
V02   ДИНАМИКА КОЛЕБАНИЙ: МОДЕЛИ СИСТЕМ 

§ 01  Динамические системы 

  Динамическая система (ДС) - модель, которая описывается независимой 

переменной - временем t  - и набором K  величин - динамических переменных, 

(1 i K), считающихся функциями времени: x x ti i a f. Совокупность значений 

всех динамических переменных x ti 0a fl q в данный момент времени t0 определя-

ет состояние динамической системы. Совокупность x ti 0a fl q считается коорди-

натами точки в K -мерном пространстве состояний системы, которое называет-

ся фазовым пространством. Точка этого пространства, соответствующая со-

стоянию системы, называется фазовой точкой. 
  Для упрощения записи формул координаты фазовой точки можно считать компонентами 

вектора 
�
x tb g . В использовании векторных обозначений нужна осторожность: xi  могут иметь 

разные размерности.  

  Величины xil q считаются действительными. Для описания некоторых динамических сис-

тем (например, возникающих в теории электромагнитных волн или в квантовой механике) 

вводятся комплексные динамические переменные. В этом случае при подсчете размерности 

фазового пространства K  действительные и мнимые части переменных должны учитываться 

по отдельности. 

  Описание динамической системы может потребовать указания значений ря-

да параметров динамической системы - физических величин a jm r (1 j L ), 

отличных от динамических переменных.  

  Совокупность параметров a jn s можно обозначать как вектор 
�
a  в L -мерном пространст-

ве параметров. 

  Динамическая система определена, если задан оператор эволюции ɵ ,S t t0b g, 
который известному состоянию системы в момент t0 сопоставляет единствен-

ное состояние системы в любой допустимый последующий момент времени 

t t 0: 
� �
x t S t t x ta f b g b g ɵ , 0 0 . Зависимость 

�
x ta f называется законом движения сис-

темы, или просто движением. Совокупность точек 
�
x t t ta f a fm r  0  образует фа-

зовую траекторию движения. Обычно оператор ɵ ,S t t0b g не дан непосредствен-

но, а определяется уравнениями движения. 

§ 02  Уравнения движения 

  Для теории колебаний наиболее важен класс моделей, в которых время t  

изменяется непрерывно, а уравнения движения образуют систему K  обыкно-

венных дифференциальных уравнений первого порядка: 

 
dx

dt
F x a i Ki

i i j  l q n se j, , ( )1 . (1) 

где a jm r, (1 j L ) - параметры. В векторных обозначениях: 
� � � �ɺ ,x F x a a f. 
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  Пример 1. Система уравнений, определяющих движение материальной точки массы m 

под действием силы 
� � �
F r r, ɺd i, зависящей от ее координат 

�
r  и скорости 

�ɺr  в данной инерциаль-

ной системе отсчета, включает определение импульса частицы, 

 mr p
� �ɺ  , (2) 

и второй закон Ньютона, 

 
� � � �ɺ , ɺp F r r d i. (3) 

В совокупности они образуют систему шести уравнений вида (1). Решение такой системы 

возможно только при специальном выборе функций 
� � �
F r r, ɺd i. 

  Пример 2. Канонические уравнения механики гамильтоновых систем,  

 ɺ , ɺp
H

q
q

H

p
i

i

i

i

  







 (4) 

где H p q t
� �
, ,b g  - функция Гамильтона [ЛЛI, §40] образуют систему вида (1). 

  Пример 3. Колебательный контур - модель, описывающая электрическую цепь, состоя-

щую из конденсатора емкостью C , пластины которого соединены линейным проводником с 

сопротивлением R  и индуктивностью L . Состояние системы задается величиной заряда кон-

денсатора q  и величиной тока I  в проводнике. Эти величины связаны локальным законом 

сохранения заряда, 

 ɺq I , (5) 

и уравнением для скорости изменения тока, вытекающим из закона электромагнитной ин-

дукции и закона Ома для участка цепи, содержащего ЭДС, 

 ɺI
LC

q
R

L
I  

1
. (6) 

В совокупности они образуют систему двух уравнений вида (1). 

