
V04   ДВУМЕРНЫЕ СИСТЕМЫ 

Теория двумерных систем составляет ядро теории колебаний, так как только в дву-

мерных автономных системах возможны колебания в обычном смысле слова – движения, 

характеризующиеся определенной повторяемостью состояний системы и описываемые 

кинематическими моделями, перечисленными в первой лекции. 

§ 01  Неподвижные точки двумерных систем 

  Рассмотрим двумерную автономную динамическую систему с уравнениями 

движения 

 ɺ , ; ɺ ,x F x y y G x y a f a f (1) 

Фазовое пространство системы (1) обычно представляет собой фазовую 

плоскость x y,k p. Изображение на этой плоскости исключительных фазовых 

траекторий системы (неподвижных точек, сепаратрис седел и предельных цик-

лов) вместе с несколькими типичными траекториями общего вида составляет 

фазовый портрет динамической системы, который дает наглядное качествен-

ное представление о характере движений при различных начальных условиях.  

  Уточним: фазовое пространство системы (1) может иметь топологию цилиндра R S1 1  

(пример - маятник) или тора S S1 1 . В таких случаях на фазовой плоскости могут быть пока-

заны развертки этих поверхностей. 

  Поделив уравнения (1) друг на друга, получим уравнение фазовых траекто-

рий 
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G x ydy
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Однако далеко не всегда возможно найти решение этого дифференциального 

уравнения. Иногда для построения фазового портрета можно использовать ме-

тод изоклин. Изоклинами называются кривые, определяемые условием: 
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Вдоль кривой, определяемой уравнением (3), наклон фазовых траекторий по-

стоянен. Если возможно построить семейство изоклин с различными значе-

ниями K , построение фазовых траекторий существенно упрощается. 

Однако в общем случае определение структуры фазовой плоскости, а в осо-

бенности отыскание аттракторов с периодическим движением - предельных 

циклов - представляет весьма сложную задачу. 

  “...Вопрос о максимальном числе и о расположении предельных циклов Пуанкаре для 

дифференциального уравнения первого порядка и первой степени вида 
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где X , Y  - целые рациональные функции n -й степени относительно x , y” составляет 16-ю 

проблему Гильберта [ПГ69, с.47], поставлен около 100 лет назад и до сих пор в общем виде 

не решен. 

[ПГ69] Проблемы Гильберта. Сборник под ред. П.С. Александрова. М., Наука, 1969. - 240 с. 

Методы исследования систем на фазовой плоскости собраны в справочнике 

[БЛ90]. Исследование неподвижных точек представляет самую простую часть 

задачи. 

[БЛ90] Баутин Н.А., Леонтович Е.А. Методы и приемы качественного исследования динами-

ческих систем на плоскости. 2-е изд. М., Наука, 1990. - 488 с. 

  Обратимся к рассмотрению неподвижных точек 
�
xo системы (1). Они 

определяются корнями системы уравнений 

 F x y G x yo o o o, ; ,a f a f 0 0 (5) 

и в типичных случаях являются изолированными. 

Аппарат для исследования устойчивости наподвижных точек сформулиру-

ем в общем виде. Пусть система уравнений движения динамической системы в 

K -мерном фазовом пространстве имеет вид 

 
� �ɺx F x a f. (6) 

Матрицей устойчивости (stability matrix) ɵM x
�a f динамической системы (6) в 

точке фазового пространства 
�
x  называется квадратная матрица K K  с эле-

ментами 

 M
F

xij
i

j





 (5) 

причем значения всех производных берутся в точке 
�
x . Собственные значения 

матрицы устойчивости ɵM x
�a f называются локальными характеристическими 

показателями n x
�a f динамической системы. Совокупность K  таких показате-

лей задает спектр матрицы устойчивости. 

Если точка 
�
xo является неподвижной, то ее устойчивость в линейном при-

ближении определяется спектром характеристических показателей. Рассмот-

рим движение системы вблизи неподвижной точки 
�
xo. Положим 

� � �

x xo   , 

подставим это выражение в уравнения движения (4), разложим 
� �
F xa f в ряд Тей-

лора по компонентам 
�

  и пренебрежем всеми членами, кроме линейных по i . 

