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Preface

This book belongs to the series of textbooks in electromckradiophysics writ-
ten at the Physics Department of Lomonosov Moscow Stateddsity. Similarly
to the other books of this series [Migulin (1978); Vinogradd1979)], it is writ-
ten for undergraduate Physics students and aims at intirmgltiee readers to the
most general concepts, rules, and theoretical methodsméimefocus is on the
three directions in physical optics that appeared afteativent of lasersnonsta-
tionary interactions between light and mat{@hapter 5)pptical anharmonicity
of matter(Chapter 6) andjuantum properties of lightChapter 7). The first four
chapters describe the theoretical base of more traditjpends of quantum elec-
tronics. The book starts with a short review of the historgoéntum electronics
with its main concepts, ideas, and terms. Further, basibioadstfor describing
the interaction of optical radiation with matter are coesetl, based on quantum
transition probabilities (Chapter 2), the density mataxtalism (Chapter 3), and
the linear dielectric susceptibility of matter (Chapter 4)

The author tried to combine a systematic approach with a metailed in-
sight into several interesting ideas artkets, such as, for instanciperradiance
(Sec. 5.3)phase conjugatiofSec. 6.5), anghoton antibunchingSec. 7.6).

The reader is expected to know the basics of quantum mechamicstatistical
physics; however, much attention is paid to explaining tb&tons used in the
book. The author tried to gradually increase the presemtatdmplexity within
each section as well as within the whole book. Each sectiahapter starts with
a simplified qualitative picture of the phenomenon congideMore complicated
sections providing additional information are marked bygleis.

The book uses the Gaussian system of units, which is most conmguan-
tum electronics; however, in the numerical estimates,g@nand power are given
in Joules and Watts.



Vi Physical Foundations of Quantum Electronics

A large number of general guides in quantum electronics relveady
been published [Klimontovich (1966); Zhabotinsky (196Bgrtin (1971); Fain
(1972); Pantell (1969); Yariv (1989); Piekara (1973); Kima(975); Tarasov
(1976); Loudon (2000); Apanasevich (1977); Maitland (19&velto (2010);
Strakhovskii (1979); Kaczmarek (1981); Tarasov (1981yuih (1982)] at all
levels of presentation, from popular books [Klimontovid®66); Zhabotinsky
(1969); Piekara (1973)] to fundamental monographs [F&8@ 2); Khanin (1975);
Apanasevich (1977)], and in many cases the reader will legnexf to them. For
instance, the present book does not consider the designaaathpters of lasers
and masers as well as their various applications. The th&aptical resonators
and waveguides is presented, in particular, in the Unityecsiurse of wave the-
ory [Vinogradova (1979)] (see also [Maitland (1969); YafhO76)]), while the
self-oscillation theory, dynamics, and classical stiaisbf laser systems can be
found in the textbooks on the oscillation theory [MigulirO8)] and statistical
radiophysics [Akhmanov (1981)] (see also [Khanin (197%bRovich (1989)]).

The book is based on the lecture course in quantum elecsrtenight by the
author to undergraduate students for 20 years. This counsestarted in 1960,
after a suggestion by S. D. Gvozdover, even before the appeaof lasers. At
first, the course was completely devoted to masers (paragtiagamplifiers and
molecular generators) and radio-spectroscopy. The adv¥éeders and the ‘laser
revolution’ in optics, spectroscopy and other fields of scee made the author
move the ‘center of gravity’ of the course from the microwasage to the op-
tical one and supply the course with new sections. However,should keep in
mind that lasers and masers are based on common princiglethanquantum
electronics originated from radio spectroscopy and rddisigs. The latter pro-
vided quantum electronics with one of its basic notionsféleelback, and it is not
by chance that the founders of quantum electronics andmeanlioptics, such as
Basov, Bloembergen, Khokhlov, Prokhorov, Townes, and nudihgrs, worked in
radiophysics. Sometimes quantum electronics is calledritum radiophysics’.

Both the ‘Quantum Electronics’ lecture course and this bagke hugely
influenced by Rem Viktorovich Khokhlov whose advice andrfdship are un-
forgettable. The author is indebted to P. V. Elyutin, A. M.dbechenko and
A. S. Chirkin, who have read the manuscript and helped toietite many flaws.
The author is also grateful to V. B. Braginsky who stimulatieel writing of this
book.

D. N. Klyshko



Foreword

Below, we present the translation of a book by David Klyshka9-2000), which
was originally published in 1986. This is a remarkable boplalbemarkable per-
son whose insight into physics in general and quantum eleicis in particular
was so deep that even now, after nearly 25 years, a lot of nemsidan still be
found in this book. The main advantage of the book is that iitegalizes seem-
ingly unigue défects and joins together seeminglyfdrent approaches. Because
it is mainly at the boundaries of the explored that one shtnd# for new ideas
and discoveries, this book will be helpful for both a resharand an ambitious
student aiming at research in nonlinear optics, laser pRysjuantum or atom
optics.

Although some parts of the book look very new even now, otherslefinitely
outdated. This statement relates not to the sections or @esections of the
book; rather, it is about numerous references to the teolygadr parameters of
the equipment that were available when the book was wriftais requires addi-
tional comments and explanations, which we have endeatoradke throughout
the whole text, mostly as footnotes but sometimes as additgections (Secs. 1.3,
7.2.10and 7.5.7).

At the same time, we by no means think that the additionakgandvide a
complete view at the modern state of quantum electronics.tt® reason, we
have also included an additional list of references, cairigibooks or review
articles that appeared after the original book had beerighea.

Maria Chekhova
Sergey Kulik
The Editors
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List of Notation and Acronyms

transverse size, cm; photon annihilation operator

area, cri; probability of spontaneous transitionitsvector potential,
(ergcm)/?

scaling coéficient between the stimulated transition probability and
the energy spectral density, éffergs?)

state amplitude

dipole moment, (ergn)/2

electric induction, (ergm?®)Y/2

unit polarization vector

electric field, (ergem?®)Y/2

energy, erg

frequency, st, oscillator strength

photon flux density, cnf-s™%; free energy, erg

degeneracy; form factor, s

transfer cofficient, Green’s function; field correlation function,
ergcnm?®

magnetic field, (ergm?)/2

Hamiltonian, erg

intensity of radiation, ercn?-s); identity operator

current density, eygcm®-s)%/2

wave vector, cmt

length, cm

refractive index

density of molecules or photons, tinnumber of photons per mode
population of a level, cr?

mean number of photons per mode in equilibrium radiation
momentum, gnys; pressure, efgm’
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polarization, (ergen®)/2; probability

power, ergs

generalized coordinate

quality factor; generating function

radius vector, cm

Bloch vector; reflectivity cofcient

angular momentum, eig)

Poynting vector, eygcn?-s)

time interval, s; temperature, K

group velocity, cn's

internal energy, erg; evolution operator

phase velocity, cys

volume, cm

interaction energy, erg

relaxation transition probability per unit time;ls

transition probability per unit time;$

statistical sum

linear polarisability, crfy absorption or amplification céicient,
cm?t

quadratic polarisability, (cferg)-/?

cubic polarisability, criyerg; dissipation constant;’s

relative population dierence

dielectric permittivity

guantum éiciency

angle or angle of precession, rad

Heaviside step function

Boltzmann’s constant, eft§

wavelength, cmi = 1/2x

magnetic dipole moment, (emy®)¥/?; Fermi level, erg
polarization index; wavenumber, cfn

operator of projection or summation over permutations
density operator or matrix; mass densitycrg®; charge density,
(ergcmP)t/?

interaction cross-section, égrPauli matrix

relaxation or correlation time, s

phase or azimuthal angle, rad; eigenfunctions of the grepgrator
n-th order susceptibility of the medium, (grg®)X-"/2=(Hs)' "
wave function



List of Notation and Acronyms

circular frequency, rad

Rabi frequency, rad; solid angle, sr
coherent anti-Stokes Raman scattering
correlation function

electronic paramagnetic resonance
fluctuation-dissipation theorem
infrared

Mandelshtam-Brillouin scattering
microwave

nuclear magnetic resonance

optical parametric oscillator

phase conjugation

parametric down-conversion
photomultiplier tube

second harmonic generation
self-induced transparency

spontaneous parametric down-conversion

spontaneous Raman scattering
stimulated Raman scattering
stimulated parametric down-conversion
stimulated temperature scattering
slowly varying amplitude

ultraviolet
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Chapter 1

Introduction

Quantum electronics studies the interaction of electraratig field with matter
in various wavelength ranges, from radio to X-rays and gamays. Investigation
of the basic laws of this interaction led to the creation eéls, sources of coher-
ent (i.e., monochromatic and directed) intense light. @ation of the existing
lasers and the development of new laser types, as well aseglva experimental
technology, in their turn, stimulated further developmeijuantum electronics.
This avalanche process, typical for modern science, le@gwodirections in op-
tics (nonlinear and quantum optics, holography, optosdaats) and spectroscopy
(nonlinear and coherent spectroscopy), to numerous apiolits of lasers in tech-
nology, communications, medicine. We are probably closebtaing the problem
of laser thermonuclear fusion and laser isotope separati@n industrial scal@.

Not so diverse but also important applications were founthieyelder broth-
ers’ of lasers, masers, which operate in the radio rangeg\ahengths on the order
of 0.1 — 10 cm, and are used as super-stable frequency etalonaerEsensitive
paramagnetic amplifiers.

The term ‘quantum electronics’ appeared as a counterparassical elec-
tronics, mainly dealing with free electrons, which havetewrous energy spec-
trum and, as a rule, are well described by classical mecbhamiowever, some
essentially quantum devices, such as, for instance, the lmased on the Joseph-
son junction, are traditionally not considered as part @&rdum electronics. The
other name, ‘quantum radiophysics’, is not quite appraerdther, since it does
not relate to the optical frequency range.

aeditors’ note: This opinion was quite common in the lasergitsyycommunity at the time when the
book was written. However, further investigations reduttedloptimism in this field, and we are now
still witnessing new attempts towards laser thermonudiesion (nertial confinement fusign



2 Physical Foundations of Quantum Electronics

1.1 Basic notions of quantum electronics

The operation of lasers and masers rests on ‘the three Whiaéesic notions of
guantum electronics — namelgtimulated emission, population inversjand
feedback

1.1.1 Stimulated emission

Stimulated emission leads to the ‘multiplication’ of phiego a photon hitting an
excited atom or molecule causes, with a probability, the transition of the atom
to one of its lower levels (Fig. 1.1). The released enefgy &, is transferred

to the electromagnetic field in the form of the second phot®his other pho-
ton has the same parameters as the incident photon, i.egygne = &, — &1,
momentump = 7k and the same polarization type. Then, there are two indistin
guishable photons, which can turn into four photons thrahghnteraction with
other excited atoms. In the classical language, this matorresponds to the ex-
ponential amplification of the amplitude of a classical platectromagnetic wave
with frequencyw and wavevectok.?

a’)
/— \\

/, \\
/ 7 \
[N
L D)
VNS
N /

\ e

~ -

Fig. 1.1 Amplification of light under stimulated transit@nA resonant photon hits an excited atom,
which then gives its stored energy to the field. As a resud,fild contains two indistinguishable
photons.

1.1.2 Population inversion

Interaction with atoms that are at the lower level, with tmergy &;, occurs
through the absorption of photons, i.e., attenuation ofefketromagnetic wave.
It is important that the probability\,; of this process (per one atom) is exactly

bSee Editors’ note in Sec. 2.5.3.
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Fig. 1.2 Obtaining population inversion through opticalmping: (a) initial Boltzmann’s population
distribution; (b) strong resonant radiation balances thgufations of levels 1 and 3, so thid > Nj.

equal to the probability of stimulated emissioN,; = Wi, and therefore the
overall dfect depends on theftierence of numbers of atoms at the levels 1 and 2,
AN = N; — Ny. Usually,populations N, of the levels are defined per unit volume.

If the matter is at thermodynamic equilibrium with a temperaT, then, ac-
cording to Boltzmann's distributiol\, o« exp~&m/«T), with « being the Boltz-
mann constant. Therefore,& > &;, thenN, < N; (Fig. 1.2(a)). As a result,
stimulated ‘up’ transitions occur more frequently thamstiated ‘down’ transi-
tions, and external electromagnetic radiation in equiilitormedium is attenuated.
Thus, in order to amplify field, the medium should be in a nguiirium state,
with N, > N;. One says that such a state has population inversion, orthega
temperature.

A lot of methods have been developed for achieving populatiwersion.
The most important ones are pumping the medium (Fig. 1.2¢f}) auxiliary
radiation (used for solid and liquid doped dielectricsgatfic discharge in gases
and injection in semiconductors.

1.1.3 Feedback and the lasing condition

In order to turn an amplifier into an oscillator, one shouldvte positive feed-
back which can be realized using a pair of plane or concave sgdileriirrors. (In
masers, the active medium is placed into a microwave cavity.

