
 

V01   КИНЕМАТИКА КОЛЕБАНИЙ: МОДЕЛИ ДВИЖЕНИЯ 

  Задачи теории колебаний связаны с исследованием зависимости физических 

величин от времени t . Зависимость z ta f называется законом движения, или 

движением. Для описания движений используется ряд взаимосвязанных моде-

лей. Описание этих моделей составляет задачу кинематики. 

§ 01  Периодические колебания 

  Базовая модель колебательного движения - гармоническое колебание, при 

котором некоторая физическая величина z ta f изменяется по закону 

 z t A ta f a f sin  0 . (1) 

Значение z  0 называется положением равновесия. Величина максимального 

отклонения от положения равновесия A  0 называется амплитудой гармони-

ческого колебания. Величина  t ta f   0 , линейно возрастающая со време-

нем, называется фазой гармонического колебания, а 0  - начальной фазой. 

  Модель гармонического колебания описывает исключительный тип движения, при кото-

ром все процессы обладают единственным характерным временем - периодом колебаний 

T  2 . Такое движение может реализоваться в различных моделях - например, в модели 

свободных колебаний гармонического осциллятора (консервативная система) или в модели 

установившихся вынужденных колебаний линейного осциллятора с затуханием под действи-

ем гармонической силы (диссипативная система). 

  Одним из обобщений базовой кинематической модели является модель пе-

риодических колебаний. Периодическое колебание есть изменение во времени 

физической величины z ta f, при котором все значения z  периодически повто-

ряются. Минимальное время T  0 повторения любых значений физической ве-

личины, z t z t Ta f a f  , называется периодом колебаний. Величина 

  
2

T
 (2) 

называется частотой периодического движения. Для гармонического коле-

бания (1) частота периодического движения равна скорости изменения фазы:  

   ɺ . (3) 

  Периодическое колебание может быть представлено в виде линейной ком-

бинации гармонических колебаний, называемой рядом Фурье. Если z ta f - пе-

риодическая функция с периодом T , то 

 z t
a

a k t b k tk k

k

a f a f  




0

1
2

cos sin  , (4) 

где коэффициенты ak  и bk  заданы формулами 

 a
T

z t k t dt b
T

z t k t dtk

T

k

T

 z z2 2

0 0

a f a fcos , sin  . (5) 
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Компонента разложения периодического колебания в ряд Фурье, имеющая час-

тоту k, называется k-й гармоникой колебания. Величина 

 A a bk k k 2 2  (6) 

(при k 1) называется амплитудой k-й гармоники колебания. Периодические 

колебания, содержащие в своем Фурье-разложении гармоники, отличные от 

первой, называются ангармоническими колебаниями. 

  Разложение периодического колебания в ряд Фурье иногда принято записы-

вать в другом виде, используя экспоненциальные функции от комплексного ар-

гумента: 

 z t Z ik tk

k

a f a f




 exp  . (7) 

Поскольку физическая величина z ta f должна быть действительной, фурье-

амплитуды разложения (7) связаны соотношением Z Zk k 
  (здесь и далее звез-

дочка означает комплексное сопряжение). 

  Если периодическое колебание представлено в виде ряда Фурье (4), то ве-

личина 

  








1

1
2

1
2

2 2

2
a b

a bm m

m

b g (8) 

называется коэффициентом ангармонизма периодических колебаний.  

  Пример 1. Вычислим коэффициент ангармонизма периодического симметричного 

пилообразного колебания с периодом T L 4 v  и законом движения на периоде  

 
       

   

, 2 3 ,

4 3 4 .

x t t t L x t L t L t L

x t L t L t L

     

    

v v v v v

v v v
 (9) 

 

 

 

 

 

Рис. V01.1 

Симметричный пилообразный закон 

движения. 

 

 

 

 

Такая модель, например, описывает координату частицы, свободно движущейся со скоро-

стью v  между жесткими стенками в точках x L  и x L   и упруго отражающейся от них. 