Уравнения движения для компонент отклонения 
�

  будут иметь вид 
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В типичном случае невырожденного спектра матрицы устойчивости (все i  

различны) общее решение этой системы уравнений имеет вид 
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Если среди локальных характеристических показателей данной неподвижной 

точки есть хотя бы один с положительной вещественной частью, то при 

начальных условиях общего вида компоненты отклонения будут нарастать со 

временем, и неподвижная точка будет неустойчива. 

  Вернемся к рассмотрению двумерных систем. Линеаризованную систему 

уравнений для отклонений от неподвижной точки можно в этом случае запи-

сать в виде 

 
d

dt
a b

d

dt
c d


 


    ,  (10) 

где через a , b , c  и d  обозначены вещественные элементы матрицы устойчиво-

сти. Собственные значения матрицы устойчивости выражаются через эти ко-

эффициенты так: 

 1 2

2

2 2, 



F
H
I
K 

a d a d
bc  (11) 

Выражению (11) можно придать более простой вид, введя след S  матрицы ус-

тойчивости - сумму диагональных матричных элементов 

 S M M a d   11 22  (12) 

(след матрицы устойчивости равен значению локальной диссипации в непод-

вижной точке (см. V02, §03): S xo 
�a f) и определитель D  матрицы устойчи-

вости 

 D M M M M ad bc   11 22 12 21 . (13) 

Собственные значения матрицы устойчивости выражаются через эти величины 

так: 

 1 2

2

2 4,   
S S

D . (14) 

Отсюда вытекает, что сумма характеристических показателей равна следу мат-

рицы устойчивости:  1 2  S , а их произведение – определителю: 1 2 D   . 

§ 02   Классификация неподвижных точек 

  Неподвижные точки двумерных систем классифицируются по свойствам их 

локальных характеристических показателей.  

Неподвижная точка, в которой показатели i  чисто мнимые, называется 

центром (centre). В окрестности центра фазовые траектории образуют семей-

ство эллипсов. 

Неподвижная точка, в которой показатели имеют отличные от нуля мни-

мые части и ненулевую действительную часть, называется фокусом (focus). Ес-

ли S  0, то фокус является устойчивым, а если S  0, то неустойчивым. В окре-
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стности фокуса фазовые траектории образуют семейство логарифмических 

спиралей.  

Неподвижная точка, в которой показатели действительны и имеют разные 

знаки, называется седлом (saddle) или седловой точкой. В окрестности седла 

фазовые траектории образуют семейство гипербол. 

Вблизи седла существуют фазовые траектории, по которым фазовая точка 

при t   или при t   неограниченно приближается к седловой точке. Эти 

фазовые траектории называются устойчивыми и неустойчивыми ветвями 

сепаратрисы седла соответственно. Все такие ветви (иногда - с добавлением к 

ним самой неподвижной точки) объединяются под названием сепаратрисы 

(separatrix). Сепаратрисы седловых точек составляют третью группу исключи-

тельных фазовых траекторий вместе с неподвижными точками и изолирован-

ными замкнутыми фазовыми траекториями - предельными циклами (см. V02, 

§04, п.3).  
  Сепаратрисы играют важную роль в качественном исследовании структуры фазовой 

плоскости двумерных динамических систем. Свойство сепаратрис разделять фазовую плос-

кость на области, "соответствующие движениям различного характера", иногда принимается 

за их определение [ММ+88, с.21]. Да и сам термин "сепаратриса" восходит к латинскому 

separare - "разделять". Однако данное выше определение седла и его сепаратрис сохраняет 

смысл и в многомерных системах, при K  3. Одномерные множества - сепаратрисы - при 

этом не разделяют никаких K -мерных областей. 

Неподвижная точка, в которой показатели действительны и имеют оди-

наковые знаки, называется узлом (node). Если S  0, то узел является устойчи-

вым, а если S  0, то неустойчивым. В окрестности узла фазовые траектории 

образуют семейство прямых. 

  На плоскости параметров S D,k p равенство нулю действительной части ха-

рактеристических показателей неподвижной точки, как видно из выражения 

(12), возможно только на прямой S  0, которая имеет нулевую площадь. 
 