Amplification (or attenuation) can be quantitatively désed as follows. Let
F [s™t.cm™] be the flux density of photons propagating along #hexis. The
increment ofF scales as the product of the stimulated transition proibalpier
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unit time, W, and the number adctive particlesAN:
dF/dz= —~WAN. (1.1)
In its turn, the stimulated transition probability scales-a
W = oF, (1.2)

whereo [cm?] is the probability of a transition per unit time for a photitux with
unit density. It is called thenteraction cross-sectiarAs a result,

dF/dz= —0cANF = —aF, (1.3)

which leads to exponential intensity variation for a planaveyin matter (for
a > 0, itis called theBouguer lawy:

F(2 = FO)e % a = oAN. (1.4)

The parametet is calledabsorption(ata > 0) or amplification(ata < 0) coef-
ficient. Its inverseq™t, has the meaning of the mean free walk of a photon. The
interaction cross sectian, in principle, can be as large a3?32x (1 = 2nc/w is
the wavelength), so that in the optical range, where 104 cm, it is sometimes
sufficient to haveAN o 10° cm2 for noticeable amplification at a length of 1 cm.
Let the active medium of lengthbe placed between two mirrors (a Fabry—
Perot interferometer) with reflection diieientsR;, R,. Then, from (1.4), the
threshold condition of lasing is

RiRe 2 = 1. (1.5)

For mirrors with dielectric coating, one can easily h&#e 0.99, and for lasing
with | = 10 cm it is sdficient to havee = (InR)/l = —0.001 cntt. Usually,
the radiation is fed out from the laser by making one of theong have lower
reflection coéicient.

1.1.4 Saturation and relaxation

Let us consider some other important notions of quantuntreleics. Saturation
occurs when the populations of some pair of levels becomaldiju = N,) due

to stimulated transitions in a fiiciently intense external radiation. Thifect re-
stricts and stabilizes the intensity of quantum oscillstand the gain cdicient

of quantum amplifiersRelaxationprocesses counteract saturation and tend to re-
store the equilibrium Boltzmann distribution of populaise which is determined

by the temperature of the thermostat. Relaxation procestemmine the lifetimes

of particles at dferent levels and the spectral linewidths.
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Evenin the absence of incident radiation or other extenilalénce, an excited
molecule can make a transition into one of the lower-enetgtes by emitting
a photon. This kind of emission is callegppontaneous Spontaneous emission
plays the role of a ‘seed’ for self-oscillations in quantuseitiators, restricts their
stability, and creates noise in quantum amplifiers. Spatas and stimulated
transitions in equilibrium matter lead to thermal radiatiovhich is described by
Planck’s formula and Kirchh@'s law.

It is important that while stimulatedffects can be rather well calculated in
the framework of classical electrodynamics with deterstinifield amplitudes
E, H, spontaneousfiects are consistently described only by the laws of quantum
statistical optics, wherE andH are random values or operators.

The above-mentioned terms and notions relateftedint fields of theoretical
physics: quantum mechanics (energy levels, transitiobgbilities), statistical
physics (relaxation, populations, fluctuations), ostidlatheory (feedback, self-
oscillations). Quantum electronics, as a field of physiksemarkable and attrac-
tive because it uses theoretical and experimental toois &aliversity of fields,
and also because it poses new problems for these fields avidiggahem with
new experimental methods.

1.2 History of quantum electronics

Quantum electronics can be considered as a new chapter thebgy of light
and, more generally, in the theory of the interaction betwadectromagnetic field
and matter. The earliest chapters of this theory were ddvimehe empirical
description of normal dispersion of light in the transpaseranges of the matter,
which was studied by Newton and his contemporaries more 30@ryears ago.
The next steps, made in the 19th century, were the study ahaloais dispersion
within the absorption bands and the classical dispersiearthby Lorentz. The
gquantum era in optics and generally in physics started abéggnning of the
20th century from Planck’s theory of equilibrium radiatjevhich led Einstein to
the notion of photon, and from Bohr’s postulates. Quantueoih of dispersion
was formulated in the 1920s by Kramers and Heisenberg. MeigwDirac,
Heisenberg, and Pauli developed quantum electrodynamics.

The history of quantum electronics, in its turn, is quiteshesting and instruc-
tive [Dunskaya (1974)]. In principle, at the beginning of 20th century the level
of laboratory technique was high enough for building, fatamce, a gas laser.
However, this could not happen before the discovery of oecancepts and laws,
which form the base of a quantum generator.
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1.2.1 First steps

The first step along this way, which took several decades, made in 1916
by A. Einstein who introduced the notions of stimulated esiois and absorp-
tion. A quantitative theory of thesedfects was developed about ten years later by
P. Dirac. From the theory, it followed that the photons gatest via stimulated
emission have all their parameters (energy, propagatiettithn, and polariza-
tion) the same as the ones of the incident photons. This pyoecalled the
coherencef stimulated emission.

The first experiments demonstrating stimulated emissioreweported in
1928 by Ladenburg and Kopfermann. These experiments stullgrefractive
index dispersion for neon excited by electric dischargetéNhat in the first gas
laser, which was built only 33 years later, neon was used d9 Wwetheir paper,
Ladenburg and Kopfermann have accurately formulated thdition of popula-
tion inversion and the resulting necessity to selectivebjite the atomic levels. In
1940, V. A. Fabrikant has pointed out, for the first time, tiet intensity of light
in a medium with population inversion should increase. (biesidered thisféect
only as a proof for the existence of stimulated emission btias a phenomenon
that can have useful applications.) Unfortunately, thiggraas well as an applica-
tion for an invention filed by V. A. Fabrikant and his colleagtin 1951, was not
properly published in time and therefore did not influenagher development of
guantum electronics.

1.2.2 Radio spectroscopy

The first devices of quantum electronics, masers, which \\aez used in ap-
plications such as generation and amplification of wavekéncentimeter range,
were developed only in the middle of the 1950s. Remarkabgntum electronics
has first conquered the radio range; lasers appeared atghming of the 1960s.
This is partly because in usual optics experimeNis3> N,, and therefore stim-
ulated emission, as a rule, plays no role. At the same timmdio spectroscopy,
N1 ~ N2 > |[N; — Ny, and the observed absorption of radio waves is caused by
the stimulated absorption slightly exceeding the stinedamission.
Animportant role was also played by the advanced developofeadio spec-
troscopy in the 1940s, in both theory and experiment. (Erpental base for
microwave radio spectroscopy was provided by the developwieradar tech-
nique.) By that time, the theory of radio waves interactidthvgas molecules
was developed, the structure of rotational spectra waslledé in detail, the role
of relaxation and saturation was understood. Of consideralportance were
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investigations with beam radio spectroscopes, which had B&arted as early as
in the 1930s. Probably, it was also important that radio specopists, in contrast
to opticians, understood very well the operating prin@@éMW generators and
amplifiers based on free-electron beams (klystrons, megmgttraveling-wave
and backward-wave tubes), they were familiar with the m#iof negative resis-
tance and positive feedback, and had practical experieitbenigh-quality MW
cavities.

Among the works directly preceding the advent of masersshoald mention
the ones by Kastler (France), who developed in 1950 thealgtionping method
for increasing the population inversion of close levels &isgs. Besides gas and
beam radio spectroscopy, an important role was also playaddgnetic radio
spectroscopy, a direction that was started in the 1940s tanlied the interac-
tion of radio waves with ferromagnetics and nuclear or etedgt paramagnetics
(E. K. Zavoisky, 1944). These are namely the achievementisdartheory and
technique of magnetic resonance that led to the developofipatamagnetic am-
plifiers, which have an extremely small level of noise. Pagiah inversion has
been first obtained in a system of nuclear spins placed ingmeté field (Parcell
and Pound, 1951).

1.2.3 Masers

The idea of using stimulated emission in a medium with papardanversion for
the amplification and generation of MW electromagnetic wsawas suggested
at several dterent conferences at the beginning of the 1950s by N. G. Basov
and A. M. Prokhorov (Lebedev Physics Institute, Academy@éfces, USSR),
C. H. Townes (Columbia University, USA), and J. Weber (Umity of Mary-
land, USA). The first quantitative theory of a quantum getogrevas published
by Basov and Prokhorov in 1954. They have found the threghmbdilation dif-
ference necessary for self-excitation and suggested aoh&hobtaining popula-
tion inversion in a molecular beam using inhomogeneousrelgtatic field. Later,
Basov, Prokhorov, and Townes were awarded a Nobel Prizadardontributions
to the development of quantum electronics.

In 1954, description of the first operating maser was pubtisby Gordon,
Zeiger, and Townes. The active medium was ammonium molelse&m, focused
with the help of electric field. Nowadays, beam masers ard urséhe national
standards of frequency and time.

The second basic maser type, paramagnetic amplifier, wasedrén 1957
by Scovill, Feher, and Seidel who followed a suggestion byeBibergen. In
paramagnetic amplifiers, population inversion is creatitld thie help of auxiliary
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radiation, thepump which saturates the populations of levels 1 and 3 (Fig..1.2)
As aresult, levels 1 and 2 (or 2 and 3) get population inversite idea of pump-
ing a three-level system, which was later widely used indsstate and liquid
lasers, belongs to Basov and Prokhorov (1955). The activBumeof paramag-
netic amplifiers, which is a diamagnetic crystal doped wisihmall amount (on the
order of 10°) of paramagnetic atoms, i.e., atoms with odd electron nusyhe
cooled down to helium temperatures. Cooling is necessamgthucing the noise
and slowing down the relaxation processes, which courténagopulation in-
version. (In paramagnetics, relaxation of populationsissed by the interaction
between crystal lattice vibrations and the magnetic mosmefthon-compensated
electrons.)

1.2.4 Lasers

Transition from radio to the optical frequencies took abfbtg years: the first
operating laser emitting coherent red light was descrilyeldiman in 1960. As
the active medium, the laser used a pink ruby crystal (aliumiroxide doped
with chrome) and population inversion was achieved using aind green light
from a pulsed flash lamp. An important step was realizing ¢h&abry-Perot
interferometer, i.e., two parallel plane mirrors, is a highality resonator, i.e., an
oscillation system for light waves (Prokhorov, Dicke, 1958

The laser era of physics started. Soon after the appearéackdstate lasers
with optical pumping, a number of other laser types was agad: gas discharge
lasers (1961), semiconductor lasers based-en transitions (1962), liquid lasers
based on the solutions of organic dyes (1966). Rather guitké wavelength
range from far infrared (IR) to far ultraviolet (UV) was coee. The parameters
of the lasers (power, monochromaticity, directivity, st tunability) were con-
tinuously improving; their field of application rapidly tadened. An important
role was played by the invention of methods to shorten thateur of laser light
pulses (g-switching and mode locking).

First experiments on light frequency doubling (Franker.efl&61) started the
explosive development of nonlinear optics, which studies @ses the nonlinear-
ity of the matter at optical frequencies. Holography andagbspectroscopy had
their second birth; new fields appeared, such as optoefgct,ocoherent spec-
troscopy, and quantum optics. X-ray and gamma-ray laseroarrive S00f.

It should be stressed once again that the rapid developrignaatum elec-
tronics was provided by a large amount of ideas and infoonattored by the

CEditors’ note: While X-ray lasers have been indeed congtrlin the end of the 20th century [Svelto
(2010)], making a gamma-ray laser is still a challenge.
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beginning of the 1950s in the fields of radio and optical spscopy. Such di-
rections of physics as magnetic resonance or moleculanbpactroscopy, seem-
ingly far from practical applications, led to a ‘laser rewtbn’ in many fields of
science and technology.

1.3 Recent progress in quantum electronics (added by the Eirs)

This textbook was published in 1987, almost a quarter cg@tyo. At that time, it
was a very modern book; it reflected the latest events in guaetectronics and
provided a complete picture of its directions and tendenckgince then, many
changes took place in this field. New technologies appea®a,laser sources
were developed, and nevitects were discovered. In this section, we will try to
briefly review the advances in quantum electronics that éapg after the book
had been published.

1.3.1 Physics of lasers

During the last two decades, important progress has beaevachin laser tech-
nology, and all parameters of lasers have been considérapigved. Mean pow-
ers of laser radiation achieved at present amount to husdriekMV, while peak
powers reach theetawatt(10*>W) range. Such radiation provides the values
of electric and magnetic fields comparable to atomic onestlaredore opens a
perspective for observing principally nevifects in optics and particle physics.
The ultra-fast laser technology is now capable of produpinges as short as tens
of attosecondscontaining onlyfew optical cycles The spectral range covered
by modern commercial laser systems, in particular, acliédyecontinuous fre-
guency tuning, is from vacuum UV (about 100 nm) to mid-IR gtefimicrons).

These achievements became possible due to both the devexiopfrexisting
methods, such as frequency conversion, generation of hagteal harmonics,
mode locking etc., and the discovery of new technologiepahticular, dye-laser
systems were gradually replaced by solid-state ones. T famous among
them arditanium-sapphire laserand similar systems, providing ultra-short pulse
generation, as well agptical combsvia mode locking. Huge progress has been
achieved in the development of semiconductor lasers. Alyatavel step in laser
technology, with respect to the 1980s, was the inventiofiboé laser systems
which can have extremely hightfieiency and therefore provide record output
powers.
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Apparently, lasers became widely used devices which patedtrto all fields
of human activity starting from toys up to the high techniésgand medicine.