Разложение закона движения в ряд Фурье имеет вид 

  
 

 
 

2 2
1
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n

n

x t L n t
n




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   

 
 , (10) 

откуда для коэффициента ангармонизма получаем 
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t
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 





  





1

2 1 96
1 0 0147

4

4

2
n

n b g
. . (11) 

  Задача 01.1. Вычислить коэффициент ангармонизма для скорости  x tɺ  процесса с 

симметричным пилообразным законом движения (9). 

  Численное определение коэффициента ангармонизма  полезно тем, что по-

зволяет оценить эффективное число гармонических компонент, которые надо 

учесть при приближенном решении уравнений движения в аналитической тео-

рии. Такая оценка дается числом N  1  . Приведенный выше примеры пока-

зывают, что даже разрывность закона движения x ta f не влечет большого ан-

гармонизма. Большая величина  свойственна движениям, в которых или пове-

дение физической величины на периоде является сложным - имеет много нулей 

и экстремумов (см. рис. V01.2), или представляет собой последовательность 

резких выбросов – импульсов. 
 

 

 

Рис. V01.2 

График функции 

x t t tb g  sin sin 2 3 , которой со-

ответствует значение коэффициента 

ангармонизма   4 , на одном пе-

риоде. 

 

 

 

  Периодические колебания, при которых скорость изменения величины x ta f 
сильно неравномерна (например, принимает большие значения лишь на малой 

части периода), называются релаксационными.  

Степень неравномерности изменений скорости может быть характеризова-

на коэффициентом релаксационности  - отношением среднего (на периоде 

движения) квадрата скорости к квадрату средней (на периоде движения) вели-

чины модуля скорости: 

  
v

v

2

2

e j
, (12) 

где 

 v v
2

2

0 0

1 1

F
H
I
K z zT

dx

dt
dt

T

dx

dt
dt

T T

,  (13) 

Для симметричного пилообразного колебания (9) коэффициент релаксацион-

ности   1. 
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Рис. V01.3 

Релаксационное колебание с коэф-

фициентом релаксационности 

  51. . 

 

 

 

 

§ 02  Квазипериодические колебания 

  Обобщением модели периодических колебаний, допускающих разложение в 

ряд Фурье (5), являются квазипериодические колебания, при которых зависи-

мость z ta f может быть представлена в виде разложения в кратный ряд Фурье, 

 z t Z i k l n tk l n N

k l n

a f b g  




 , ,..

, ..

exp ...  1 2 , (14) 

с двумя или несколькими независимыми частотами i  (1 i N ). 

  Простейшим примером квазипериодического движения является линейная 

комбинация двух гармонических колебаний с независимыми частотами 

 z t A t A ta f a f a f     1 1 0 2 2 0sin sin   . (15) 

Эта модель имеет специальное название бигармонического колебания.  
  Такой закон движения встречается, например, при описании колебаний двух линейных 

осцилляторов с линейной связью и при описании движения гармонического осциллятора с 

собственной частотой 1 под действием гармонической внешней силы с частотой 2 . 

  Частоты i  (1 i N ) удовлетворяют резонансному соотношению порядка 

K  [А89, с.353], если существуют целые не все равные нулю числа ki , для кото-

рых  

 k k Ki i

i

N

i

i

N

  
 
 0

1 1

,  (16) 

[А89] Арнольд В.И. Математические методы классической механики. 3-е изд. - М.: Наука, 

1989. - 472 с. 

Если частоты i  удовлетворяют резонансному соотношению конечного поряд-

ка, то говорят, что в системе имеется резонанс (для отличия от других типов 

резонанса будем называть его кинематическим резонансом). Если частоты i  

не удовлетворяют резонансному соотношению конечного порядка, то они на-

зываются независимыми. Для квазипериодического движения с двумя частота-

ми условие независимости 

 k l k l k l 1 2 0   , , ,Zb g (17) 

Z
m 2

Z
m 0
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эквивалентно утверждению о том, что отношение этих частот иррационально.  

