
V03   ОДНОМЕРНЫЕ СИСТЕМЫ  

Рассмотрение динамических систем мы начнем с одномерных автономных моде-

лей. Хотя закон движения таких систем не относятся к колебательным, есть ряд причин, 

по которым именно с них надо начинать. 

Во-первых, именно эти модели являются простейшими. Во-вторых, обычная для 

таких моделей монотонная релаксация к положению равновесия является весьма распро-

страненным типом движения в окрестности неподвижных точек более сложных систем. 

В-третьих, в некоторых случаях модели с несколькими динамическими переменными мо-

гут быть редуцированы к одномерным. Примерами могут служить уравнения, возникаю-

щие в теории двумерных интегрируемых систем, совершающих релаксационные автоко-

лебания, и при использовании метода медленно меняющихся амплитуд. 

В конце этого раздела рассматриваются две неавтономные одномерные системы. 

§ 01  Уравнение движения и неподвижные точки  

  Простейшей моделью динамической системы является автономная модель с 

одной динамической переменной x . Уравнение движения такой модели имеет 

вид 

 
dx

dt
F x a f. (1) 

Фазовое пространство такой системы одномерно. Неподвижные точки ix  опре-

деляются уравнением 

   0iF x  . (2) 

Пусть  1 0F x  . Рассмотрим движение системы вблизи неподвижной точки o1. 

Положим 1x x   , подставим это выражение в уравнение движения (1), раз-

ложим F xa f в ряд Тейлора по   и пренебрежем всеми членами, кроме линей-

ных по  . Такая процедура называется линеаризацией, а величина   называется 

отклонением. Уравнение движения для отклонения имеет вид 

 
d

dt


  (3) 

где 

  


dF

dx x x1

 (4) 

Если значение   конечно, то решение уравнения (3) имеет вид 

   t e ta f  0 . (5) 

Если   0, то отклонение со временем растет по абсолютной величине - не-

подвижная точка неустойчива, а если   0, то отклонение со временем убывает 

по абсолютной величине - неподвижная точка устойчива. 
  Величина   может быть введена в любой - а не только в неподвижной - точке фазового 

пространства и называется локальным характеристическим показателем.  Случай    

встречается в теории колебаний гамильтоновых систем с одной степенью свободы; при этом 

точка 1x  называется точкой поворота. 
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  Если функция F xa f гладкая, то в общем случае параметры  xia f в непод-

вижных точках не равны нулю. Устойчивые неподвижные точки являются ат-

тракторами движения, любой интервал, содержащий только одну устойчивую 

неподвижную точку, является ловушкой, а наибольший из таких интервалов 

является бассейном аттрактора. Финитное движение системы (1) всегда закан-

чивается в устойчивой неподвижной точке. 

Уравнение движения (1) часто может быть решено в явном виде. 

  Пример 1. Простейшая модель химической кинетики (2.22) при  0 превращается в 

систему уравнений 

 2 ,x x y x  ɺ ɺ  (6) 

Первое уравнение одномерно, а второе может быть проинтегрировано после подстановки 

явного вида функции x tb g: в итоге   2
0

tx t x e ,    20
0 1

2

tx
y t y e   . 

  Пример 2. В экологическом моделировании численность N tb g особей определенного ви-

да в данной популяции обычно описывается моделью типа (1)  

 ɺN F N b g. (7) 

Простейшая, линейная зависимость F N aNb g   имеет одну неустойчивую неподвижную точ-

ку N1 0  и соответствует введенной Мальтусом (R.T. Malthus, 1798) модели неограниченно-

го экспоненциального роста численности популяции. Более реалистичная модель, учиты-

вающая ограниченность ресурсов, была введена Ферхюльстом (P.F. Verhulst, 1845) 

 ɺN aN bN  2  (8) 

При a b 0 0,  эта модель имеет две неподвижные точки - неустойчивую N1 0  и устойчи-

вую N a b2  . Уравнение (8) элементарно интегрируется: 

 N t
aN e

bN e a

at

at
b g

d i


 

0

0 1
 (9) 

Если N N0 2 , то начальная стадия роста является экспоненциальной, N t N eatb g  0 . При 

больших t  функция N tb g стремится к предельному значению N2  по экспоненциальному за-

кону: 

 N t N
N

N
e atb g   

F
HG
I
KJ


2

2

0

1  (10) 

Уравнение Ферхюльста (8) часто называют логистическим уравнением, а закон движения 

(9) при a b 0 0, , N a b0   называют логистическим законом.  

 

 

 

 

Рис. V03.1 

Логистический закон движения (9) при a  1, 

b  0 2. , 0 0.2N  . 
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  Пример 3. Рассмотрим модель с уравнением движения  

 ɺA A A 
F
HG

I
KJ 1

3

4

2 . (11) 

Такое уравнение описывает медленные (при 1≪ ) изменения амплитуды A гармонических 

колебаний в осцилляторе Рэлея. Домножая уравнение (11) на A и вводя переменную x A 2 , 

вновь приходим к логистическому (ср. (8)) уравнению 

 ɺx x x 2
3

2

2  . (12) 

Таким образом закон изменения квадрата амплитуды гармонических колебаний в осцилля-

торе Рэлея при 1≪  является логистическим. 