1.3.2 Laser physics

Laser physics, or research in physics essentially basdueamse of lasers, under-
went considerable progress as well. Modern laser physi@rsgeveral branches
of science and various applications like nonlinear and tpraroptics, fiber op-
tics, optical pulse shaping, optoelectronics (includingggrated optics), optical
communications, diierent aspects of general optics etc. New directions apgeare
such as, for instancéigh resolution spectroscopmyr atom optics Some of the
new directions will be discussed in more detail below; trst vall be briefly men-
tioned here. Application of laser methodsntrologyresulted in the develop-
ment ofcaesium atomic clocto a high-technology level; recently, this device has
been made on a chip and is now available as a consumer pradiser methods
became extremely helpful in the manipulation with micrggca@and nanoscopic
objects; in particular, the technique lafser tweezergnables trapping and dis-
placing small particles, including biological objects.skea cooling of atoms and
molecules is another example of progress in laser physically; lasers are now
widely used in the technique stanning near-field optical microscopy (SNQM)
which successfully complemented the existing methods ahsing tunnel mi-
croscopy and atomic-force microscopy.

1.3.3 New trends in nonlinear optics

Huge progress in nonlinear optics is due to the developmietieomaterial sci-
ence, which led to the production of new nonlinear opticaterials. Among
them, there were newly synthesized crystals with high meali susceptibilities
and broad transparency range, such as BBO, LBO, KTP, and atheys. Further
opportunities in realizing various types of phase matchwege provided by the
use of spatially inhomogeneous structures sugbesi®dically and aperiodically
poled crystals photonic crystalsand microstructured fibregphotonic-crystal
fibreg. The opportunitiesfered by such structures are: making use of new com-
ponents of nonlinear susceptibility tensongn-critical phase matchingnd si-
multaneous phase matching foffdrent nonlinear processes, as well as processes
in different frequency ranges.

One of the novel trends is developmentimtegrated nonlinear opticsDue
to the miniaturization of optical elements, involving fibwptics andwaveguide
structures it became possible to realize most of nonlinear opticatesses on
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a chip. Optical fibres are now used not only for light transiois, but also for
beam splitting, polarization transformations, as nordimglements and as active
elements [Agrawal (2007)]Nonlinear waveguidesased on KTP and lithium
niobate crystals, and sometimes on semiconductor layersjseed as extremely
efficient and compact elements for frequency conversion, reguiery low pump
powers and allowing for relatively easy control. Integdatgtics also uses plas-
monic structures, which form convenient interfaces betwiee space or di-
electrics and metal surfaces.

We now witness a certain shift of interest to novel frequeratyges. Among
them, attention is drawn to the terahertz{@Bz) range of frequencies, which is
important for spectroscopic studies in biology, for astmory, and for the security
applications (detection of explosive materials and weajporor more details
on the recent developments in nonlinear optics, one carf@emstance, [Boyd
(2008)].

1.3.4 Atom optics

A completely novel direction that appeared in the end of i 2entury is atom
optics, i.e., manipulation of individual atoms by meansasir beams. It is worth
noticing that manipulating single quantum objects chamézts the modern devel-
opment of quantum electronics and, probably, physics ireggrtompared with
the last century when the ensemble approach dominated.

Forces acting on atoms due to the gradients of light intetisin a standing
wave into a scatterer for atomic beams, causiffigalition, interference, and trap-
ping. Trapping of ions and atoms enables one to address tjuesgum objects,
single ones or in an array, and control their quantum statgatticular, it is possi-
ble to organize the interaction between single materiahtjura objects and single
photons. This is extremely important both in fundaments¢eech and for various
applications like quantum information.

Furthermore, theféect of Bose-Einstein condensation, predicted as early as
in 1925, has been observed in 1995BAse-Einstein condensate (BE@)large
group of atoms described by a single wave function, is ondeféw examples
of a macroscopic object manifesting quantum behavior. I8rhgito single atoms
and ions, a BEC can be manipulated by means of laser beams.

1.3.5 Optics of nonclassical light

Quantum optics, started by the famous Hanbury Brown—Twigsemment
(Sec. 7.2) in 1956, had ‘explosive’ developmentin the ertiefast century. New



12 Physical Foundations of Quantum Electronics

types of nonclassical light have been generated. In additicingle-photon and
two-photon Fock states in superposition with the vacuune.(85), higher-order
Fock states can be conditionally prepared now by using speoius parametric
down-conversion [Bouwmeester (2000); Mandel (2004)]. $pectral and spa-
tial structure of such states has been studied in detailgtis/their polarization
properties. The concept of squeezed states (Sec. 7.5)hwiere first observed
about the same time as the book was published, and the idéebhsise sup-
pression [Yamamoto (1999)], were since then consideradlgldped. Squeezed
states became one of the main instruments of experimerdaltgpun optics [Ba-
chor (2004); Walls (1994)], together with the two-photoatss (photon pairs).
The phenomenon gfolarization squeezingas observed and studied. Finally,
various types okntangled statefScully (1997); Mandel (2004); Bouwmeester
(2000)], both faint (few-photon) and bright ones, based eadyature squeezing,
were generated, and numerous experiments on testing Bedtmalities [Gryn-
berg (2010); Scully (1997); Mandel (2004); Klyshko (1998§re carried out.

New sources of nonclassical light were discovered. Sineebtfginning of
the 21st century, optical fibres have been used as a venplesléand dicient
source of both squeezed states and photon pairs. This ssdrased on theubic
susceptibility(Kerr nonlinearity), and the corresponding nonlinear opticéieet
is spontaneous four-wave mixirfgriginally calledhyper-parametric scattering
Sec. 6.5). By applying fibres with specially tailored disgpen dependence, which
can be achieved by modifying the structure, by doping, ordpeting, one can
fully control the phase matching and provide its new typegrgwval (2007)].
Photon pairs and squeezed light are also generated in wideegjtuctures having
high dficiency, compact sizes, and controllable properties. Intiatg modern
sources of nonclassical light include nano- and micro4emstsuch agjuantum
dots vacancies and color centers in diamqgrahd others. These sources are in a
sense similar to single atoms, which were used for gengratinclassical lightin
the 1960s and the 1970s; however, an important advantagdid{fssate emitters
is much easier handling, including preparation and control

Huge progress has been made in the development of the detgeth-
niques [Leonhardt (1997)]. The only type of photon-cougtietector mentioned
in the book is gohotomultiplier tube (PMT)nowadays, much more common for
single-photon counting agvalanche photodiodes (APDg)erating in the Geiger
mode. Such detectors provide quantutiicéencies of up to 60% and time reso-
lution of about 50 ps in the visible (Si-based APDs) and nBafinGaAs- or
Ge-based APDs) ranges while having relatively low darke¢is to tens of pA).
Other types of single-photon detectors appeared quitentigc@amely, super-
conducting photodetectqreshich can operate in the IR and even terahertz range,
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andtransition-edge sensors (TE$ppable of photon-number resolution. The lat-
ter possibility, nearly impossible at the time when this beas written, is also
achieved by combining single-photon counting with time pace multiplexing.
Finally, the technique of homodyne detection, which is handentioned in the
book, has been hugely developed during the last two decaddsisg this tech-
nique, it is possible not only to measure the distributiohsamrdinate and mo-
mentum for various quantum states (Sec. 7.5), but also tnetaict the quasi-
probability distributions, such as Wigner or Husimi fuloects [Schleich (2001);
Bachor (2004)].

Probably the most important event in the development of gumroptics is
its application taquantum informationa field that emerged in the end of the 20th
century at the boundary of quantum mechanics, mathematidsnformation sci-
ence [Nielsen (2000)]. Along with the quantum metrologyjaktis briefly men-
tioned in the book, quantum information and quantum comuatign technolo-
gies became a real practical output of quantum optics, wdidhist looked like
nothing but a collection of beautiful fundamental experitise In quantum metrol-
ogy, in addition to thebsolute calibratioomethods (Sec. 7.6), which were devel-
oped in the 1980s, there appeared the techniqusspr-resolutiorandprecise
positioning[Bachor (2004)] based on squeezed light or high-order Ftatks. A
lot of experimental techniques, developed earlier in quandptics for nonclas-
sical state generation, transformation and measuremeing, simply transferred
to quantum communication. In quantum communication, veristates of light
are used as information carriers, frayabits(quantum information bits), qutrits,
ququarts, and high-dimensiongliditsto entangled states formed by these ele-
mentary carriers [Bouwmeester (2000); Nielsen (2000gnsformations of these
states by linear optical elements, as well as interactiensden these states, can
form the basis folguantum gateswhich, in their turn, may in the nearest fu-
ture become the key elements af@antum computgiNielsen (2000)]. Diferent
approaches to the measurement of quantum states serve aggybdool for
quantum state tomography and quantum process tomograjigllyFthe most
advanced branch of quantum informatiorgisantum key distributignin which
a secret encryption key is distributed between several aomzating parties in
such a way that eavesdropping is not possible due to the foeit@l laws of
quantum physic§.

dThis is true provided that the unavoidably introduced erate exceeds some critical level, depending
on the specific type gfrotocol used.
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Chapter 2

Stimulated Quantum Transitions

The most important notion in quantum electronics is the ability for an electron
in an atom or a molecule to make a quantum transition from evel to another.
In this chapter, we will first give the general expressiontfa probability of a
guantum transition in the first order of the perturbatiorotlye(Sec. 2.1), then
calculate the probability of a transition due to monochrbaradiation (Sec. 2.2)
and find the interaction cross-section and the absorptiefficent (Sec. 2.3).
Further, we will consider stimulated transitions undertihating (noise) radiation
with a broad spectrum (Sec. 2.4). Noise radiation surraugndn atom can play
the role of a thermostat and cause relaxation (Sec. 2.5).

A consistent theory of electromagnetic processes shousdrie both the
matter and the field based on the principles of quantum méchatiowever,
most part of quantum electronicfects are sfiiciently well described by the so-
called semiclassical theory of radiatiorin which only the motion of particles
is quantized while the electromagnetic field is considereteims of classical
Maxwell's equations. By avoiding quantum electrodynamarse gets the the-
ory considerably simplified but, at the same time, loses ltzace to consistently
describe fluctuations of the electromagnetic field and, miq@dar, spontaneous
emission and the noise of quantum amplifiers. The preseikttnainly considers
stimulated &ects in a classical deterministic field and therefore usessémi-
classical theory of radiation. Quantization of the field apdntaneousfiects are
considered in Chapter 7.

2.1 Amplitude and probability of a transition
In the simplest model of quantum electronics, matter israsslito consist of sep-
arate non-interacting motionless atoms or molecules iareat electromagnetic

field. Our first task is to find out what happens with a given atora given al-
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ternating fielde(t). (Usually the &ect of the magnetic field is much weaker than
the one of the electric field.) At the second stage, we will fimelback action of
the atoms on the field. The self-consistent solution to the gystems of equa-
tions describing the response of the matter to the field amcetsponse of the field
to a given motion of charges, under certain simplifying dbads, is the main
problem in the theory of interaction between radiation aradten.

The behavior of material particles in given external fieklsléscribed by the
Schrddinger equation,

(ihd /0t — HY¥(r, 1) = O, 2.1)

Here, ¥ is the wave function, whose arguments are the set of codetina=
{r1,r2,...} and the time# is the energy operator consisting of the non-perturbed
part,Hop, and the alternating energy of the particles in the extdfielal, V(t),

H(L) = Ho + V(). (2.2)

The non-perturbed energy, in its turn, includes the kinetiergy of the particles
and the energy of their interactioviy. (The latter also includes the energy of the
particles in external static fields).

2.1.1 Unperturbed atom
In the absence of the alternating field, the wave functionbesarepresented as
PO, 1) = > (. 1), (2.3)
n

On(r,t) = ¢n(r)expEicnt/n), (2.4)

where&, andg,(r) are the eigenvalues and the eigenfunctiong{ef satisfying
the stationary Schrodinger equation,

(Ho — En)en = 0. (2.5)

The indexn numerates the energy levels. (We assume that the partides m
within a bounded space domain and therefore the levels aceetie; we also as-

sume the levels to be non-degenerate.) The set of fundiighss assumed to be

orthogonal and normalized,

so that

fdr|‘P|2 = Z Ical? = 1. (2.7)
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Thec, codficient in the expansion (2.3) gives the relative populakigii of
the leveln, i.e., the probability to measure the eneigy or, as one says, the
probability to find the system ‘at the levet. Indeed, according to the rule of
calculating mean values in quantum mechanics, the meagyenéthe system,
with an account for Eqgs. (2.3)—(2.6), is

E=(Hy) = f dr¥* Ho¥ = Z ICal2En. (2.8)
n

Note that, according to (2.3), in the general case the atomtisecessarily in
a stationary state with a definite enegy(even in the absence of the alternating
force,V(t) = 0). For instance, let only two céiicientsc, of the superposition
(2.3) be nonzeroc; = ¢, = 1/ V2; then the mean ensemble energy of the atom is
(&1 + &2)/2 but single energy measurements will give eitBeor E,. Then the
electron ‘cloud’, i.e., the probability density to find thieetron at point(, t), will
oscillate withthe Bohr frequencyws; = wy — w1 = (82 — &1)/7 (Fig. 2.1):

P(r,t) = [2(r, )% = lpa(r) + @a(r )expliwzit)?/2
= 02/2 + ¢3/2 + P12 COS@o1L). (2.9)

(We assume thap, = ¢}.) Such nonstationary states are caltetherentones.
This term is often used in the case where many identical atm@msn a non-

N

| ¥ (z,2)| ¥
#tes . - “/\(\/’\(?’1'5"2 t0 7"";”/“’21
N \ 2 / N\ Z
7

@ (b)
Fig. 2.1 Electron cloud of an atom that is in a coherent (rtatiemary) state given by a superposition
of two stationary stateg; andg, with different symmetries oscillates with the transition frequency
w21: (a) dependencies of the wave functions on one of the spaweinates; (b) corresponding con-
figurations of the electron cloud.
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stationary state with the same phase. Then, electrondatecilynchronously
and the system of atoms has a macroscopic dipole momentrepiittense light
with the frequencyv,;. This dfect, calledsuperradiancewill be considered in
Sec. 5.3.

