегрируе-

мой системы является маятник. Маятником (pendulum) называется гамильто-

нова система с одной степенью свободы с (безразмерными) каноническими пе-

ременными - импульсом p и координатой  и гамильтонианом 

 H
p

 
2

2
cos  (13) 

  Координата   рассматривается как угловая: состояния системы, различающиеся по   на 

2 , считаются совпадающими. Фазовое пространство системы представляет собой цилиндр 

   p          .  

Уравнения движения маятника имеют вид 

 ɺ sin , ɺp p     (14) 

Система имеет две неподвижные точки - центр   0 0, p , соответствующий 

энергии E  1, и седло    , p 0, соответствующее энергии E  1. Сепа-

ратриса седла представляет собой линию уровня гамильтониана, соответст-

вующую энергии E  1. Уравнение сепаратрисы имеет вид 

 ps 
a f  cos
2

 (15) 

Почти при всех начальных условиях движение маятника периодично. При 

E 1 движение маятника ограничено точками поворота, и называется качани-

ем (libration). При E 1 состояния маятника периодически повторяются, но 

скорость изменения координаты имеет постоянный знак. Такое движение ма-

ятника называется вращением (rotation).  

  Маятник важен тем, что дает простейший пример системы, обладающей неподвижными 

точками обеих возможных типов - одним центром и одним седлом - и удобен для исследова-

ния движений в окрестности сепаратрисы седла. Во-вторых, модель маятника имеет простые 

и наглядные физические прототипы. В третьих, модель маятника является универсальным 

инструментом для описания консервативного нелинейного резонанса в задачах о движении 

консервативных систем под действием гармонической внешней силы. 
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  Вторым важнейшим набором моделей нелинейных консервативных систем 

являются осцилляторы Дуффинга. Осцилляторами Дуффинга мы будем назы-

вать модели с уравнениями движения любого из следующих видов: 

 ɺɺx x x  3 0, (16) 

 ɺɺx x x  3 0, (17) 

 ɺɺx x x  3 0, (18) 

и обозначать их как D1+, D1– и D2 соответственно. 

  В своем мемуаре [D18] Дуффинг рассматривал свойства неавтономной системы с уравне-

нием движения  

 ɺɺ sinx x x x k t      2 3  (19) 

где параметры   и   малы в сравнении с  . При этом основное внимание было уделено 

"симметричному случаю"   0 0, . В настоящее время термины "уравнение Дуффинга" и 

"осциллятор Дуффинга" утратили четкие границы: чаще всего их применяют к уравнениям 

(16-18) и их диссипативным обобщениям (с добавлением в левую часть члена "2ɺx", описы-

вающего затухание) без предположений о малости параметров при нелинейных членах. 

[D18] Duffing G. Erzwungene Schwingungen ber veranderlicher Eigenfrequenz und ihre technische 

Bedeutung. Sammlung Vieweg., Btraunschweig, 1918. - VI+134 S. 

  Модели осцилляторов Дуффинга и их обобщения, возникающие при замене консерватив-

ной системы на систему с малым затуханием, используются в теории колебаний как примеры 

типичных нелинейных осцилляторов. Две из этих моделей имеют универсальное значение 

как модели умеренной нелинейности, в которых в разложении потенциальной энергии вбли-

зи минимума сохраняются не только квадратичные члены (что соответствует линеаризации 

уравнений движения), но и следующие за ними квартичные. В частности, моделью D1- может 

быть описано движение маятника при умеренной амплитуде колебаний. 

  Для маятника и осцилляторов Дуффинга зависимость частоты движения от 

энергии  E  может быть выражена через специальные функции (полные эл-

липтические интегралы). Польза от этого предсталения невелика: зависимость 

 E  может быть найдена непосредственным численным интегрированием 

быстрее, чем поиском значений эллиптических интегралов в таблицах. 
 

 

 

 

Рис. V05.1 

Зависимость частоты колебаний маятника 

от его энергии. 

 

 

 

 

Большее значение имеет определение приближенных зависимостей  E  в 

асимптотических областях – при значениях E  вблизи минимума потенциала 

( 1E    для маятника; случай малых колебаний) и вблизи седлового ( 1E   для 

1 x
n

 y
m

x
n

y
m


1 0 1 2

0

1

2

 



V05 Двумерные интегрируемые системы 

-5- 

маятника). Методы отыскания этих зависимостей могут быть использованы и 

для других моделей. 
  Отметим, что решения уравнений движения стандартных моделей при любых начальных 

условиях могут быть выражены через эллиптические функции Якоби – как для маятника 

[ЗС88, с.18], так и для осцилляторов Дуффинга [Л97, с.80]. 