  Пример 4. Cледующий пример заимствуем из физической кинетики. Основным уравне-

нием химической кинетики является закон действующих масс (mass action law): скорость 

химической реакции, в ходе которой из k  молекул вещества x , l  молекул вещества y  и т.д. 

образуется одна молекула вещества z  при постоянных прочих условиях пропорциональна 

произведению концентраций  , ...X Y  исходных молекул, взятых в степенях, равных числу 

молекул данного сорта, участвующих в реакции: 

 ~ ...k lZ X Yɺ  (7) 

  Закон действующих масс (ЗДМ) был установлен норвежскими химиками К.М. Гульдбер-

гом и П. Вааге (C.M. Guldberg, P. Waage) в 1864 - 1879 гг. ЗДМ применим, как правило, для 

описания элементарных стадий химических реакций. Выявление таких стадий составляет 

одну из важнейших задач химической кинетики, часто далеко не простую. Так, по современ-

ным представлениям механизм реакции окисления водорода, описываемой химическим 

уравнением 
2 2 2

2H O 2H O  , насчитывает 30 (тридцать) стадий [ХБК83, с.7], а односта-

дийные реакции представляют собой редкие исключения [ХБК83, с.11]. Далее, ЗДМ приме-

ним к реакциям, идущим в объеме разбавленных растворов или газовых смесей невысокой 

плотности.  

[ХБК83] Химическая и биологическая кинетика. Под ред. Н.М. Эмануеля, И.В. Березина, 

С.Д. Варфоломеева. - М.: Изд-во Моск. ун-та, 1983 г, - 296 с. 
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Простейшей является протекающая при постоянном объеме системы веществ мономо-

лекулярная химическая реакция x y z  , в ходе которой молекула вещества x  распадается 

на молекулы веществ y  и z . На основании закона действующих масс она может быть опи-

сана уравнением  

 
dX

aX
dt
   (8) 

где X  - число молекул вещества x  (при постоянном объеме пропорциональное концентра-

ции), а a  - параметр. Одновременно с ней может протекать и обратная бимолекулярная ре-

акция y z x  , в ходе которой из молекул веществ y  и z  образуется молекула вещества x . 

С учетом обратной реакции уравнение для X  принимает вид 

 
dX

aX bYZ
dt
   . (9) 

где Y  и Z  - числа молекул веществ y  и z , а b  - параметр, характеризующий скорость об-

ратной реакции. Аналогично для скорости изменения числа молекул Y  получаем уравнение 

 
dY

aX bYZ
dt
  . (10) 

Так как, очевидно, для числа молекул веществ должно выполняться условие 

 2 constX Y Z S    , (11) 

исключая переменную Z  с помощью уравнения (11), получаем простейшую модель химиче-

ской кинетики, заданную двумя уравнениями первого порядка  

 
 

 

2 ,

2 ,

X aX bY S X Y

Y aX bY S X Y

    

   

ɺ

ɺ
 (12) 

и зависящую от параметров ,  a b  и S .  

Если исходные уравнения движения системы представляют собой обыкновен-

ные дифференциальные уравнения порядка выше первого, то, приняв произ-

водные динамических переменных за новые динамические переменные, всегда 

можно свести систему к виду (1). В дальнейшем в необходимых случаях мы 

будем подразумевать использование этой процедуры. 

  Пример 5. Система уравнений 

 ɺɺ , ɺɺ ɺx xy y xy   0 0  (13) 
эквивалентна системе  

 ɺ , ɺ , ɺ , ɺx p p xy y q q py      , (14) 

которая имеет вид (1) и описывает динамическую систему с K  4 (см. также примеры 1 и 2 в 

следующем параграфе). 

Если K  - размерность фазового пространства, то число 2N K  в теории ко-

лебаний называется числом степеней свободы. 