In the presence of external alternating field), eigenoscillations of the elec-
tron cloud with the frequenciasny, will be accompanied by stimulated oscilla-
tions with the frequency of the field.

2.1.2 Atom in an alternating field

Consider now the féect of an alternating field on the wave functitgr,t) of
an atom or a molecule. AW¥(t) # O, the function (2.3) does not satisfy the
Schrodinger equation (2.1) any more, but the expansiorbedtept in the form
(2.3) if the codficientsc, are considered as time-dependent,

¥(r,t) = Z Ca() (T, 1). (2.10)

(This possibility follows from theompletenessf the eigenfunctions set,(r).)

Thus, due to theféect of the incident light, the relative populatioog(t)|? of
the levels are redistributed (with the normalization ctindi(2.7) maintained). In
other words, the atom makes stimulateghsitionsbetween the levels. Let us find
the probability of such transitions.

From the Schrrodinger equation (2.1) for the wave fungtiee will pass to
equations foc,(t). For this purpose, let us substitute expansion (2.10).ih) gnhd
take into account that, according to (2.8)p, = Ho®n:

Z(ihc’:n - V)@, = 0. (2.11)
n
Left-multiplying this equality by one of the functiors;,, and integrating w.r.tr,
we obtain

Z(ihc’:n f dr ;. @, — ¢, f dr d:. VD) = 0. (2.12)
n

Let us take into account the orthogonality (2.6) of the efgeations and introduce
the following notation for the matrix elements of the pelptation operator:

Vi = f dr &7, V@n = VinreXplwmnt), Vinn = f drgi Ven. (2.13)

As a result, we find the system of equations for thefleccientscy(t), which is
equivalent to the initial Schrodinger equation:

indGy/dt = Zw;nncn. (2.14)
n
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Note that the coficientsc, form a function of a discrete argument (energy),
cn = P(&y), which can be considered as the wavefunction of the systetime
energy representatiowhile ¥(r) is the wave functionn the coordinate repre-
sentation. Correspondingly, (2.14) is the Schrodinger equatiai@energy rep-
resentation. The function® and¥ are related through a linear transformation
and provide the same information. The inverse of transftiong2.10) can be
obtained by left-multiplying it by the integral operatﬁdr(b;‘n:

cmzfdrcb’;n‘}’. (2.15)

The change of representatiofl, —» ¥, is similar to the change of the basis in
vector algebra, where the components of a vector are alsarlintransformed.

The relation between fierent representations is most clearly manifested in
Dirac’s notation (Sec. 7.5). In this notation, the Schngdir equation (2.1) is
written in the invariant form (without specifying the repentation) as

indity/dt = HIt). (2.16)

In order to pass to the energy representation, let us leftiphu(2.16) by them-th
eigenvector ofHo,

. d
i (mit) = (At = Zn:<m|7{|n><n|t). (2.17)

The last equation was obtained using the expansion of thg, Uiz >’ |n)(n|. Let
us denotémVIn) = Vmnand use (2.2) and (2.5), then

. d
{7 (mit) = Em(mit) + zn: Vn([L).

Finally, if we separate the slowly varying part of ttra[t) factor,
(mit) = cm(t)exp-iEmt/h),

we once again obtain (2.14).

2.1.3 Perturbation theory

In the general case, the solution to the system (2.14) caoupelfusing the pertur-
bation theory, as a series expansion in the external foriterrratively, the system
can be solved without the perturbation theory, using theadled two-level ap-
proximation, which will be considered below, in Sec. 4.3.
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Thus, we look for the solution to (2.14) in the form of the sum

=9 4c®y... = Z o, (2.18)
S
in which the sth term is proportional to the-th power of the external force,
cﬁf) oc V®. Substituting (2.18) in (2.14) and setting equality betw#e terms of
the same order if¥, we find

¢® =, (2.19)

ine) = > Vi, (2.20)
n

inel) = > Vi, (2.21)
n

The set of zero-order cﬁ"a:ientscﬁ,?) provides the initial conditions for equations
(2.14).

2.1.4 Linear approximation

Usually, it is assumed that only one of the ffagents, for instanceg”, is
nonzero, so that at timg the system is in a state with a given energy,

Calto) = € = 6. (2.22)

In this case, the system of equations (2.20) for the firseoobdficients gets
‘decoupled’,

e =y /i (2.23)

Hence, it follows that in the linear approximation, the m@sge of a quantum
system that is initially at level 1, to an external pertuitwats given by the formula

t
cw(t):% f At Vina (V) eXpeomt). (2.24)
to

Thus, at large time delays after the perturbation has beitohsd on {—ty —
), thec;, codficient, which determines the perturbed population of thelleith
the energy&,, scales as the Fourier transform of the external force aBtite
frequencyw,; = (&2 — &1)/h. In other words,in the first-order perturbation
theory, a quantum system behaves as a set of linear oscdlatwl responds only
to the resonant harmonics of the external forfehere is naw,; harmonic in the
perturbation spectrum, or its amplitude is small, thenll2weill not be populated.
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2.1.5 Probability of a single-quantum transition

Given the initial conditiomfﬁ) = Omn the dimensionless complex numlmgris
called theamplitude of the transitiofrom leveln to levelm. (Often, the second
subscript is added to specify the initial conditi@p, = cmn.®) The squared mod-
ulus of the transition amplitudégmn(t)|?, is equal to the conditional probability
of finding the system at the levei at timet provided that at timéy it was at the
leveln. In the linear (single-photon) approximation, this proitinh according to
(2.24),is

t
P = POt to) = 7272 | dt Vino(t')explwmdt’)I%. (2.25)

to

From (2.25), an important property of quantum systems fadlathe proba-

bility of forward and backward transitions are equal:
PR = P (2.26)

Indeed, the'V operator corresponds to an observable quantity, the enangy
therefore its mean values are re@}) = (V)*. Hence, this operator is Hermi-
tian (self-conjugaty vV = V'. Matrix elements of Hermitian operators have the
propertyVmn = Vi therefore, (2.25) leads to (2.26).

Note that for the transition — mto be enabled, it is necessary, in addition to
the resonance condition, that its matrix element is nonzero

Vin = fdr(p;ﬂ/(pn # 0.

This requirement, providing theelection rules ‘forbids’ some transitions for
high-symmetry systems. For instancepif(—r) = +¢n(r) (central symmetry)
andV ~ r (dipole approximation), then transitions between statiéls the same
parity are forbidden (since the integrand is odd in this xdé&V,, # 0, one says
that the perturbation ‘couples’ or ‘mixes’ the statesndn.

2.2 Transitions in monochromatic field

2.2.1 Dipole approximation

Let us apply the general formula (2.25) to the case of a haicmerturbation.
Most problems of quantum electronics allow the dipole apjpnation for the
energy of the interaction between charges and field (Sek. 7.3

V=-d-E=-d-(Eoe" + E;e“")/2. (2.27)

aRecall that in quantum mechanics, the subscripts are oftaah from right to left; thereforegm,, is
the amplitude of the transitiom — m.
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Here, the amplitud&, of the electromagnetic wave is assumed constant within
the system considered, an atom or a molecule, since in ti@bfspequency range
1~ 10%cms> ag ~ 10°8cm, whereay is the Bohr radius.

In the case of a single-electron atom, the dipole momentatped is equal
to the product of the electron charge and its radius vedtet, —er, so that the
matrix elements are

Vin = —dmn - (Eoe™ + c.c.)/2, (2.28)

dnn = —efd?’l’l’go*mtpn, (2.29)
where c.c. means the complex conjugated expression. Baradltransitions, the
integral in (2.29) is on the order of the atom s&g so that

Amn ~ €3 ~ 107 8CGS= 1D. (2.30)
In the case of magneto-dipole transitions, which are usegaiticular, in param-
agnetic amplifiers, the electric fiel, in (2.28) should be replaced by the mag-

netic fieldHy andd should be replaced by the magnetic dipole momewhose
absolute value is on the orderBbhr's magneton

Umn ~ Mo = €/2mc~ 0.9- 10°CGS (2.31)

2.2.2 Transition probability

Substituting (2.28) in (2.25), fdg = 0 we find
- - 112
1 o By expli(wmn — w)t] — 1 +don- E expli(wmn+ w)t] - 1 |

mn= -5
452 Wmn— W Wmn+ ©

P
(2.32)

Further, let us consider stimulated transitions wg{ > 0) or down {umn < 0)
under the condition that the frequency of the fiedd ¢ 0) is resonant to the
transition:

w ~ |wmnl > |w — |wmnl|. (2.33)
Then, one of the terms in (2.32) is much larger than the other o that the latter
can be neglected (the so-calledating-wave approximatidl). For instance, stim-
ulated absorption is mainly determined by the first term,clis proportional to
the positive-frequency paf the fieldEqe™'“!/2, while for stimulated emission,
it is the second term that matters, proportional to tiegative-frequency part
Ege“"t/z. Note that in quantum electrodynamics, the amplitugle&,, are oper-
ators scaling as the photon annihilation and creation opes;a, a, see Sec. 7.4.

PThe title comes from the fact that in the complex plane ¢ vector is rotating, in contrast to the
vector cosut, which oscillates.
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Fig. 2.2 ProbabilityPmn of a stimulated transition as a function of the field frequeacand the
interaction timet.

Thus, in the first-order perturbation theory, the probapth find the atom at
levelm at timet, under the initial conditio,(0) = 1, is
sin@t/2) P

/2 ’

wherew = w — |wmnl. According to this formula, the dependence of the transitio
probability on the external field frequency is resonant, tedsharpness of the

resonance increases with tinfEig. 2.2). As a result, in the limit — oo, the
transition probability is given by Dirac’s delta function,

.| sin(@t/2)
lim|————
&
The factor by the delta function is verified by integratingtbparts of (2.35) inv”

Because the transition probability scales as the time wuraof the pertur-
bation, one can introduce thinsition probability per unit timgalso called the
transition rate

dmn‘ EO 2

2n

Prmn = (2.34)

2
] = 21t6(&). (2.35)

t—oo

Winn = Prn/t = 27(dmn - Eo/2A26(&). (2.36)

Thus, the transition rate scales as the square of the fieldthe intensity of the
wave. The presence in (2.36) of the delta function, whicteds from zero only at
exact resonance, can be understood from the photon viewaicording to the
energy conservation law, the change in the atom energy byale &y — &, =
hwmn Should be accompanied by the absorption or emission of aphvaith the
energyfiw.
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2.2.3 Finite level widths

In reality, however, there always exist additional peratidns, for instance, col-
lisions in the case of a gas. These perturbations broadesntirgy levels and, as

a result, even at— oo the resonance has a finite widtkv. (In the case of colli-
sions,Aw = 2/t, wherer is the mean time interval between the collisions.) The
finite width of the resonance is taken into account by chagthie delta function

in (2.36) to aform factor dw), which describes the true shape of the spectral line
and is also normalized to unity:

Winn = 27|dmn - Eo/27i179(&), (2.37)

fm dwg(w) = 1. (2.38)

If the broadening is due to collisions, spectral lines hawgehtzian shapes
(Fig. 2.3, curve 1):

- 2/(rAw)
9(@) = T om A2 2600 (2.39)
The transition probability is maximal at = |wm:
Wo = Q?/Aw, (2.40)

whereQ = |dmn - Eol/% is the Rabi frequencylt has the dimensionality of fre-
guency and characterizes the perturbation of an atom bypaasononochromatic
field.

Thus,the probability of a stimulated transition scales as thentity of light,
squared matrix element of the dipole moment, and the invedta of the spectral
line.

This dependence on the spectral line width is typical noy dai collision
broadening: from the normalization condition (2.38) itléals, in the general
case, thag(0) ~ 1/Aw. For instance, in gases at low pressiteis often deter-
mined by the Dopplerféect, which results in a Gaussian line shape. Figure 2.3
shows the comparison of spectral line shapes due to calltsioadening (2.39),
the Doppler &ect,

1/2 2
Oo(w) = 2 (In_Z) exp[4 - (i) In 2], (2.41)
Aw\ = Aw
and finite interaction timeé(c.w. Eq. (2.34)),

gi(w) = 0’8865inc,2(2'78w), Aw = 228 (2.42)
Aw A
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Fig. 2.3 Spectral line shapes. Broadening due to collisimnspontaneous radiation leads to a
Lorentzian line shape (1); the Doppleffext results in a Gaussian line shape (2), while limited in-
teraction timet causes a sirf¢at/2) shape (3).

where sinx = (sinx/x) andAw is the full line width at level 12. It is clear from
Fig. 2.3 that the particular mechanism of broadening hagiaeable &ect only
on the tails of the lines. Note that the amplitude ratio ofahea-normalized form
factors (2.39), (2.41), (2.42) at exact resonance and Wélsame\w is

1/2
2. (4'” 2) : 5'—2‘26 ~1:147:139 (2.43)

T T

When deriving (2.37), we have replaced the functiof sirf(wt/2), which
was obtained from the perturbation theory, iy §w). (Here,w is the frequency
mismatch between the field and the transition.) Let us emptas procedure using
the ‘strong collision’ model. According to this model, eyarollision instantly
brings the atom back to the initial level, after which theenaiction between the
field and the atom starts anew. Theém (2.34) should be replaced by tp = At,
wherety is the time instance of the last collision. In gas, the timterival At
between the last collision of an atom and some fixed tirisea random variable
with exponential distribution (see [Rytov (1976)]):

P(At) = exp(-At/7)/t, (2.44)

wherer is the mean time interval between the collisions.
The power absorbed (or emitted) by the atom scales as thanirisansition
rate at a giventimg

W(At) = dP/dt = Q? sin(wAt)/2w. (2.45)
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Here, we have used expression (2.34) for the transitiongtnitity P. The mean
transition rate is given by averaging (2.45) using (2.44),

(2.46)

[ Q%72
W= j(; d(At)P(A)W(AL) = Tr ot

The last expression is in agreement with (2.37) and (2.38)dfreplaced by the
inverse half-width of the line, 2A\w. The integral in (2.46) can be easily done by
replacing sirx with Im[exp(ix)].