  Уравнение движения (1) в любом случае может быть сведено к однократной 

квадратуре 

 dt
dx

F x
 z a f , (13) 

определяющей функцию t xa f и, тем самым, обратную ей функцию x ta f. Такую 

форму представления результата в теоретической физике принято считать точ-

ным решением задачи и тогда, когда интеграл в (13) не может быть выражен 

через известные функции. 

§ 02  Бифуркации  

  Единственными особыми решениями для одномерных систем являются не-

подвижные точки. Поэтому бифуркации в таких системах связаны с появлени-

ем, исчезновением и изменением характера устойчивости неподвижных точек 

(2). Без ограничения общности функцию ( )F x  можно считать полиномом (не-

которой степени N ). По основной теореме алгебры такой полином имеет N  

корней, причем комплексные корни образуют пары комплексно сопряженных 

чисел. Таким образом, в точке бифуркации число действительных корней 

уравнения   0F x   может измениться на четное число – неподвижные точки 

появляются и исчезают парами.  

Для рассмотрения закономерностей бифуркации достаточно аппроксими-

ровать функцию ( )F x  локально в окрестности точки рождения корней. Эту 

аппроксимацию можно осуществеить полиномами невысоких степеней. Рас-

смотрим эволюцию неподвижных точек динамической системы (1) с завися-

щей от параметра с правой частью ( , )F x   при изменении параметра  .  

  Рассмотрим модель 

 2dx
x

dt
    (14) 

При   0 уравнение (2) не имеет вещественных корней, а при   0 имеет два 

вещественных корня 

 1,2x    , (15) 
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соответствующие двум неподвижным точкам. Непосредственной проверкой 

легко убедиться, что одна из этих неподвижных точек устойчива, а другая не-

устойчива. 
 

Рис. V03.2  

Эволюция неподвижных точек при изменении 

управляющего параметра на плоскости "перемен-

ная - параметр" при тангенциальной бифурка-

ции. Сплошная линия изображает траекторию ус-

тойчивой точки, а штриховая - неустойчивой. 

 

 

 

Появление при данном значении управляющего параметра пары неподвиж-

ных точек (разной устойчивости) называется тангенциальной бифуркацией 

(saddle-node bifurcation). 
  Иcчезновение пары неподвижных точек часто называют обратной тангенциальной би-

фуркацией. 

  Тангенциальная бифуркация соответствует случаю, когда на пороге бифур-

кации уравнение   0F x   имеет двукратный корень. Достаточно часто встре-

чается ситуация, когда это уравнение на пороге бифуркации имеет трехкрат-

ный корень. Такая бифуркация может быть описана моделью 

 3dx
x x

dt
   . (16) 

При любых   у системы (16) есть неподвижная точка 1 0x  :  0F   , поэто-

му 1x  устойчива при   0 и неустойчива при   0. Кроме того, при   0 у 

системы появляются еще две неподвижные точки 

 2,3x    . (17) 

 2,3 2F x    , поэтому обе они устойчивы. 

Таким образом, в точке бифуркации происходит рождение пары точек оди-

наковой устойчивости, совпадающих в момент рождения с третьей неподвиж-

ной точкой, меняющей при бифуркации свою устойчивость. Такая бифуркация 

называется бифуркацией удвоения (pitchfork bifurcation).  
 

 

Рис. V03.3 

Эволюция неподвижных точек при изменении 

управляющего параметра на плоскости "перемен-

ная - параметр" при бифуркации удвоения. 

Сплошная линия изображает траекторию устой-

чивой точки, а штриховая - неустойчивой. 
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  Динамическая модель, имеющая более одной устойчивой неподвижной точ-

ки, называется мультистабильной. Для часто встречающегося случая, когда 

таких точек две, используется термин бистабильность. Легко видеть, что би-

фуркация удвоения всегда приводит к бистабильности. 
  Бесконечно удаленная точка, даже устойчивая, при таком подсчете не учитывается. 

  Рассмотрим эволюцию неподвижных точек модели с уравнением движения 

 2dx
x x

dt
    (18) 

У этой системы при любых значениях   есть две неподвижные точки, 1 0x   и 

2x   . Значения производной правой части уравнения движения (18) в этих 

точках равны 

    1 2,F x F x     . (19) 

При изменении параметра   число неподвижных точек остается неизменным, 

однако при переходе через точку бифуркации   0 меняется тип устойчивости 

точек. Такое поведение называется бифуркацией смены устойчивости.  
 

 

Рис. V03.4 

Эволюция неподвижных точек при изменении 

управляющего параметра на плоскости "перемен-

ная - параметр" при бифуркации смены устойчи-

вости. Сплошная линия изображает траекторию 

устойчивой точки, а штриховая - неустойчивой. 