  Иррациональность отношения частот не может быть проверена эксперимен-

тально: для такой проверки требуется бесконечно высокая точность измере-

ния частот, а значит - и самой физической величины z ta f. С физической точки 

зрения две частоты  1 2 , отношение которых обозначим    1 2 1, 

можно считать независимыми, если число   плохо приближается рациональ-

ным числом. Для того, чтобы иметь возможность говорить о том, что число   

аппроксимируется плохо, его надо приблизить наилучшим образом. Такая ап-

проксимация связана с разложением числа   (0 1  ) в цепную (непрерыв-

ную) дробь (continued fraction) 

  





1

1

11

2
3

a

a
a ...

 (18) 

где ai  - целые числа. Для выражения (18) принята также сокращенная запись 

  a a a1 2 3, , ,.. . Обрывая разложение (18) на n-м члене, получим рациональное 

число n n np q , которое называется n-й подходящей дробью (n-th convergent) 

разложения. Числа pn  и qn определяются рекуррентными формулами 

 p a p p q a q qn n n n n n n n        1 1 1 1 1 1,  (19) 

с начальными значениями p q p q a0 0 1 1 10 1 1   , , , . Дробь n  является наи-

лучшим приближением для иррационального числа   среди всех дробей с рав-

ными или меньшими знаменателями. 

  Для погрешности n-й подходящей дроби n n np q  элементарно доказыва-

ется [Х78, с.17] неравенство 

   
p

q q
n

n n

1
2

. (20) 

[Х78] Хинчин А.Я. Цепные дроби. - М.: Наука, 1978. - 112 с. 

Оно показывает, что говорить о приближенном выполнении резонансного со-

отношения между частотами (о резонансе) уместно, если левая часть неравен-

ства (20) оказывается много меньше установленного для нее верхнего предела - 

если резонансный индекс 

 R q q pn n n n a f   . (21) 

мал по сравнению с единицей. 

  Пример 2. Среди движений планет Солнечной системы самым известным является резо-

нанс частот обращений Юпитера (сидерический период TJ  4332 6.  сут) и Сатурна 

(TS  10759 2.  сут). Отношение частот этих движений  2,2,14,2,..S J    первой подходя-

щей дробью имеет 1 2 5 . Соответствующий резонансный индекс действительно мал: 

 2 0.067R   . 
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  Пример 3. Число   может быть представлено в виде   3 , где  7,15,1,292,...  . 

Первая походящая дробь дает 22 7  , известное как приближение Архимеда. Ограничива-

ясь третьей подходящей дробью, получаем приближение   355 113. Для этого приближе-

ния   3
3 3 3.4 10R     - резонанс 468 порядка обладает высокой точностью. 

  Задача 01.2. Исследовать соотношение между резонансными индексами чисел   и 1 . 

  Укажем еще один подход к вопросу о наличии кинематического резонанса. 

Выполнение между частотами i  резонансного соотношения высокого порядка 

(пусть даже с большой точностью) не влияет существенно на динамику систе-

мы: модель квазипериодического колебания может эффективно использоваться 

и в этом случае. Поэтому частоты можно считать i  независимыми, если в 

пределах ошибок измерений между ними нет резонансного соотношения с дос-

таточно малыми числами ki . Так, в небесной механике принято засчитывать 

как резонансные только соотношения вида (16) с ki  7. [М73, Г75].  

[М73] Молчанов А.М. О резонансной структуре Солнечной системы. - с. 32 - 41. В сб: "Со-

временные проблемы небесной механики и астродинамики". - М.: Наука, 1973. - 340 с. 

[Г75] Голдрайх П. Объяснение частой встречаемости соизмеримых средних движений в сол-

нечной системе. - с. 217 - 247. В сб: "Приливы и резонансы в Солнечной системе". М.: Мир, 

1975. - 287 с. 

  Во многих задачах частоты i  зависят от параметров и/или начальных ус-

ловий и непрерывно изменяются вместе с ними. В семействах таких движений 

присутствуют как квазипериодические (в математически строгом смысле), так 

и периодические зависимости от времени. В теории колебаний принято считать 

квазипериодическим любое движение, которое допускает эффективное пред-

ставление с помощью разложения (14).  