2.3 Absorption cross-section and cdficient

2.3.1 Relation between intensity and field amplitude

In order to pass from the transition raAéto the transition cross-section= W/F
and the absorption (or amplification) dheienta = cAN, we have to write the
squared fieldEg|? in terms of either the photon flux densify[s™ - cm2] or
intensityl = zwF [W/cn?].

Let us first find the energ§ of the wave. From Maxwell’'s equations, it fol-
lows that the instant energy of the field contained in a voliunef transparent
isotropic non-magnetic material with the dielectric camst is

&(t) = fv dr(eE2 + H?)/8n. (2.47)

In the case of a plane monochromatic wave,
E = (1/2)eEee® ™Y + c.c., H =nk xE. (2.48)

Here, e is the unity polarization vectok = knw/c is the wave vectork is the

unity vector in the propagation direction,= +/e is the refractive index. After
substituting (2.48) in (2.47) and time averaging, we gefdfiewing relationship
between the time-averaged energy and the amplitude of #meplave:

& = &(t) = n?V|Ey|?/8n. (2.49)

Intensity of the wave is obviously given by the product of #mergy density,
&/V, and the velocity of the wave/n,

| = cn|Egl?/8n. (2.50)

Note that this formula was derived without considering tlezjfiency dispersion
of the mediumg(w). The dispersion can be taken into account by replaeimg
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(2.47) byd(we)/dw (see, for instance, Refs. [Landau (1982); Silin (1961)B.aA
result, (2.49), instead of, will contain the expression

(1/2)[d(we)/dw + €] = /uy, (2.51)

wherev = ¢/nis the phase velocity and= dw/dk, the group velocity. Now, the
energy density should be multiplied bywhich again leads to relationship (2.50).

2.3.2 Cross-section of resonance interaction

After replacing the squared fie|&o|? in the expression (2.37) for the transition
probability W with the photon flux densitf, we find the transition cross section,
which is, by definition, equal t8V/F (we assuma = 1):

omn = (472 /hc)wg(w)|d©)?, (2.52)

whered® = dmn - €
The transition cross-section is maximal at exact reson@nee wmn > 0); in
the case of a Lorentzian line shape (2.39),

Tmro = 8rwmnd©2/hic Aw. (2.53)

One can imagine as the area of the ‘shadow’ made by the atom. Let us estimate
this area. The line widtidw cannot be less than the so-calledtural width
determined by spontaneous transitions. In what follows (3&), it will be shown

that

Awnat = 4w |dmn?/3: ¢ = 1/ T1pnat (2.54)

whereT1nat is the lifetime of an atom in the excited state, which is fimitee to
spontaneous transitions into the ground state.dkgt] €, then, after substituting
(2.54) in (2.53), we get

o0 = (3/27)(Awnar/ Aw) 2. (2.55)

If dymn has random orientation, we haigg, % = 3|dr(1‘$21|2, hence a factor of /3
appears in (2.55).

Thus, if both collision and Doppler widths are much less ttiennatural one,
the ‘shadow’ of the atom with respect to resonance opticaigitions has a size
on the order of the wavelength,~ 10-%cm, and not the atom sizeg ~ 10-8cm.
Inrare gases, the main role is played by Doppler broadenihigh is on the order
of Af = Aw/2r ~ 1GHz. The natural width for allowed optical transitionsvist
orders of magnitude as small; therefove~ 12/100. (In the case of magnetic
dipole transitionsA fa ~ 10°Hz ando ~ 107642
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2.3.3 Population kinetics

Let us consider the evolution of mean populatidws of the levels, which are
defined as

Nm = |cml*No, (2.56)

whereNp is the total number of atoms. Thus, from considering a sipgieicle
we pass to studying a systemMf identical non-interacting particles. The-» m
transition rate is defined as (see Eq. (2.36))

Winn = diCml?/dt. (2.57)

Hence, the populationincrease rAtgof the final statenis N > n Winn. However,
we have assumed that the initial statis occupied with a unity probability; here,
this probability is equal tdN,,/No; thereforeNm = > n WinNp. If we also take into
account that particles leave the levels, we get the follgvaystem of equations
for populations:

ANp/dt = D" (WoneNo — WorNe). (2:58)

Here, so far, the relaxation is ignored; in the general cidmeratesWV,, should
also include contributions from chaotic fields created leydtarrounding particles.
Such equations are studied in non-equilibrium thermodyesinthey are called
kinetic equations or population balance equatiotnly two levels take part in
the exchange, then

Nl + N2 = No, (259)

and only one of equations (2.58) isfBaient. Because the perturbation operator
is Hermitian, it follows thaiV,, = W51 = W (see (2.26)), hence

Ni = —Np = W(Nz — Ny), (2.60)

2.3.4 Photon kinetics

Each transition down is accompanied by the emission of desipigoton while
each transition up,_by the absorption of a single photon; @esalt, the rate of
photon emissichis N, and thetransfer equatiorior photons takes the form

AN/t + V(UN) = dNy/dt, (2.61)

CIn the semiclassical theory of radiation, there is no conoéa photon, and it would be more con-
sistent to speak here of the field energy variatioridy But ‘photon language’ is more convenient as
it is more visual.
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whereN(r, t) is the photon concentration amdN = F is the photon flux density
vector. Hence, in the stationary one-dimensional caseyemid/ot = 0 and
F = FZ(Z)!

dF/dz=W(N; — Ny). (2.62)
Further, from the definition of the transition cross-sattibfollows that
dF/dZZ —O’(N]_ - Nz)F = —afF. (263)

Let populations be independentpthen (2.63) leads to the exponential variation
of the intensity of light,

F(2) = F(0)e™, (2.64)

where the absorption (or amplification, i < N,) codficient, according to
(2.52),is

@ = (4% /1w g(w)Id (N1 — Ny). (2.65)

2.3.5 Cogficient of resonance absorption

Maximal (resonance) value of the absorptionfdoeent in the case of a Lorentzian
line shape (2.39) is

a0 = (8/hc)(wz1/Aw)|dYP(N1 — Ny). (2.66)

Note that in the stationary caséy, = 0, and atW # 0 it follows from (2.60)
thatN; = Ny, so that, seemingly, always = 0. (This population balancing due
to the dfect of the radiation is callegaturation) However, relaxation processes
that are ignored in (2.60), such as spontaneous transifioglastic collisions of
atoms with each other and with electrons in gases, interaetith lattice oscilla-
tions in solids, radiation-free transitions etc., tenddstore the initial population
differenceN; — Np. Therefore, in the case of ficiently weak fields, saturation
can be neglected.

In the optical range, for allowed transitions with naturadddeningq can be
as high as 1 crt at relatively small numbers of active particlésN| = N, — Nj.
At 2 = 0.5y, according to (2.55)AN| = 2rap/34? = 10°%cm 3. In the X-ray
range 1 is 4 orders of magnitude as small, andl| ~ 10 'cm 3.

In microwave paramagnetic amplifiers, the line width is deieed by the
dipole-dipole interaction of paramagnetic ions. In a rukystal (AbOs+1073Cr),

dRecall that intensity scales & namely,| = fiwF.
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with the concentration of chrome ions 2@m3, the line width is on the or-
der of 50 MHz. Substituting: for d in (2.53), fora = 1 cm we geto =
8nu?/hAAT = 5-102%cn?. A realistic number of active particles available in
paramagnetics is approximately equal to the equilibriurpuytation diference,
ANO© = 7wNy/kTg ~ No/10 = 108 cmi 3, whereg = 2S + 1 = 4 is the degener-
acy of the chrome ion ground level, which is lifted by a constaagnetic field,
andsS is the spin number. Hencey = 0.05 cnt?, and for obtaining amplification
G = 100 one needs the length of the crys$talin G/ag ~ 1 m. In order to reduce
[, the crystal is placed into a bulk resonator, where radiatem many times pass
through the matter, or into a slowing-down system. In theefatase, the above-
given formulas for- anda will be still valid, with the speed of light in the vacuum
replaced by the group velocity of waves in the slowing dowlime,u = dK/dz,
whereK is the propagation constant.

2.3.6 Amplification bandwidth

Due to the exponential relation (2.64) between tila@sfer cogicientof a layer

of thicknesd, G = F(l)/F(0), and the absorption cfiient«, the shape of the
observed frequency depende@{e) at|a|l > 1 (large optical densitywill di ffer
from the functior(w). Itis easy to see that thigfect will lead to the ‘sharpening’

of the observed resonanceat< 0 and to its ‘broadening’ at > 0 (Fig. 2.4).
Let @ < 0 and thea(w) dependence be Lorentzian. Defining the amplification
bandwidthAw’ by the condition of5(w) — 1 two-fold reduction with respect to its

R g.y)
\y:aol: 10
3
~
0
. \
X

0 1 2 3

Fig. 2.4 Observed shape of the resonance in the case of atkiaretine with widthAw at different
optical densitiey = agl at the center of the linex(= 2(w — wo)/Aw).
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maximal value, we find from (2.64) that

Aw’ In Go 12
Y S A—— | 2.67
Aw {In[(Go +1)/2] } ’ (2.67)
with Gg = exp(agl). Hence, atGg — 1 < 1 it follows thatAw’ = Aw, while at
Go-1>1,
, 1/2
Aot [ Im2 VoL (2.68)
Aw \InGy—In2 Vieoll
Thus,the narrowing of the amplification band with the increasetaf amplifier
length is rather slowFor instance, @y = 100 (@ol = —4.6) the ratio (2.67) takes
the value M17 (approximate expressions (2.68) yieldDand 046).

2.3.7 °Degeneracy of the levels

Expression for the amplification cfiient and the inversion conditidd, > N;

have been obtained above under the assumption that the atngydevels were

not degenerate. Let nogy different (with respect to some parameters) states have
the same energy; andg, states have enerdy,

(Ho-&E1)p1i =0 (i=1,...,01),

(Ho—&E2)p2j =0 (j=1,....0).

Note that the conclusions given below will be also valid ie tase where the
degeneracy is lifted due to Siciently small perturbations (Fig. 2.5). Now, the

]

(2.69)

&, £
4
¢ g} &1
—sp

0 0

Fig. 2.5 Degeneracy of the levelgi different states have the same enefgywhile g, other states
have the energg,. In the right-hand side of the figure the degeneracy is lifted to the external con-
stant fieldHo, which breaks the symmetry of the system. Alternating fieldses transitions between
a certain pair of states .
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subscripts 1 or 2 in the perturbation theory should be repldny double indices,
1i or 2j. The probability of a stimulated transition between théestd and 2,
according to (2.37), scales as the corresponding matnrezi¢

Wii2j = Waj1i ~ |d(1?,)2j|2-
The number of transitions up or down is proportional to theation of the
initial stateNy; or Ny;j, therefore

92
Ny = Z(Wli’zj sz - W2j,1i Nli)- (2'70)
=1

The variation rate of the total population of the lewg{,= 3, Ny;, will be equal to
the double sum over the degenerate states,

N = D Wi (Noj — Nyy). (2.71)
ij
Now, assume that the saturatiofieet is absent and relaxation or inversion
lead to a uniform distribution of sublevel populations,

Nii = N1i/g1, Noj = No/0o. (2.72)
As aresult, (2.71) takes the form (see (2.60))
N; = “WAN’, (2.73)

where

W = ZWli,Zja AN" = N1/g1 — N2/ Q. (2.74)
i
Thus, degeneracy of the levels can be taken into accoWtiif Eq. (2.66)
is understood a¥/ andAN, as the dference of ‘state populationdl,/gm. The
inversion condition then takes the form

N1/01 < N2/0a. (2.75)

Let, for instanceg; = 1 andg, = 3, then, one needs, > 3N; for amplification.
Recall that, according to the Boltzmann distribution,

NP/N = (g2/01) expriwa1/«T) (2.76)

(0) 0)
andN,” < 3N;™.
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2.4 Stimulated transitions in a random field

Up to now, the field stimulating a transition was considergdrenochromatic.
Let now E(t) have an arbitrary time dependence. According to (2.24) fitist-
order perturbation theory gives the following expressionthe transition ampli-
tude in the dipole approximation, provided tleafty) = 1:

1 t
o) = 57 [t explonst) Y douEult). @77)
0 @

wherea = XY,z are indices in the Cartesian frame. Squared module of this
expression gives the transition probability,

t
P21(t) = h_z Z dZLYd;]ﬂ ff drdt”’ EXpﬂwzl(t' - t//)] E(,(t/)Eﬁ(t,,). (278)
af to

2.4.1 Correlation functions

Next, consider the case of a chaotic, random field. Tireshould be averaged
over a corresponding probability distribution, so thatéasl of the pair product
E.Es. (2.78) will contain the matrix of second-order fiefbment?