 

 

 

Практически все встречющиеся бифуркации в одномерных системах принад-

лежат к одному из трех указанных типов. 

  Перечисленные выше типы бифуркаций – тангенциальная, удвоения и 

смены устойчивости – применимы к описанию рождения и исчезновения не-

подвижных точек не только в одномерных системах – но и в системах с лю-

бой размерностью фазового пространства. 

§ 03  Гистерезис в бистабильных системах. Запаздывание 

  Рассмотрим модель с уравнением движения 

 ɺx x x   3, (20) 

где   - управляющий параметр. Эта модель имеет два бифуркационных значе-

ния параметра  , 

   
2

3 3
 (21) 
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При     и     система (20) имеет единственную устойчивую неподвиж-

ную точку. При значениях     происходят тангенциальные бифуркации, и в 

области       система бистабильна - имеет две неустойчивых и одну ус-

тойчивую неподвижные точки. На плоскости "переменная - параметр" устой-

чивые неподвижные точки образуют две ветви, x a f и x a f, области опреде-

ления которых перекрываются в области бистабильности системы. 
 

 

 

Рис. V03.5 

Положение неподвижных точек системы (20) на 

плоскости "параметр   - переменная x". Сплош-

ные линии соответствуют устойчивым точкам, 

штриховая - неустойчивой точке. 

 

 

 

  Рассмотрим теперь неавтономное обобщение модели (20) с уравнением 

движения 

 ɺx t x x  a f 3, (22) 

Пусть параметр  ta f медленно изменяется ( ɺ 1), проходя через область бис-

табильности. Для определенности примем, что  0a f   , ɺ  0, а начальное ус-

ловие x 0a f совпадает с неподвижной точкой системы (20) при значении  0a f. 
При медленном изменении параметра  ta f точка x ta f будет адиабатически 

следовать за положением неподвижной точки системы (20) при соответствую-

щем значении  , x t x ta f a f   , до тех пор, пока значение   не достигнет би-

фуркационного значения  . При  ta f    фазовая точка быстро перейдет в 

окрестность единственной существующей в этой области ветви x a f и в даль-

нейшем будет двигаться по ней: x t x ta f a f   . 

Если обратить направление изменения времени, то точка x ta f будет адиаба-

тически следовать за положением неподвижной точки системы (20) при соот-

ветствующем значении  , x t x ta f a f   , до тех пор, пока значение   не дос-

тигнет бифуркационного значения  . При  ta f    фазовая точка быстро пе-

рейдет в окрестность единственной существующей в этой области ветви x a f 
и в дальнейшем будет двигаться по ней: x t x ta f a f   . 

Таким образом, при медленном переходе управляющего параметра через 

область бистабильности в противоположных направлениях законы движения 

x ta f в области бистабильности могут существенно различаться. Это явление, 

типичное для мультистабильных систем, в теории колебаний называется гис-

терезисом. 
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Рис. V03.6 

Положение фазовой точки системы (22) на плос-

кости на плоскости "параметр  tb g - переменная 

x tb g" для законов изменения параметра 

 t tb g   1 01.  (сплошная ветвь) и  t tb g  1 01.  

(пунктирная ветвь).  

 

 

 

  Термин "гистерезис" (от греческого   - запаздывание) введен Дж.А. Эвингом 

(J.A. Ewing, 1890) для обозначения открытого им явления запаздывания изменений намагни-

ченности вещества по отношению к изменениям напряженности внешнего магнитного поля. 

В нашем примере можно считать, что переход на новую ветвь устойчивых неподвижных то-

чек запаздывает по отношению к прохождению управляющим параметром бифуркационного 

значения. В теорию колебаний термин "гистерезис" в использованном нами смысле был вве-

ден Ван дер Полем в 1922 г. 

[VdP22] Van der Pol B. On oscillation hysteresis in a triode generator with two degrees of freedom. 

Phil. Mag. Ser. 6, 1922, v.43, no.256 [REF: Landa80] 

  Рассмотрим простейшую модель с одной степенью свободы - линейную мо-

дель с одной степенью свободы, которую мы будем называть релаксатором - 

под действием гармонически зависящего от времени возмущения. Эта модель 

описывается уравнениями движения 

 ɺ cosx x F t    (23) 

Представим решение в виде гармонического колебания 

 x A t cos  a f (24) 

где амплитуда A  и фазовый сдвиг   суть величины, подлежащие определению. 

Подстановка этого решения в уравнение (23) приводит к ответу 

 A
F




 
 




2 2
, arctg  (25) 

Таким образом, под действием гармонической силы колебания релаксатора 

оказываются гармоническими, отстающими по фазе от силы. Фазовый сдвиг   

уменьшается с ростом константы затухания. Решение (24) можно также пере-

писать в виде 

 x t
F

ta f a f



 

 
2 2

cos  (26) 

где    , и интерпретировать так: координата релаксатора пропорциональна 

значению (гармонической) силы, взятому в предшествующий момент времени. 

 
 