 

 

Рис. V04.1 

Границы областей различных типов неподвижных точек 

двумерных автономных динамических систем на плоскости 

параметров S D,k p (S  - след, D  - детерминант матрицы ус-

тойчивости). 

 

 

 

 

Таким образом, для систем общего вида точки типа центр встречаются исклю-

чительно редко. Необходимость их рассмотрения в теории колебаний связана с 

тем, что они являются типичными для консервативных систем, в которых по 

определению S  0. Неподвижные точки двумерных консервативных систем 

суть либо центры, либо седла. 
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  Выбором масштаба времени для системы уравнений (10) можно обеспечить 

выполнение условия 

 a b c d2 2 2 2 1    . (15) 

Таким преобразованием пространство неподвижных точек отображается на по-

верхность четырехмерной сферы единичного радиуса. Меры областей этой по-

верхности, соответствующие различным классам точек, определяют их распро-

страненность в системах общего вида. 

Точки типа центр являются исключительными (при малом изменении па-

раметров общего вида системы превращаются в точки других классов) и имеют 

меру ноль. Фокусам соответствует область, заданная условием 

 a d bc  a f2 4 0. (16) 

Седлам соответствует область, заданная условием 

 a d bc ad bc    a f2 4 0 0, . (17) 

Остальная часть поверхности гиперсферы соответствует узлам. 

Вычисление объемов областей (16) и (17) на поверхности гиперсферы (15) 

можно провести численно. Найденные значения вероятностей фокусов ( PF ), 

седел ( PS ) и узлов ( PN ) таковы: 

 P P PF S N  0 29 050 0 21. , . , . . (18) 

Таким образом, для систем общего вида наиболее вероятным типом неподвиж-

ной точки является седло, менее вероятен фокус, а узел является самым редким 

типом. Частоты устойчивых и неустойчивых точек среди фокусов и узлов рав-

ны по очевидной симметрии. 

§ 03   Бифуркации на фазовой плоскости 

  Изменения в числе и типе неподвижных точек для двумерных автономных 

динамических систем могут быть разбиты на два класса. 

К первому классу отнесем числа неподвижных точек, которые есть и у од-

номерных динамических систем (V03) - тангенциальную бифуркацию, бифур-

кацию удвоения и бифуркацию смены устойчивости. Для всех этих случаев в 

точке бифуркации динамическая система имеет кратную неподвижную точку. 

Во второй класс отнесем все те изменения, которые связаны с изменением 

типа изолированных неподвижных точек. Такие изменения специфичны для 

систем с размерностью фазового пространства K  2.  

На рисунке V04.1 на плоскости параметров S D,k p показаны области, соот-

ветствующие неподвижным точкам разных типов. В первом квадранте распо-

ложены неустойчивые фокусы и узлы, в четвертом - устойчивые; в нижней по-

луплоскости расположены седла. Рисунок позволяет перечислить типичные 

бифуркации изолированных неподвижных точек: 

1) изменение типа устойчивости фокуса (при котором в точке бифуркации 

неподвижная точка становится центром) 
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2) превращение фокуса в узел (или обратно) с сохранением типа устойчи-

вости; 

3) превращение узла в седло. 

Превращение неустойчивого узла в устойчивый и превращение седла в фокус 

возможны только тогда, когда траектория эволюции системы на плоскости 

управляющих параметров проходит через начало координат. Такие переходы, 

при которых в точке бифуркации оба характеристических показателя обраща-

ются в ноль, имеют меру ноль. 

  Пример 1. Рассмотрим свойства неподвижных точек в автономной двумерной системе с 

уравнениями движения 

 2 2,  x x x y y y x x      ɺ ɺ , (19) 

где   - управляющий параметр. Положение неподвижных точек определяется точками пере-

сечений кривых 

 21
,  y y x x

x
     (20) 

гиперболе и параболе). 

 

 

 

 

Рис. 04.2 

Кривые (20) на фазовой плоскости. Парабола нари-

сована при значениях параметра 1   и 3  . 