(Ea(t)E(t")) = Gup(t', 1) = Ggo(t”, 1). (2.79)

This equality defines a certain tensor, each of its nine corapts being a function
of two arguments. The matrix of second-order moments (ds78Jso called the
field correlation tensor Another equivalent term is the fielwbherence function
(of the first order). Statistical properties of a random fietd fully described by
a set of moments (coherence functions) of all orders andlffpoasible pairs of
‘points’ x = r,t. Statistical optics will be described in more detail in Cteap
7; here, we only note that odd field moments, as a rule, arel émjzaro, while
moments of order2determine the probabilities afphoton transitions. Let us
also mention that the sum of the diagonal elements of thenskooder moment
matrix, Y. G, (thetrace of the matrix), with coinciding arguments defines the
mean energy densit§E2)/8x of the electric field at the point under consideration.
The most important class of random fields atationary fieldswhose statis-
tical characteristics (intensity, spectrum, polarizatido not change with time.
The correlation function of a stationary process can onpetiel on the dference
of its two arguments,

Guop(t', 1) = Gap(t’ +to,t” + o) = Gup(t — ). (2.80)

€Angular brackets denote averaging over a statistical ebleeat fields (Sec. 7.2).
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From (2.80) and the definition (2.79), the symmetry proptipws,
Guﬁ(_t) = Gﬁﬂ/(t); (281)

in particular,G,,(t) should be an even function of time.
Thus, according to (2.78) and (2.79), the probability of ansition due to
stationary random radiation is determined by the field datien tensor,

t
Pa=12) ity f f dtdt” expliway(t’ — t7)]Gos(t’ —t7).  (2.82)
af to

2.4.2 Transition rate

Consider the action of the perturbation at time intervadd #re much larger than
the field correlation timeg (Sec. 7.2). Then the integration limits in (2.82) can
be replaced byco. Let us make a change of variablés=t' —t”,t, = t' +t”.
Integration int; yields the Fourier transform @,s(w21), which is called the field
spectral densityensor,

Gop(w) = (2n)t f dté“tG(,ﬂ(t) = G 5(-w) = Gg, () = G;ﬁ(w). (2.83)
The inverse transformation has the form
Gap(t) = f dwe " “'Gp(w). (2.84)

Here, as usual, we omit infinite integration limits and derbe function and its
Fourier transform by the same letter. The second integrdimt,) simply yields

the observation timeé — tg, so that one can define a time-independent transition
rateW = P/(t — tp). Let the dipole moment of the transition be parallel to the
axis, then we finally find a simple expression for the traasitiate,

Wo, = 27Th_2|d21|2GXX(0)21). (2.85)

Thus,the rate of a stimulated transition due to a random (noisenmoher-
ent) perturbation scales as the spectral densifyw}zof the perturbation at the
transition frequency.lt is useful to compare (2.85) with formula (2.37), which
defines the transition rate in the case of a monochromatit figle two formulas
coincide after the substitutigE|’g(w) — G(w).

In this consideration we did not take into account the broadgAw of the
levels due to relaxation processes. However, intuitivielly clear that the conclu-
sion should be still valid in the case whexe is much less than the width of the
perturbation spectrumywe ~ 1/7e. In this case, the field is called incoherent. In
the opposite case, the field can be obviously considered aschoomatic, i.e.,
coherent.
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2.4.3 Einstein’s B cogficient

Consider now isotropic non-polarized radiation Wil = Gd.5. FromG(w) we
will pass to the energy spectral densitfw). The latter is defined through the
energy density as follows (we assume 1):

E/V = (E2 + H?)/8n = f dwp(w). (2.86)
0
In the radiationE = H, therefore,

EIV = Gt = 0)/4r =3 fo ) dwG(w)/2x, (2.87)

where the last equality was obtained using relation (2.84) tv= 0 and taking
into account that, according to (2.88(w) is an even function. From the com-
parison of (2.86) and (2.87) we get the relation between pleetsal densities of
field amplitude and energy,

G(w) = 2np(w)/3. (2.88)

By substituting (2.88) in (2.85), we finally find the transitirate in an isotropic
non-polarized noise field with a broad spectrum:

Wa; = Baip(w21), (2.89)
Bo1 = Bip = (2ld2al/7)?/3. (2.90)

The proportionality cofficient B between the transition rate and the energy
density is called thé&instein cogicient for a stimulated transitianin the next
section, using the Planck functigff)(w) for equilibrium radiation, we will find
the second Einstein cfigient, A, giving the rate of spontaneous transitions.

2.4.4 °Spectral field density

Concluding this section, let us clarify the physical megnifi the field spectral
densityG(w). In order to do this, we formally represdhft) as a Fourier integral
(thea subscript is omitted),

E(t) = f dwe ' E(w), (2.91)

E(w) = f dtd“'E(t)/ 2. (2.92)
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A rigorous definition for the Fourier representation of adam function can be
found in Ref. [Rytov (1976)]. With the help of (2.92) and ddéfons (2.79),
(2.80), we find the correlator of the field Fourier compongnts

(E(w)E(w")) = f dtdt €V G(t — t')/4n2. (2.93)

In the time integral, we make a change of variablgs= t — t’, then the
integral int; yields, according to (2.83);#&(w), while the second integral yields
2n6(w + w'), according to one of the delta-function representations,

lim f ! dtd“! = 276(w). (2.94)
-T

T—oo

As a result,
(E(w)E(w)) = G(w)d(w + o). (2.95)
BecauseE(t) is real, it follows from (2.92) that
E(w) = E'(-w); (2.96)
therefore, (2.95) can be also represented in the form
(E(w)E" (o)) = Gw)d(w - ). (2.97)

Thus,in a stationary field, only harmonics of opposite frequesderrelate,
and their correlation is determined by the spectral denGify). It means that the
reading of a photodetector measuring the field energy wéliiaquency bandw
centered ab will scale asG(w)Aw.

2.5 Field as athermostat

Consider population kinetics for atoms in an equilibriumdigith the energy
spectral densitp©(w). From the kinetic equation (2.60) for two nondegenerate
levels, it follows that

Nz = =Ny = Bo(Ny — Ny), (2.98)

whereB = B;; = By; andp = p(w21). Thus, a noise broadband field, similarly
to a monochromatic one, tends to equalize the populatiotiseofevels, so that
in the stationary regimil; = N,. However, equilibrium radiation of temperature
T should heat or cool the matter to the same temperature, leagmpulation
distribution is given by the Boltzmann formula, accordiogihichN; > No.
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2.5.1 Spontaneous transitions

This contradiction can be solved by adding to the kineticagign (2.98) a term

describing spontaneous (i.e., field-independent) triamsitfrom the excited level
2 to the ground level 1. Such transitions are accompanielddgmission of light

from the heated body, which prevents the equalization opthpulations due to

the external field. According to Einstein, let us denote @i 0f spontaneous
transitions ag\;> = A, then (2.98) takes the form

N, = Bo(Ny — Np) — AN,. (2.99)

The A codficient can be calculated from Boltzmann’s and Planck’s ithgtr
tions and theB value found above. If the atoms are in equilibrium with thédfie
N2 = 0, and (2.99) leads to the relation

A/B = (Ny/Nz — 1)p. (2.100)
Substituting here the Planck distribution,
PO(w) = ICN(w)/72, (2.101)
with
N(w) = [expliw/xT) — 1]72, (2.102)
and the Boltzmann distribution,
NO/ND = exp@iwai/«T), (2.103)
we find the ratio of the cdicients for spontaneous and stimulated transitions:
A/B = hk3/n2, (2.104)

wherek = w/c = 1/1. Hence, taking into account expression (2.90) for the B
codficient, we find that

A = 4K3|dp %/ 3. (2.105)

For an allowed transition in the visible rang®{ = 1D, 2 = 0.5u), estimation
yieldsA=2.10° s,

The notion of a spontaneous transition plays an importdetirothe theory
of interaction between field and matter and in quantum ede@ts. Spontaneous
transitions determine the minimal linewidths of emissianl @absorption. They
lead to the thermal radiation of heated matter. Similarlyelaxation processes
in general, they hinder obtaining population inversionsdlsince spontaneous
transitions occur independently of the external field, threya source of noise and
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therefore limit the sensitivity of quantum amplifiers and thonochromaticity of
guantum generators (Sec. 7.1).

Let us note that the probability of a spontaneous transhiam a strong (cu-
bic) dependence on the frequency, which explains why crgdtiv and X-ray
lasers faces a certainfficulty. Although in the opposite spectral range, the mi-
crowave one, the probability of spontaneous transitionsiig small, the minimal
noise temperature of paramagnetic amplifiers is namelyméted by sponta-
neous transitions (see (7.10), (7.11)).

We have foundA in an indirect way. Spontaneous transitions can be consis-
tently explained in the framework of quantum electrodyreaiy the interaction
between atoms and the vacuum (Sec. 7.7). However, they liaydesclassi-
cal and semiclassical analogues, the radiation of act¢eteedectrons in an atom
(Sec. 5.2). One can also provide a ‘semi-quantum model'ass@tal current, ac-
cording to Glauber [Glauber (1965)], excites quantizedfieto a coherent state.

2.5.2 Natural bandwidth

Spontaneous transitions limit the lifetimig of an isolated atom in an excited
state. One can expect thigt = 1/A. This simple dependence will be confirmed in
what follows, see (5.34). Further, according to the unaataelationAEAL = 7,
whereAg& is the accuracy of the energy measurement/snd the measurement
time, a finite lifetime of an atom leads to a finite width of theeegy level. As-
sumingAt = T4, we obtainA&, = %A. This broadening of the level should man-
ifest itself, in stationary experiments, in the variancehef transition frequency,
Awz1 = AEy/h, i.e., in the broadening of spectral lines,

Awnat = A (2.106)

The width of spectral lines caused by spontaneous transitfocalled theat-
ural bandwidth This term stresses thatwn, is the minimal possible linewidth,
which takes place even in the case of a single isolated ataste, [However, that
natural broadening can be, in principle, eliminated by ipigan atom into a bulk
resonator that has no oscillations with frequencies in thiaity of w»1. In prac-
tice, observed lines have natural bandwidth only in the cages where other
perturbations, such as collisions and the Doppfésat in gases, interaction with
phonons in crystals, etc., have much smaller contributois in addition, the op-
tical thickness of the sample is small (Sec. 7.1). Note thahtis case, the width
of absorption or amplification lines related to stimulatexhsitions is also equal
o A
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Natural broadening of isolated lines leads to Lorentziaedhapes. Rig-
orously, this follows from the Wigner-Weisskopf theory dsefor instance,
Ref. [Louisell (1964)]). There is also a simple classicad®mipaccording to which
an excited atom emits an exponentially decaying quasi-rciommonatic oscillation
(Sec. 5.2). Fourier transformation of this oscillationypd®s the Lorentzian (dis-
persion) lineshape of the emission spectrum.

Let us estimate, with the help of (2.106), the relative vaiithe natural broad-
ening. For allowed transitiond, ~ eg (see (2.30)), so that

Awnar/w ~ (4/3)(1/137) @0/ 1), (2.107)

where we assumed the valuglB7 for the fine structure constaef/xc (recall
that this number also defines the ratio of the velocity of aetedbn in a hydrogen
atom to the speed of light). Assuming= 1/R = 4x - 137ap ~ 0.1y, with R being
the Rydberg constant, we obtain

Awnat/w ~ 0.3/(137¢ ~ 107" (2.108)

Displacement of atomic levels due to the interaction withdélectromagnetic vac-
uum the Lamb shiftis on the same order of magnitude or smaller. Thus, relative
perturbation of an atom by the vacuum is extremely small.

2.5.3 Number of photons, spectral brightness, and brightness
temperature

Let us find the ratio of stimulated and spontaneous tramsfifobabilities in the
case of incoherent (noise) field. According to (2.104) an89®,

Wet/Wsp = Bo/A = p/hwg,, = N, (2.109)
where
0o = W?/n?c, (2.110)

has the meaning dhe spectral density of field modiasa unit volume (recall that
pis the energy spectral density per unit volume)nAde or anoscillation typeis,
roughly speaking, an oscillation degree of freedom (or diajfaarmonic) of the
field (Sec. 7.3). The inverse valugdl,, is equal to the frequency interval between
the neighboring modes. According to definition (2.10®)as the meaning of the
field energy per one mode, fiw units. In other words\ is thenumber of photons
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per mode This value is also called thgegeneracy factoof photon gas. Note that
both energy and the number of photons fluctuate; hea@dN are mean valués.

The valueN is the most important parameter of incoherent radiatiort. uise
show that it scales as the basic photometry charactetiséspectral brightness
lua. The latter is defined as the radiation intensity within a& spectral interval
and unit solid angle and has dimensionality/[iah? - Hz-sr)]. Radiation intensity
per unit frequency is equal to half the spectral energy dignsi2, multiplied by
the speed of light. By adding the factof4ir, we pass to the spectral brightness
lwo. Hence, with the help of (2.109), we find

luo = Cp/8m = heA>N. (2.111)

Thus, according to (2.10%timulated transitions due to incoherent field occur
N times as frequently as spontaneous ofiée total number of transitions up and
down can be represented as

Wo1 = AN, Wip = AN + 1). (2.112)

Sometimes spontaneous transitions, which correspondetedbond term in
the last expression, are interpreted as stimulated transitlue to zero-point (vac-
uum) fluctuations of the field. However, this interpretatieads to underestimat-
ing twice the probability of spontaneous transitions dowd does not explain the
absence of spontaneous transitions up [Ginzburg (1988¥.correct result is ob-
tained by distinguishing betweemrmally and antinormallprdered fluctuations.