  Полуцелые значения N  неуклюжи; к тому же они употребляются только в отечественной 

литературе. Мы будем предпочитать термин «K -мерные динамические системы», а число 

степеней свободы N  будем привлекать, только когда оно целое. 
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  В теории колебаний, как и вообще в теоретической физике, исследование 

уравнений движения удобно проводить, ориентируясь на собственные масшта-

бы системы. Если среди параметров модели имеются три величины с незави-

симыми размерностями, то их удобно принять в качестве единиц измерения. 

При этом время, динамические переменные и все остальные параметры задачи 

станут безразмерными величинами.  

  Следуя традициям теоретической физики, мы всюду подразумеваем использование сис-

темы единиц с тремя основными величинами - например, абсолютную гауссову систему 

СГС. При использовании других систем единиц необходимо ввести соответствующие изме-

нения. 

Одной из выгод такого преобразования является возможность введения рас-

стояния R  между точками 
�
x  и 
�
y  фазового пространства, которое обычно счи-

тается евклидовым, 

 R x y x yi i

i

K
� �
,a f b g 




2

1

, (15) 

и скорости V  движения точки в фазовом пространстве, 

 V xi

i

K




 ɺb g2
1

. (16) 

Иллюстрируем переход к безразмерным переменным примерами. 

  Пример 6. В задаче об одномерном движении частицы в поле с потенциалом 

 U y U
y

a

y

a
b g  F

HG
I
KJ 
F
HG
I
KJ

L
N
MM

O
Q
PP0

2 4
1

2

1

4
 (17) 

под действием силы вязкого трения f y yɺ ɺb g    и внешней силы, зависящей от времени   по 

гармоническому закону, уравнение движения имеет вид 

 my y U
y

a

y

a
ɺɺ ɺ cos  

L
NM

O
QP
 0 2

3

4
 , (18) 

где m - масса частицы,   - постоянная вязкого трения, U0 и a  - характерные величина и дли-

на потенциала,   и   - амплитуда и частота внешней силы. Выбрав в качестве единиц мас-

сы, длины и времени соответственно массу частицы m, характерную длину потенциала a  и 

величину размерности времени 

  
ma

U

2

0

 (19) 

перепишем уравнение (18) в виде 

 ɺɺ ɺ cosx x x x F t   2 3   (20) 

Входящие в это уравнение величины  

 x
y

a
t

m
F

a

m
    , , , ,




 

 
2

2

  (21) 
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безразмерны. Уравнение (20), зависящее от трех безразмерных параметров, относится к чис-

лу уравнений Дуффинга и будет подробно исследоваться в последующих лекциях. 

  Пример 7. Простейшая модель химической кинетики (12) содержит три параметра - a , b  

и S , размерности которых зависимы: b S a 1 . Выбрав в качестве единиц времени и кон-

центрации величины 2 a  и S  соответственно, перепишем систему (12) в виде 

    2 2 1 ,  1x x y x y y x y x y         ɺ ɺ  (22) 

Входящие в это уравнение величины 

 2 ,  ,  2
X Y bS

x y
S S a

     (23) 

безразмерны. Таким образом, простейшая модель химической кинетики характеризуется од-

ним безразмерным параметром  . 

В дальнейшем мы всегда будем брать уравнения движения динамических 

систем в безразмерной форме. Ее использование сокращает число параметров 

системы в общем случае на три. Ниже, говоря о числе параметров модели, мы 

всегда будем иметь в виду число параметров для безразмерной формы модели. 

§ 03  Классификация динамических систем 

  Если все параметры a j  не зависят от t , то ДС называется автономной. Если 

параметры a j  зависят от t  заданным образом, a a tj j a f, то ДС называется не-

автономной. 

Каждой неавтономной ДС с K -мерным фазовым пространством может 

быть сопоставлена эквивалентная автономная ДС с K 1a f-мерным фазовым 

пространством путем следующей процедуры, называемой автономизацией. К 

системе уравнений движения (1) добавляется уравнение 

 
dx

dt

K 1 1;  (24) 

а время t  в аргументах a tja f заменяется на динамическую переменную xK1, 

численно равную времени. 

Фазовое пространство системы, получившейся в результате автономизации, 

называется расширенным фазовым пространством. Таким образом, замена 

постоянных параметров системы на параметры, зависящие от времени, эффек-

тивно увеличивает число степеней свободы системы на 1 2. 