 

 

 

 

Из рисунка видно, что всегда есть одна неподвижная точка в третьев квадранте 

 0,  0x y  , а в первом квадранте  0,  0x y   пара неподвижных точек появляется в ре-

зультате тангенциальной бифуркации при некотором пороговом значении управляющего па-

раметра 1 3   . Найдем значение  . Исключая y  из уравнений (20), получаем 

 3 2 1 0x x   . (21) 

На пороге бифуркации это уравнение имеет двукратный корень 2 3x x X  : 

   
23 2

11x x x x x X     . (22) 

Приравнивая в этом уравнении члены в при одинаковых степенях x , получаем 

 1 3 2 32 1.26,  3 2 1.89X       . (23) 

Таким образом, при 0      у системы одна, а при     - три неподвижные точки 

1 2 3x x x  . C ростом     точка 2x  сдвигается влево (при очень больших   1,2x    ), а 

точка 3x  сдвигается вправо (при очень больших   3x   ). 

  Задача 04.1 Кроме неподвижных точек 1,2,3 0x  , система 

 2 2,  x x x y y y x x      ɺ ɺ  

обладает тривиальной неподвижной точкой, совпадающей с началом координат. Исследо-

вать ее свойства (тип и устойчивость). 
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Обратимся теперь к исследованию типов неподвижных точек. Матрица системы (19) 

имеет вид 

 
21 2

2 1

xy x
M

x

 

  

. (24) 

Ее след S  и детерминант D  равны 

 2 32 ;  1 2 2S xy D xy x x        . (25) 

Учитывая первое из условий (20), в неподвижных точках 2 0S    . Поэтому возможны 

бифуркации смены типа седлоузел на линии 0D   и узелфокус на линии 2 4 1D S  . 

Рассмотрим первое условие. Детерминант D  в неподвижных точках обратится в нуль, 

если абсцисса неподвижной точки будет удовлетворять уравнению 

 3 22 1 0x x   . (26) 

Одновременно для абсциссы неподвижной точки должно выполняться условие (21). Вы-

читая из одного уравнения другого, находим значение абсциссы неподвижной точки, при ко-

тором 0D  : 1 32ix X  . Таким образом, в нашей модели на пороге тангенциальной би-

фуркации определитель матрицы устойчивости обращается в нуль.  

  Задача 04.2 Доказать, что для любой двумерной автономной системы на пороге танген-

циальной бифуркации определитель матрицы устойчивости обращается в нуль. 

При     определитель в точке 3x  отрицателен, и эта точка является седлом. 

Определитель в точке 2x  положителен - и эта точка является устойчивым узлом, если 

2 4 1D S  , и устойчивым фокусом в обратном случае. Из условия (25) с учетом равенства 

1xy   получаем уравнение 3 22 0x x  , откуда 2x   . Подставляя это значение в (21), на-

ходим порогове значение 2    . Таким образом, точка 2x  является устойчивым узлом 

при 1.89 2    и устойчивым фокусом при 2  . 

Наконец, в точке 1x  определитель 1D  , поэтому эта точка при любых значениях   яв-

ляется устойчивым фокусом.  

Таким образом, при значениях     система обладает двумя аттракторами и является 

бистабильной.  

  Задача 04.3 Определить границы бассейнов аттракторов 1x  и 2x  модели (19). 

Следующим этапом исследований должно быть построение ветвей сепаратрисы седло-

вой точки. По сказанному выше, их направление вблизи седла совпадает с направлением 

собственных векторов матрицы устойчивости. При 3   эти направления даются формула-

ми для отклонений 0.285     для неустойчивой и 0.577    для устойчивой ветвей (см. 

рисунок).  

 

Рис. 04.3 

К построению фазового портрета 

системы (19). Показаны три фазовые 

траектории для значения 3  : притя-

гивающаяся к точке 1x  (пунктирная 

линия), притягивающаяся к точке 2x  

(штриховая линия) и траектория, про-

ходящая вблизи двух ветвей сепарат-

рисы седла 3x  (сплошная линия). 
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  Для двумерной автономной системы определение положений неподвиж-

ных точек, установление их типов (центр, устойчивый/неустойчивый фокус, 

устойчивый/неустойчивый узел или седло) и определение положений ветвей 

сепаратрис в большинстве случаев достаточно для построения глобального 

фазового портрета системы. 
 