In Sec. 7.7, it is shown thatpontaneous transitions are determined by normally
ordered fluctuations of the atom dipole moment and by antiradlyy ordered fluc-
tuations of the vacuum.

In equilibrium radiation N only depends on the frequency and temperature
and is given by the Planck formula (2.10%,= N(w). In the general cas&\
depends, in addition to frequency, on the observation timecpolarization type,

fEditors’ note: Eq. (2.109) has an important consequendesimontext of quantum information. As
it was first mentioned by Wooters and Zurek and independdytiilonni and Hardies in 1982, if the
ratio between the induced and spontaneous transitions tenuhity, then it leads to the impossibility to
clone the polarization state of a single photon. Indeeédf= Wsp, then the mean number of photons
per field mode equals unity. Then, amplification of a singletph through stimulated transitions in an
atom (which was initially prepared in excited state) willdmompanied by the spontaneous emission
of a photon that has random polarization with respect torttiali one. If the mean number of photons
per mode grows, then the contribution of spontaneous transigoes down. According to (2.109),
cloning becomes possible in the limit of high which is often associated with classical field, therefore
this fact does not contradict to the non-cloning theoremwél@r, we would like to stress that this
conclusion has to be applied with caution because theredsitevia of non-classicality of light based
on the mean photon number! For instance, squeezed statghtodd bright squeezed vacuum states
(Sec.7.5) are nonclassical despite having large photorbatsiiBachor (2004)].
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and observation pointN = N(k,r,v). Here,k is the wavevector, which also
defines the frequency and the direction, anid polarization index taking two
values.

In non-equilibriumfield, equality (2.102) is used as themi&bn of the bright-
ness temperaturg;:(N) = ziw/kIn(1 + 1/N) for radiation with given frequency,
direction, and polarization. For instance, solar radiattaken in the optical range
and within an appropriate angular interval, fas ~ 6000 K, so that, according
to (2.102), for green light ~ 0.54) N ~ 1072, We see that stimulated transitions
in solar light are much less frequent than spontaneous drtess, in the visible
range the probabilities of stimulated and spontaneousitians become equal
only for radiation that is hundreds of times as bright as tha &diation, with
Tet ~ 4-10* K. Such brightness can be only achieved with multimode &agbe
notion of brightness cannot be applied to single-mode &ser

2.5.4 °Relaxation time

With the help of (2.99), let us now define the rate of populatiariation with an
account for both spontaneous and stimulated transitiooisthis, we replacé;
by No — N2 and use relation (2.112):

N, = AINNp — (2N + 1)Ny]. (2.113)

HereN is the number of photons per mode axigl= N; + N is the total number
of atoms at two levels. Hence, in a stabilized regime,

NO/No = (N + 1)/(2N + 1) = v/(1 + ),

o (2.114)
N,7/No = N/(2N +1) = 1/(1+v),
wherey = exp(iw21/«T). The solution to (2.113) has the form
Na(t) = N + [Na(to) - NPJeV/™,
(2.115)

1/T1 = A(ZN + 1) = ZBp +A= Wi + Wog.

Thus, the timél'; of heating (or cooling) of the atomic internal degrees oéflem
due to the interaction with incoherent radiation at srivediquals 1A, the life time
of an atom due to spontaneous transitions, while at I&Fdgereduces N + 1 =
coth(iwz1/2«T) times.

In fact, here we have considered a simple model of relaxattwere the ther-
mostat is formed by incoherent electromagnetic radiatiomosinding the atom
(Sec. 7.7).
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Chapter 3

Density Matrix, Populations, and
Relaxation

The probability method used above allowed us to describetieegy exchange
between radiation and atoms. At the same time, another kmoawnifestation of
the interaction between field and matter, namely, the slgwiown of the waves
propagation, was not considered. Another, and more impprdaawback of the
probability approach is that it does not provide dfisiently rigorous account
for relaxation processes, whose consistent considersiionld be performed in
the framework of statistical physics and kinetics. A morenptete theory of
the interaction of atoms with the external field and the thestat is based on the
density matrix formalism, which combines quantum andstiatil considerations.

Below, in Sec. 3.1, we discuss the definition and the geneoglesties of the
density matrix. Itn Sec. 3.2, its diagonal elements are considered, which give the
populations of the levels, and the notion of negative telpee is introduced.
Section 3.3 describes the time evolution of the density imnatrd the relaxation
processes.

3.1 Definition and properties of the density matrix

3.1.1 Observables

In Chapter 2, we have defined the transition probability imteof the amplitudes
of energy states,. Let us now write an arbitrary observableof a quantum
system (furtherf will be understood as the dipole moment of an aténs, d,) in
terms of similar cofficients. We will start from the basic ‘measurement’ postulat
of the quantum mechanics: multiple measurements of a Viapgrformed on an
ensemble of identical systems, i.e., systems ‘preparetfidrsame stat®(r, t),
will yield, on the average, the value

(f0) = fdr‘P*(r,t) fP(r,t) = tft), (3.1)

43
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wheref is the operator corresponding foandr is the set of the system coordi-
nates. (In what follows, we will often omit the hats of the mgters.)

Itis important thatf in (3.1) can be also understood as a product of operators,
f = g? or f = gh. This enables one to determine not only the mean vatiigs,
called first-ordetmomentsbut also higher-order moment&y?), (g™, (gh, ...,
which characterize the quantum fluctuationg@nd the quantum correlation of
g andh. Of course, Eq. (3.1) is written in the Schrodinger pictane is therefore
applicable only to the case whefds a single-time operator, for instandgt) =
g(t) h(t). In order to define the correlation functiofggts) h(t,)), one has to switch
to the Heisenberg picture where the time dependence ibugtd to the operators
and not to the wave functions.

Knowing the wave function, one can find not only the momeitgt)) of an
observablef but also its distribution at timg P(f,t). This function is given by
Eqg. (3.1) with the operatofF replaced by the diade operatéy(f| (Sec. 7.5).

3.1.2 Density matrix of a pure state

Let us expand the wave function over the set of the eigersstdteome operator
(not necessarily the energy operator),

W0, 1) = ) ba(en(r). (3:2)
n
In the Dirac notation, simpljt) = > [n)(n|t). Note that if¢, are energy func-

tions, then the cd@cientsb, andc, differ in only exponential factors (see (2.13)).
Substituting (3.2) in (3.1), we obtain

(fy = > bbmfum (3.3)
nm
Here, the matrix

fom = fdrso;wm = (nIfim)

is assumed to be known, and the problem is reduced to the dimglivfg pairwise
productdybm, which also form a matrix, called tlensity matrior thestatistical
matrix,

Pmn = bmb; (34)

Thus, the state vector of the systdfris put into correspondence with a matrix.
One can also define an operatozdrresponding t&:

[ dréien=bubs, (35)

which, in Dirac’s notation, reads = |t)(t] (Sec. 7.5).
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In terms of the density matrix and operator, the mean (3.3 )eawritten in a
more compact manner,

()= 3" pranfom = Tr(pf), (3.6)

where Trf means the sum of the diagonal elemenist,,, called thetrace, or
Spur, of the matrix. The trace of a matrix is one of its invariasiace it does not
change under the matrix transformations of the fdrne: U fU 1. Such operator
transformations describe changes of the representatgureintum mechanics, and
the invariance of the trace provides that the observabletdies are independent
of the choice of representation. The property'Te Trf immediately follows
from another property, Tgh) = Tr(hg), which can be easily verified from the
definitions of the Tr and multiplication operations.

3.1.3 Mixed states

In the transition from classical mechanics to statistid¢glgics, the main notion is
the Gibbs ensemble, which is composed of identical systeststdited with the
probabilitiesP(g, p) over the possible states of the system. A quantum statistic
ensemble is constructed in a similar way: we assume th&; Nssystems are in
the state¥,, P,N in the state¥,, PN in the state¥;, and so on. Herea\ is the
total number of systems in the ensemble ahg; = 1.

A mixed statds a state of the system for which the exact wave function is
not defined but only the set of numbédPsis known, each of them giving the
probability that the system is in thE state. The system is then characterized as a
weighedmixtureof states, in contrast tofaure state, for which the wave function
of the system is known.

We stress that a linear combinatien¥; + a2W, is still a pure state with a
well-defined wave function. The mean value of an operatotains in this case
an interference term, which depends on the relative phateatates,

<f> = Plfll + P2f22 + ZRe@/;azflz), (37)
where
Pi=lail’, fij = fdr\{ﬁ*flpj.

In a similar mixed state, the last term in (3.7) is absent. r&tie an analogy
with the superposition of two light fields: coherent fieldteifiere, while a non-
coherent mixture simply yields double intensity.
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Additional uncertainty of mixed states leads to additiottarmal’ fluctua-
tions of observables over an ensemble and, according &rgioelicity hypothesjs
also over time. However, these fluctuations are not as pa@haind inevitable as
guantum ones.

In real experiments, the ‘purity’ of the prepared statesemels on the skill
of the experimentalist. Near the absolute zero, a crystal & pure (ground)
state with a definite energy, but the coordinates of its atstifishave quantum
fluctuations. In a good maser or laser with complete popmnativersion, the
atoms are in the excited state with the engfgylin this case, there are no energy
fluctuations(H?) = &3, but the coordinate of the electron and the dipole moment
still fluctuate.

Thus, depending on its prehistory, a quantum object canlrefm one of the
three possible state types:

1) in an eigenstate, of a given operatoff, where one knows priori that
(fy = fon andf does not fluctuate,

(F9 = (B
2) in a pure stat®’ formed by a superpositiop bnen, with quantum fluctuations
observed and only the probability,|?> of measuring a certain valug, is known,

(fk> = Z |bn|2(fnn)k;
3) in a mixed state, where quantum uncertainty is combingk thie lack of in-
formation about the wave function.
In the case of mixed states, mean values should be calcuebuble av-

eraging: quantum averaging over the wave funcgnaccording to Eq. (1), and
classical averaging, with the help of tRedistribution and the usual rules of the

probability theory,
H=>Pli=) PR fdr‘I’i*f‘I’i. (3.8)
i i
Now, the amplitudes in expansion (3.2) and the density m&®i4) depend
on the index,
so that (3.8) takes the form
() = > Pib)"bY fom = Tr(oT), (3.9)

mni

where we have defined the density operator of a mixed state,
b= Z Pifi, Prmn = bb. (3.10)
i
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Due to its linearity, the averaging operation could be ideldiinto the definition
of the density matrix. Equation (3.6) maintains its formhistcase. In future, the
bar denoting additional averaging will be omitted.

3.1.4 °More general definition of the density matrix

Often, one defines a mixed state and the density matrix ifferdint, more general
way. In this case, the term ‘mixed state’ is applied not towthele system but to
a part of it.

Let a system consist of two par&sandB. Its state is given by a wave function
Y(ra, ), which, in the general case, is not factoralllé;a, rg) # Wa(ra)¥se(rs)-
Therefore, the wave functiofi, of a subsystem does not exist. Indeed, factora-
bility means independence of the subsystems, hence it ieggilple if A and B
interact or have interacted in the past. There is an analatyclassical statis-
tical physics: for interacting particles, the joint probe distribution P(r a, rg)
cannot be represented B§ o) P(rg).

However, in classical statistical physics we can separdefine the probabil-
ity distribution function for subsyster by summingP over the variables that are
of no interest for us,

PA(rA) :fdrBP(rA,rB). (311)

The question is whether a similar procedure is possible &antium mechanics.
In order to define the density matrix of a subsystem, let uaedy/ over some
complete set of functiongin(r a, r's),

¥= ) bintin. (3.12)
in
Such a setin = xi¢n is generated by two operators, each of them acting on the
variables of only one subsystem. For instance,
(Ha — Epn)pn = 0, (Hp — Egi)xi = 0.
Let fa be the observable of interest,

(fA)zfdrAdrBT*fAT

= > biubiw fanndic = ) pamnfane = Tr(oafa). (3.13)

ii’nn nrY
We have once again obtained Eqg. (3.6) by introducing thetioota

pann = ) bi,bin, (3.14)
i
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which is equivalent to the definition (compare with (3.11))

pa = Tra(oag). (3.15)

In quantum electronics, th& system usually corresponds to a particular atom
(or a molecule or an electron in a crystal) while BBesystem includes all other
matter particles and quantized electromagnetic field. &keptly, a classical field
acting on a system does not destroy the ‘purity’ of the Staometimes, on
the contraryA is understood as a particular field mode wiBleorresponds to the
matter. If systenB has a sfficient number of degrees of freedom and a continuous
energy spectrum, i.e., has a large heat capacity, therates sin be considered as
independent oA and it plays the role of ¢hermostat The influence oB on A
causes the relaxation éf

If the back-action ofA on B can be neglected, thed can be described by
means of a wave function or a density matrix of a pure stat®,(@nd we come
back to the problem of a quantum system in a given noise fighiiwwas con-
sidered in Sec. 2.4. Solving this problem in the frameworéarhe model enables
one to calculate the relaxation properties and the shapsseatral lines. In the
simplest model, the thermostat for an atom is formed by thalibgum Planck
field, and the probabilities of relaxation transitions akeg by the Einstein coef-
ficientsA, B (Sec. 2.5).