  Для динамической системы вида (1) локальной диссипацией 
�
xa f в данной 

точке 
�
x  фазового пространства называется дивергенция поля фазовых скоро-

стей в этой точке, взятая с обратным знаком: 

 
� �
x x

x

x

F

x
i

i
i

K

i

i
i

K

a f      
 
 div ɺ

ɺ






1 1

 (25) 

  Пример 1. Линейный осциллятор с вязким трением есть система с уравнением движения 
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 ɺɺ ɺx x x   0
2 0 (26) 

Эта модель может быть описана двумя уравнениями первого порядка (см §02) 

 ɺ , ɺ .x x   v v v 0
2  (27) 

Отсюда 
�
xb g   : диссипация линейного осциллятора с вязким трением положительна, по-

стоянна и равна коэффициенту трения.  Для осциллятора с трением диссипация пропор-

циональна скорости изменения энергии: см. [ЛЛI, §25]. Для систем общего вида энергия не 

определена, и такой связи нет. 

  Пример 2. Осциллятор Рэлея (модель, которая будет подробно исследоваться в дальней-

шем) есть система с уравнением движения 

 ɺɺ ɺ ɺx x x x    1 02d i . (28) 

Эта модель может быть описана двумя уравнениями первого порядка (см. §02) 

 ɺ , ɺx x   v v v v 3d i . (29) 

Диссипация осциллятора Рэлея 
�
xb g d i   1 3 2

v  зависит от величины скорости: она отри-

цательна при v  1 3 и положительна при v  1 3. 

Если диссипация во всех точках фазового пространства постоянна и положи-

тельна, 

 
�
xa f   0 (30) 

то она называется затуханием. В некоторых случаях для упрощения формул 

удобнее обозначение 
�
xa f  2 0 ; при этом   тоже называют затуханием. 

  Теорема об эволюции фазового объема. Для динамических систем вида 

(1) относительная скорость изменения величины элементарного фазового объ-

ема равна диссипации с обратным знаком. 

Рассмотрим элементарный объем 

 V xi

i

K





1

 (31) 

вблизи точки 
�
x  фазового пространства. 

 
1 1

1 1
V

dV

dt x

d

dt
x

x

x
x

i
i

i

K

i

i
i

K

    
 
 

 a f a f



ɺ �
,  (32) 

что завершает доказательство. 

  Системы, для которых диссипация равна нулю во всех точках фазового про-

странства, 
�
xa f  0, называются консервативными. Системы, для которых 


�
xa f  0, называются диссипативными.  

  Если 
�
xb g  0 всюду в фазовом пространстве (см. выше пример 1), то фазовый объем при 

движении уменьшается.  
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§ 04  Основные задачи теории динамических систем 

1.  Задача Коши: по заданному начальному состоянию 
�
x t0a f при заданных 

параметрах 
�
a  найти закон движения 

�
x ta f для t t 0. Обычно принимают t0 0 , а 

начальное состояние 
� �
x t x0 0b g a f  называют начальными условиями. 

  Задача Коши особо важна для систем, в которых произвольное - по усмотрению экспери-

ментатора - задание начальных условий 
�
x 0b g невозможно - например, в небесной механике. 

2.  Исследование устойчивости. Фундаментальной характеристикой дан-

ного движения 
�
x ta f является его устойчивость, определяющая качественный 

характер взаимного поведения движений с близкими начальными условиями. В 

частности, решение задачи Коши для данной динамической системы практиче-

ски ценно, только если известно, что малые вариации начальных условий мало 

изменят закон движения или отдельные его характеристики. В теории колеба-

ний основную роль играют следующие два определения устойчивости. 

  Движение 
�
x ta f устойчиво по Ляпунову, если   0  a f такое, что из 

� �
x x0 0a f a f    при t  следует 

� �
x t x ta f a f   . При устойчивом по Ляпунову 

движении фазовые точки, близкие в начальный момент времени, останутся 

близкими во все моменты. 