§ 03  Модулированные колебания и релаксация  

  Другим обобщением базовой модели (1) является модель квазигармониче-
ских колебаний, или модулированных гармонических колебаний, в которых 

закон изменения физической величины z ta f представляется в виде  

 z t A t t ta f a f a fb g sin   . (22) 

Функции времени A ta f и  ta f называются переменной амплитудой и перемен-

ной фазой соответственно. Движения вида (22) в общем случае не являются 

периодическими. Однако они во многом подобны периодическим колебаниям, 

если скорости изменения переменных амплитуды и фазы малы: 

 ,A A  ɺ ɺ≪ ≪ . (23) 

  Представление решений уравнений движения в виде (22) с амплитудой и фазой, удовле-

творяющим сильным неравенствам (23), лежит в основе метода медленно меняющихся 

амплитуд - одного из важнейших приближенных методов теории колебаний. 

  С помощью модели модулированных колебаний описываются, в частности, 

затухающие колебания - движение физической величины, немонотонно стре-
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мящейся к положению равновесия z ta f  0. Важнейшим примером являются 

экспоненциально затухающие гармонические колебания с законом движения 

 z t A e tta f a f 
0 0

 sin  . (24) 

Величина   называется логарифмическим декрементом затухания. Перио-

дом такого движения условно считается величина T  2 , что оправдано при 

малой величине логарифмического декремента затухания,    , когда изме-

нение амплитуды колебаний за период мало.  

  Приведем еще два примера модулированных колебаний. Закон движения (24) с постоян-

ной фазой   0  и линейно растущей амплитудой, 

 x t
F

t tb g  
2

cos , (25) 

описывает колебания координаты гармонического осциллятора под действием резонансной 

гармонической внешней силы.   Закон движения (24) с постоянной фазой   0  и экспо-

ненциально растущей амплитудой, 

 x t A e ttb g b g 0 0

 sin  , (26) 

описывает приближенный вид колебаний координаты параметрически возбуждаемого ос-

циллятора в зоне параметрического резонанса (см. V12). 

  В некоторых случаях движение может быть описано разными моделями. 

Например, бигармоническое движение (17) с равными амплитудами и близки-

ми частотами гармонических компонент, 

 z t A t A ta f  sin sin , 1 2  (27) 

может быть представлено как квазигармоническое амплитудно модулирован-

ное движение 

 z t t ta f  2cos sin   (28) 

где  

 
 


 





1 2 1 2

2 2
,  (29) 

В этом представлении при    изменение амплитуды квазигармонического 

движения называется биениями. 

  Физическая величина может стремиться к положению равновесия z ta f  0 не 

только совершая затухающие колебания, подобно закону (24), но и монотонно. 

Примером такого движения является зависимость 

 z t A e ta f  
0

 , (30) 

описывающая экспоненциальную релаксацию динамической величины к по-

ложению равновесия. Величину   называют скоростью релаксации. Хотя дви-

жение (30) обычно не относят к колебательным, его включение в перечень ос-

новных моделей движения необходимо для полноты. 
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  Закон (30) описывает движение линейного осциллятора с затуханием - системы с уравне-

нием движения  

 ɺɺ ɺx x x  2 00
2   (31) 

при значениях параметров  0  ; при этом    0
2 2 . При выполнении обратного нера-

венства,  0  , движение системы описывается законом  

 x t A e A e
t tb g   

1 2
1 2 

 (32) 

со скоростями релаксации  

    1 2
2

0
2

,     (33) 

Такой линейный осциллятор называют перезатухшим (overdamped). 

 

  Рассмотренными выше типами движения, а именно: 

- гармоническим, H (1); 

- периодическим, P (4); 

- квазипериодическим, QP (14); 

- модулированным гармоническим, MH (квазигармоническим) (22); 

- релаксацией R (30),  

исчерпывается список моделей движения, применяемых в теории колебаний. 
 

 