[Л97] Ланда П.С. Нелинейные колебания и волны. М.: Наука, 1997. - 496 с. 

[ЗС88] Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физики: от маятника до турбу-

лентности и хаоса. М., Наука, 1988. - 368 с. 

§ 03  Частота малых колебаний 

  Рассмотрим частоту малых колебаний 1E≪  для осциллятора Дуффинга D1+  

 ɺɺx x x  3 0, (16) 

Поскольку амплитуды всех гармоник, кроме основной, в этом случае малы (см. 

V01), традиционным и удобным способом описания является выражение ха-

рактеристик движения не через энергию, а через амплитуду основной фурье-

компоненты движения 1a A .  

  Рассмотрим метод оптимальной линеаризации. Аппроксимируем уравне-

ние движения осциллятора Дуффинга уравнением движения гармонического 

осциллятора 

 ɺɺx x 2 0 (20) 

с подлежащей определению частотой . Потребуем, чтобы среднее значение 

квадрата разности  a f сил, входящих в нелинейной уравнение (16) и линей-

ное уравнение (20), было минимально. Выражение для  a f имеет вид  

   2 3 2 2 2 4 62x x x x x x     c h a f    (21) 

где   2 1, а горизонтальная черта обозначает усреднение по времени (или 

по периоду). Минимуму  a f соответствует значение 

 2 4 2
1

1  


x xe j  (22) 

Будем считать движение x ta f гармоническим колебанием с амплитудой A: 

   sinx t A t   (23) 

Тогда для средних значений, входящих в формулу (22), получаем 

 x A x A2 2 4 41

2

3

8
 ,  (24) 

и окончательно получаем выражение для частоты колебаний как функции (ма-

лой) амплитуды:  

   1
3

8
2A  (25) 
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Учитывая, что при малых значениях энергии осциллятор Дуффинга мало отли-

чается от гармонического осциллятора, можно положить E A 2 2 и получить 

зависимость частоты от полной энергии в виде 

   1
3

4
E  (26) 

 
 

 

Рис. V05.2 

Зависимость частоты колебаний ос-

циллятора Дуффинга D1+ от его 

энергии. Штриховой линией пока-

зана асимптотика при малых энер-

гиях (26). 

 

 

 

 

  Рассмотрим другой подход к выводу выражения (26), основанный на мето-

де исключения резонанса. Представим уравнение движения осциллятора Дуф-

финга (16) в виде  

 ɺɺx x x x    2 2 31c h  (27) 

где  - частота колебаний, подлежащая определению. Будем считать движение 

x ta f гармоническим колебанием с небольшой амплитудой A  1: 

 x t A ta f  sin . (28) 

Подставляя это выражение в правую часть уравнения (27), получаем уравнение 

 ɺɺ sin sinx x A A t A t   F
H

I
K    2 2 2 31

3

4

1

4
3  (29) 

Движение гармонического осциллятора с собственной частотой  под воздей-

ствием гармонической силы с той же частотой описывается квазигармониче-

ским движением с линейно растущей амплитудой (см. V01.3, формула (23)). 

Движение двумерной интегрируемой системы (16) всегда периодично. Уравне-

ние (29) будет иметь при любых начальных условиях решением периодиче-

скую функцию только в том случае, когда выражение для вынуждающей силы 

не будет содержать первой гармоники. Приравнивая коэффициент при sint  

нулю, получаем для частоты выражение 

   1
3

8
2A  (30) 

Уравнение (29) позволяет также уточнить закон движения x ta f, учтя в нем ком-

поненту третьей гармоники: 

 x
n

 y
n

x
n

y
n


0 2 4

0

1
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 x t A t A ta f  sin sin 
1

32
33  (31) 

Таким образом, при малых амплитудах колебаний (малых значениях энергии 

1E≪ ) коэффициент ангармонизма колебаний осциллятора Дуффинга 

   
1

1024

1

256
4 2A E  (32) 

растет пропорционально четвертой степени амплитуды колебаний, или квадра-

ту энергии. 

§ 04  Движение вблизи сепаратрисы 

  Из четырех описанных выше моделей три (маятник и осцилляторы Дуффин-

га D1- и D2) имеют седловые точки и сепаратрисы. Эти седла соотвествуют не-

устойчивым положениям равновесия частицы в точке максимума потенциаль-

ной энергии. Рассмотрим движение системы при энергии, близкой к седловому 

значению. Совместим начало координат с точкой максимума, а максимум по-

тенциала примем за начало отсчета энергии:  max 0U x  . Будем 

рассматривать движение в области 0x   с малой отрицательной энергией 

0    1 ≪ . 