  Движение 
�
x ta f орбитально устойчиво, если   0  a f такое, что из 

� �
x x0 0a f a f    при t  для некоторого t  следует    x t x t   

� �
. При орби-

тально устойчивом движении фазовые траектории, близкие в одном месте фа-

зового пространства, останутся близкими и во всех других местах. 

3.  Исследование структуры фазового пространства. Для автономных 

систем с фиксированными значениями параметров определение структуры фа-

зового пространства сводится, в первую очередь, к выделению особых (исклю-

чительных) фазовых траекторий. 

 3.1.  Состояние динамической системы в общем случае изменяется со време-

нем. Поэтому исключительными фазовыми траекториями являются неподвиж-
ные точки (fixed points), представляющие состояния равновесия системы. 

Неподвижные точки 
�
x f  определяются уравнениями 

� � �
F x af ,c h  0. 

 3.2.  Движение динамической системы в общем случае непериодично. По-

этому исключительными являются фазовые траектории, соответствующие пе-
риодическому движению. Для автономных динамических систем такие траек-

тории являются замкнутыми кривыми в фазовом пространстве.  

  Третьим типом исключительных фазовых траекторий являются сепаратрисы седловых 

точек. Их определение будет дано ниже. 

 3.3.  Если при любых начальных условиях 0x
�

 из некоторой области при дос-

таточно больших временах фазовая точка окажется сколь угодно близко к фа-

зовой траектории A , то такая фазовая траектория называется аттрактором и 

является исключительной. Множество  всех начальных состояний 
�
x0l q, оп-
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ределяющих фазовые траектории, асимптотически притягивающиеся к данно-

му аттрактору A , называется бассейном (этого) аттрактора. 

 3.4.  Если при движении системы значения динамических переменных оста-

ются ограниченными - существуют такие положительные числа Xi , что 

x t Xi ia f   при всех t  - то движение системы называется финитным. Если хотя 

бы для одной переменной это условие не выполняется, то движение системы 

называется инфинитным. Выделение границ областей финитного движения 

входит в задачу исследования структуры фазового пространства.  

Для системы с K -мерным фазовым пространством и оператором эволюции 

S ta f ловушкой (trap) называется K -мерная область фазового пространства T  

такая, что если в начальный момент времени состояние системы лежит в T , то 

и во все последующие моменты оно будет лежать в T : 

      0 0x S t x  T T
� �

 (33) 

Построение ловушки конечных размеров достаточно для доказательства фи-

нитности движения системы. 

4.  Исследование динамической системы. При изменении параметров 
�
a  

динамической системы в общем случае изменяются и свойства ее исключи-

тельных решений. Особый интерес представляет определение граничных зна-

чений параметров, при переходе через которые меняется число и/или тип та-

ких решений. Такое изменение называется бифуркацией, а соответствующие 

значения 
�
ab  - точками бифуркации. 

  Исследование свойств динамической системы, обладающей несколькими параметрами, 

представляет весьма трудоемкую задачу. Обычно при таком исследовании исследуют зави-

симость только от одного управляющего параметра (control parameter) ia , придавая осталь-

ным компонентам вектора  ja  постоянные значения.  

  Изображение свойств динамической системы на плоскости двух управляющих парамет-

ров a a1 2,a f в настоящее время часто выступает как итог завершенного научного исследова-

ния. Цветные карты границ областей с качественно различным поведением являются укра-

шением многих современных научных журналов. 

  Важность задач различных типов возрастает в использованном выше 

порядке их перечисления: 

– главной является задача исследования динамической системы (4); 

– исследование структуры фазового пространства (3) является необходи-

мой предпосылкой решения главной задачи; 

– исследование устойчивости (2) является вспомогательной задачей; 

– решение задачи Коши (1) почти никогда не рассматривается.  
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§ 05  Исследовательская программа 

  В центре исследовательской программы теории колебаний стоит задача 

изучения устойчивых (по Ляпунову или орбитально) периодических и квазипе-

риодических колебаний - выявление областей их существования в пространст-

ве параметров и определение зависимостей характеристик колебаний (в первую 

очередь - их частот) от параметров динамической системы. 

  Для решения этой задачи эффективны методы, основанные на непосредст-

венном численном интегрировании уравнений движения (1). Поскольку ос-

новной объект внимания - устойчивые движения, требования к точности реше-

ния уравнений невысоки. Решение задачи Коши, позволяющее с графической 

точностью (около 1%) изобразить отрезок фазовой траектории длиной в не-

сколько единиц требует считанных секунд работы современных персональных 

компьютеров. При интегрировании уравнений с различными начальными усло-

виями устойчивые неподвижные точки и предельные циклы выделяются авто-

матически. Поэтому исследование структуры фазовой плоскости (фазового 

пространства автономной динамической системы с K  2 ) с помощью числен-

ного эксперимента - нетрудная работа.  

  Постановка основной задачи теории колебаний во многом определяет и вы-

бор методов ее аналитического решения. Точно решаемые модели представ-

ляют собой редкие (хотя и ценные) исключения. Приближенные методы осно-

ваны, как правило, на разделении движений по масштабам времени на быстрые 

(с масштабом 1 ) и медленные (с масштабом 2 ): 

 1 2 ≪ . (34) 

Примером методов такого типа является метод медленно меняющихся ампли-

туд, основанный на представлении движения в форме (1.20). Отметим также 

два предельных случая этой схемы. 

В одном пределе время изменения медленных изменений считается беско-

нечно большим. Первым этапом решения является подстановка закона движе-

ния заданного вида (периодического, реже квазипериодического) с неопреде-

ленными параметрами в уравнения движения, пренебрежение членами, не со-

ответствующими постулированной форме закона движения, и самосогласован-

ное определение параметров решения. Последний этап обычно сводится к ис-

следованию корней системы алгебраических уравнений - задача в общем виде 

громоздкая, но часто допускающая асимптотическое решение в предельных 

случаях. На худой конец, для решения алгебраической системы можно исполь-

зовать численные методы - хотя, заметим, в отличие от численного интегриро-

вания дифференциальных уравнений численное решение систем нелинейных 

алгебраических уравнений не может считаться рутинной задачей. Найденные 

аналитически приближенные законы движения могут быть проверены сравне-

нием с результатами прямого численного решения системы уравнений движе-

ния. В тех случаях, когда точность найденных аналитических решений недос-

таточна, для их уточнения могут быть применены методы теории возмущений. 
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В другом пределе время быстрых изменений считается бесконечно ма-

лым. Если в системе уравнений движения удается выделить уравнение бля бы-

строго изменения переменных, то в нулевом приближении это уравнение пре-

вращается в функциональную связь между переменными, и порядок системы 

понижается. Такой подход используется для исследования релаксационных ко-

лебаний.  

  В дальнейшем мы будем изучать свойства движений динамических систем, 

рассматривая их в порядке увеличения числа динамических переменных - раз-

мерности фазового пространства K . При этом неавтономные системы будут 

рассматриваться сразу после соответствующих автономных. Для систем данно-

го класса типы движения будут рассматриваться в порядке возрастания слож-

ности - от гармонического к периодическим, квазипериодическим и к модули-

рованным периодическим колебаниям (см. V01). 

Основное внимание будет уделено рассмотрению автономных двумерных 

систем и их неавтономных обобщений. Свойства таких систем будут изучаться 

в рамках установленного традицией набора стандартных моделей. Почти все 

стандартные модели теории колебаний - осциллятор Дуффинга, модель Лотки - 

Вольтерра, осцилляторы Рэлея и Ван дер Поля, брюсселятор - даются система-

ми уравнений, правые части которых представляют собой полиномы второй 

или третьей степени от динамических переменных. Важнейшее исключение 

составляет модель маятника, уравнение движения которой включает трансцен-

дентную функцию; для ее специального рассмотрения есть достаточные при-

чины, которые будут обсуждены в свое время. 

Полиномиальные модели невысоких степеней, с одной стороны, удобны 

для аналитических расчетов, а с другой - обладают типичными свойствами 

нелинейных систем общего вида. 