В окрестности максимума потенциальную энергию можно разложить до 

квадратичного члена   2 2 2U x x   и описать движение системы моделью 

гиперболического акселератора (гармонического осциллятора с мнимой часто-

той): 

 2 0x x  ɺɺ . (33) 

Возьмем момент остановки частицы вблизи седла за начало отсчета времени. 

Соответствующее решение уравнения движения (33) будет иметь вид  

  
2

chx t t


 


. (34) 

Выберем точку А, находящуюся на таком расстоянии от максимума потенциа-

ла, чтобы в ней можно было пользоваться уравнением (33), но чтобы 

 U x ≫  (см. рис. V05.3). Время достижения точки А можно найти из (34): 

  
2

1

1 2 1
ln ln

2
T A A


 

  
. (35) 

Для описания движения справа от точки А можно (в силу условия  U x ≫ ) 

воспользоваться законом движения на сепаратрисе. Решая уравнение (33) при 

0  , получаем закон движения частицы, которая в момент времени t    

вышла из седловой точки: 



V05 Двумерные интегрируемые системы 

-8- 

    1t T
sx t Ae

  . (36) 

Минимума потенциала на расстоянии М от его максимума (где М – константа, 

зависящая от вида потенциала) частица достигнет через интервал времени 

  2

1
ln

M
T A

A



. (37) 

Складывая выражения (35) и (37), получаем уже не зависящее от выбора А вы-

ражение для интервала времени движения от точки поворота до минимума по-

тенциала 

 
2 21 2

ln
2

M
T




 
. (38) 

Этот интервал – а вместе с ним и период движения – логарифмически растет с 

уменьшением отклонения энергии от седлового значения.  
 

 

 

 

Рис. V05.3 

Фазовый портрет математического маятника. По-

казаны фазовые траектории, соответствующие ка-

чаниям (синий штрих-пунктир), качению (зеленый 

пунктир), сепаратрисе (черная сплошная линия) и 

качаниям вблизи сепаратрисы (красный короткий 

пунктир). На верхнем графике показан профиль 

потенциала и линии уровня энергии, соотвест-

вующие фазовым траекториям. 

 

 

 

 

  Безусловно, приближение системы моделью гармонического акселератора (33) неприме-

нимо в области минимума потенциала. Однако так как система очень медленно движется в 

области поворота вблизи седловой точки, а область минимума потенциала проходит намного 

быстрее, то полученное выражение (38) асимптотически верно при значениях энергии, близ-

ких к седловому значению. 

Совершенно аналогично можно показать, что ту же величину имеет интер-

вал времени движения от максимума потенциала  0x   до минимума потен-

циала для случая, когда частица имеет малую положительную энергию 

1 0 ≫ . Таким образом, для систем с квадратичным максимумом потенциала 

частота движения как функция малого отклонения энергии от седлового значе-

ния обращается в ноль по логарифмическому закону: 

   1
ln 


∼ . (39) 
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  Пример 1. Для маятника значение 1  . Закон движения маятника на сепаратрисе легко 

найти из решения уравнения 

 
2

cos 1
2


  

ɺ
. (40) 

После интегрирования получаем 

   4arctg tt e  . (41) 

За время от   до   положение маятника меняется на 2 , а константа интегрирования 

выбрана так, что в нулевой момент времени система находится в минимуме потенциала 

 0   . Тогда в момент  2T A  система находилась в точке А: 

 
 24arctg

T A
A e

 . (42) 

Подставляя выражение (37) и учитывая, что 1A M ≪ , получаем 4M  . Из (38) находим 

асимптотику периода колебаний  0  : 

 
32

2lnlT 


 (43) 

(интервал от точки поворота до минимума проходится четырежды) и асимптотику периода 

вращений  0  : 

 
32

lnlT 


 (44) 

(интервал от макмимума до минимума потенциала проходится дважды). 

  Для двумерной автономной интегрируемой системы основной задачей яв-

ляется определение зависимости частоты движения от начальных условий и 

параметров. 

Использование квадратуры (9) редко бывает лучшим способом ее решения.  

Для исследования движений вблизи центра эффективно использование мо-

дели слабо анграмонического движения. 

Для исследования движений, проходящих вблизи седла, эффективна ап-

проксимация законом движения на сепаратрисе. 
 