  Необходимость использования стандартных моделей связана с тем, что воз-

можность исчерпывающего исследования сколько-нибудь обширных классов 

динамических систем практически отсутствует. Рассмотрим автономную дина-

мическую систему с двумя переменными, для которой правые части уравнений 

движения даются полиномами второй степени общего вида: 

 

2 2
1 2 3 4 5 6

2 2
7 8 9 10 11 12

,

.

x a a x a y a x a xy a y

y a a x a y a x a xy a y

     

     

ɺ

ɺ

 (35) 

Часть параметров ai  может быть приведена к значениям 1  или 0  различными 

преобразованиями: сдвигом начала координат (2 параметра), поворотом осей 

координат (1), выбором масштабов динамических переменных (2) и выбором 

масштаба времени (1). Оставшаяся приведенная система будет характеризо-

ваться шестью произвольными параметрами      , , , , , . Ее полный анализ 

должен включать рассмотрение очень большого числа характерных случаев 

(типа         ~ ~1 ). Подчеркнем, что здесь мы не касаемся во-

проса о трудности решения задачи, а говорим только об объеме исчерпываю-

щего ответа. 
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  Задача 03.1. Найти точное число характерных случаев для системы с шестью безразмер-

ными параметрами. УКАЗАНИЕ. Знак "~" симметричен, знак "≪ " - нет. 

  С увеличением размерности системы сложность исследования системы 

сильно возрастает. Это вызвано несколькими причинами. Во-первых, чем 

больше размерность фазового пространства, тем сложнее может быть ее уста-

новившееся движение. Например, для гамильтоновых консервативных систем 

число независимых частот квазипериодического движения может достигать 

числа степеней свободы N K 2 [А89, §49]. В общем случае частот может 

быть еще больше: по доказанной Андроновым и Виттом теореме [АВ30; А56, 

с.47], если все динамические переменные системы (1) совершают квазиперио-

дическое движение, то число его независимых частот может достигать (но не 

превосходить) K 1. Чем больше частот, тем более громоздкой становится са-

мая простая модель движения (как минимум, должна быть определена одна 

фурье-амплитуда для каждой частоты). Практически в теории колебаний огра-

ничиваются рассмотрением квазипериодических движений не сложнее двух-

частотных. 

[АВ30] Андронов А.А., Витт А.А. Sur le movements quasi-periodiques. Ж. прикл. физики, 

1930, т.6, в.1, с.119. 

[А56] Андронов А.А. Собрание трудов. Изд.-во АН СССР, 1956. - 538 с. 

[А89] Арнольд В.И. Математические методы классической механики. 3-е изд. - М.: Наука, 

1989. - 472 с. 

Во-вторых, движение многомерной системы трудно представить наглядно. 

Сравнительно легко воспринимаются данные, представленные линией на плос-

кости или поверхностью в трехмерном пространстве. Изображение линии (фа-

зовой траектории) в трехмерном пространстве уже может вызвать трудности в 

интерпретации, поэтому стараются и его привести к двумерному случаю (на-

пример, с помощью отображения Пуанкаре (Poincare map) – дискретной по-

следовательности точек пересечения фазовой траектории с координатной 

плоскостью x x, ɺk p через равные промежутки времени). 

Наконец и в-третьих, с ростом числа динамических переменных увеличива-

ется, как правило, число параметров модели. В результате полное исследование 

динамической системы становится весьма трудоемким.  

  Среди многомерных динамических систем в теории колебаний в первую 

очередь изучаются четырехмерные автономные модели, описывающие систе-

мы, составленные из двух слабо взаимодействующих (слабо связанных) дву-

мерных систем.  

  В завершающем разделе будут рассмотрены модели, которые описываются 

дифференциально-разностными уравнениями. Хотя с формальной точки зрения 

эти модели не относятся к конечномерным динамическим системам (состояние 

системы не задается конечным набором чисел), их свойства во многих практи-

чески интересных случаях могут быть изучены методами теории колебаний. 
 