3.1.5 Properties of the density matrix

Using definition (3.10), one can easily show that the demaiyrix has the fol-
lowing properties:

Trp=1 0<pm<1 p"=p. (3.16)

In most cases, one uses the energy representation, in vileichagonal elements
of the density matriyn, = pn have the meaning of relative occupation numbers
of the levels. The first property in (3.16) means that the gbility to find the
system on some level is equal to unity, the second one prettgenon-negativity

of the probability, and the third one (Hermiticity), thaetlbbservable quantities
are real,

(f)y" = prnnfﬁm = anmfmn = ().

The non-diagonal element of the density matipb, characterizes the de-
gree of correlation between the andn states in a statistical ensemble. If the
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state amplitudes of various systems of the ensemble corgagtom phase fac-
tors,bY ~ exp(el), then, form # n,

Pmn ~ €XPi(pm — ¢n) =0, (3.17)

and the state of the ensemble is fully characterized by #te populationg,.

For a pure state, definition (3.4) leads to the propgryl®> = pmmem. In a
mixed state, the elements of the density matrix satisfy thecBy-Bunyakovsky
inequality,

|Pmn|2 < PmmPnn- (3.18)

3.1.6 °Density matrix and entropy

Let a closed system be in a pure energy stite, ¢; exp(i&it/h). Then, accord-
ing to definition (3.4), there is only one nonzero elementhaf density matrix,
Pmn = Omron1. Such a trivial matrix satisfies the matrix equation

02 =p. (3.19)
This is a property of all pure state#.follows from Eq. (3.4), the matrix multipli-
cation rule, and the normalization conditionp 1.

Violation of equality (3.19), or its corollary B¢ = 1, can be a sign of a
mixed state. However, there exists a more convenient gatimé measure of
statistical indeterminacy of quantum systethg entropy(see, for instance, [Fain
(1972); Landau (1964)]). Let us define the entropy operatterims of the density
operator in the following wayS = — In 5. Then the entrop$ is equal to(S), i.e.,

S =—(np)=-Tr(pInp). (3.20)
In the representation whepes diagonal, (3.20) takes the form
S= —anmpn. (3.21)
n

(This follows from the fact that in the diagonal representat{F (f)]nn = F(far).)
In a pure statey, equals 0 or 1, therefoi® = 0, the indeterminacy (‘chaoticity’)
is minimal. The opposite limiting case of a maximal indeteracy is realized for
a uniform mixture of statep, = const= 1/g, wheregis the number of states with
a given energy (the Gibbmicrocanonical ensembleThen g = [/g, p? = /¢?
and, according to (3.21)

g
S=- 2(1/9) In(1/g) = Ing. (3.22)
n=1

Thus,0<S<iIng.



50 Physical Foundations of Quantum Electronics

3.1.7 °Density matrix of an atom

In statistical physics, one usually considers macroscopjects consisting of
N ~ 10?? identical particles. The terms ‘state’, ‘energy level'eftsity matrix’
relate in this case to the matter as a whole. In principle,camespeak about the
wave function of a 1 cm monocrystal, which depends on abotft gace argu-
mentsr; and time. Correspondingly, the number of possible statdstence, the
dimensionality of the matricekn, omn are also extremely high. Furthermore, in
order to realize an ensemble one has to have, sdsifflar crystals.

On the other hand, active media in quantum electronics, siclgases,
doped crystals or dye solutions, as a rule, consist of weiakgracting atoms
or molecules. Then, it is $licient to consider the state of a single atom, or, to be
precise, of a single external electron. The rest of the @dagtiare then considered
as a thermostat, which has a weak influence on the wave funafithe atom.

This transition from about 8 degrees of freedom to a few ones leads to a
crucial simplification of the theory, i.e., to the ideal gasdel. The theory is fur-
ther simplified by excluding from considerations all statest are not populated
and not resonant with respect to the external field. Thissttiam to thetwo-level
systemis valid in the case of a quasi-monochromatic external field the ab-
sence of degeneracy. Note that the density matrix of-éavel non-degenerate
system consists af® elementsn(n — 1) of them being complex. However, the
normalization and Hermiticity conditions (3.16) reduce tiumber of indepen-
dent elements, so that the state of the system is described byl = m real
numbers. For a two-level systemim = 3, and its state can be represented as a
point in a three-dimensional phase space, with the codelna’,,, 207, and
p1—p2 = A (Sec. 4.4). In the case of a pure state, conditibs p reduces the
number of independent parameters to two, and the state cstmoben by a point
on a unit sphere.

Since the atoms are identical and independent, the additaeroscopic pa-
rameters of the matter, such as polarizatre calculated by simply multiply-
ing single-atom mean values by, P = N(d). Note that if all gas atoms are under
the same conditions, the gas as a whole can be considereceasemble (quan-
tum or quantum-statistical) containing approximately?1€ystems. Summation
over atoms is then equivalent to ensemble averaging, andgmidal element of
the density matrixp,, defines the average relative populathyyN of a level&,
in a real gas rather than in a hypothetical ensemble ®&iilar gas volumes.
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3.2 Populations of levels

3.2.1 Equilibrium populations

In thermodynamic equilibrium, all statistical propert#s system are determined
by the Gibbs canonical distribution. This distribution péicable to both isolated
macroscopic systems and systems of any size interactifngaribermostat. If
single atoms or molecules of an ideal gas are considereditites distribution
corresponds to the density matrix of the form

PO = 6109 = §nexpEm/kT)/Z, (3.23)

where the normalization factat is called thestatistical sumand can be found
from the normalization condition,

Z= Z expEEm/kT). (3.24)

Here,m numerates various states of an atom, therefore the populaitag,-fold
degenerate level is

N© = g,N exp(&n/«T)/Z. (3.25)

This equation is called the Boltzmann distribution. Notattihe equilibrium den-
sity operator (3.23) can be represented in the form

PO = exp(Ho/kT)/TriexpHo/kT)}. (3.26)

As it was shown in Sec. 2.3, interaction of the external fielthuhe matter
is determined by the populations of the ‘resonant’ leWlsN,. In the first order
of the perturbation theory, alternate field only createsiive-diagonal elements
of the density matrlx;)(l) ~ E, while the diagonal elements remain unchanged,

(1) ~ 0. Therefore, at sticiently weak fields one can calculate populations using
the Boltzmann distribution (3.25).

According to the Boltzmann distribution, the only poputhstates are the ones
that are apart from the ground state by an energy not mucledixagT. Hence,
field at frequencies much larger theh/# = wr can only cause transitions up. At
room temperature, this boundary frequency is in the far igyegf; = wr/2nc ~
200cnT?®, At = 1/vr ~ 50u), while at helium temperatures, in the microwave
range ¢y ~ lcnm?).

In the case of atomic gases and dopant ions in crystals, thestoexcited
levels, as a rule, are well above this boundary, and almbpgadicles are in the
ground state, so that they all participate in the absorpifdight, AN ~ N; ~ N.
Often, the ground level has a degenerggywhich can be lifted (completely or
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partly) due to the spin-orbit interaction (tfiee structurg or due to static fields
(the Stark and Zeemanffecty. In this case, particles are distributed over sub-
levels, and if the splitting is much less thaf, then the populations of the
sublevels are approximately equal Kyg;, and the population éerences are,
according to (3.25), on the order of

AN ~ (hw/gikT)N < N. (3.27)

Transitions between such sublevels in doped crystals a@ msparamagnetic
amplifiers, and relation (3.27) explains why it is necessagool the active media
of amplifiers down to helium temperatures.

In the case of molecular gases or solutions of organic dhesgtound elec-
tronic level has arich rotational-vibrational structusjch covers the microwave
and the middle-IR spectral ranges. Therefore, the molsare distributed over
many levels, and the populatiorfidirences are small as well.

3.2.2 Two-level system and the negative temperature

Consider populations of two non-degenerate levels as ifumebf the temper-
ature. Let the zero energy be placed exactly between the éwals|, so that
&E12 = +hw/2, then it follows from (3.23) that1, = €*/Z, with X = hiw/2«T.
From the conditiom; + p2 = 1 we find thatZ = €* + e * and, as a result,

p1=Ny/N=(€2+1)" po = Np/N = (€ + 1)}, (3.28)

N =Nz
- N
The active medium of a laser, in principle, is in a strongly+emuilibrium

state, and the Boltzmann distribution (3.25) is not appliedo it, as is, strictly
speaking, any notion related to temperature. However, édase of non-
equilibrium systems it is convenient to keep the equationthe form (3.28),
(3.29) but to understant as some fective parameteEffective or spin temper-
ature for a given pair of non-degenerate levels is defineautjir the population
ratio as follows:

A = tanhx. (3.29)

Nm/Nn = expiwnm/«Tet), (3.30)

i.e., the gfective temperature is simply a logarithmic measure of theupetion
ratio. It follows from (3.30) that in the case of population inversjTes < O.

It is easy to see that Eqs. (3.28), (3.29) maintain their fexmn for non-
equilibrium systems, provided thditis understood as thefective temperature.
Figure 3.1 shows the relative populatioritdience as a function of théfective
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Fig. 3.1 Relative population fierenceA and the entropys of a two-level system as functions of the
parametex = fiwg/2T.

temperature. The dependence is plotted according to E2R)(8r all tempera-
tures, both positive and negative. Full inversipn € p» = A = —1) corresponds
to Tes = =0, full saturation g1 = p2> = 1/2,A = 0) corresponds tOes = *co,
atA = 1 Te; = +0. Note that a two-level system with a negative temperatase h
more energy stored than a system with a positive temperature

E = p1E1+ 2 = —(liw/2)A = —(hw/2) tanhx, (3.31)

wherex = hiw/2«Tes.
The entropy of a non-equilibrium two-level system can be alsfined in
terms ofTg;. According to definition (3.21) and to (3.28),

S = —p1lnp; — p2Inp; = In(2 coshx) — xtanhx. (3.32)

Thus, entropy is an even function of the temperature, wighmthximunSgy = In 2
atTes = xo0 (Fig. 3.1).

Further, we will show that the intensity of thermal radiatipom a two-level
system can be also written in terms of thiéeetive temperature (Sec. 7.1). At
Te < 0, itis this radiation that causes the noise of quantum diaidi(the Kirch-
hoff law for negative temperatures). In particular;at< «|T¢| the noise temper-
ature of an amplifier has the same absolute value asfbetige one T, = |Tesl.

3.2.3 °Populations in semiconductors

Boltzmann’s distribution (3.25) is not valid for calculadi the number of active
particles in the case of inter-band transitions in semicetats. (Such transi-
tions are used in semiconductor lasers.) In contrast to delactrons in gases
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or in doped dielectric crystals, electrons in the valenad @mnduction bands of
a semiconductor are not localized and can exchange losatidhis possibility

allows one to consider the multi-electron problem and te teto account the
anti-symmetry of the total wave function with respect to pleemutation of two

electrons, which leads one to the Pauli principle.

In the first approximation, electrons behave like particean ideal quantum
gas with high density. By applying to an ideal gas the ger@itabs distribution,
which has the form (3.23) provided thathumbers all possible states of a multi-
particle system, and taking into account the Pauli primcipe come to the Fermi-
Dirac distributionf(©(&). For comparing it with (3.25), we will represent this
distribution as (see Fig. 3.2(b))

N = 2fO(Er) = 2(exp[Em — p)/xT] + 1)1, (3.33)

where the factor 2 takes into account spin saturafids the Fermi level, defined
by the normalization conditiop, N,(ﬁ) = N, with N being the total number of elec-
trons, andb, are allowed energy values for one electron. The spectruisésale
due to periodic boundary conditions for the electron wavefion. According to
(3.33), mean population of any level cannot exceed two &lest in agreement
with the Pauli principle.

The energy level&,, of electrons in semiconductors have almost continuous
distribution within the allowed bands. As a result, popiolaiN,, can be consid-
ered as a function of a continuous argumé&nand the normalization condition
> Nm = N, which indirectly defines the Fermi level, takes the form

f dEgEN(E) = N, (3.34)

with the integration running over the valence and condudiends and(&) being
the energy density of states.

For pure semiconductors, the Fermi level is approximatelghe centre of
the energy gap. If there were dopant levels, each of themdvoaoihtain one
electron;the Fermi level can be formally defined as the one that is bedfipied
At low temperatures, the boundary between full and emptglteis very sharp
(Fig. 3.2(b)).

In the case of dficiently high levels, for whiclE — 4 > «T, one can neglect
the unity in the denominator of Eq. (3.33), and the equatide$ the form of the
Boltzmann distribution (3.25),

Nm = 2Z L exp(Em/kT) < 2, (3.35)

whereZ = exp(u/«T).
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Fig. 3.2 Population inversion in a semiconductor: (a) retabetween the momentum and the
energyé, i.e., the dispersion relation, for electrons and hafisheing the energy gap; light with the
frequencyw and wavevectok transfers electrons from ti& level to the&; level (or vice versa); (b)
populations of energy levels in an equilibrium semicondu¢the Fermi-Dirac distribution); (c) due
to the injection of carriers, the Fermi leyelsplits in quasi-levelgy, uc, and for some pairs of levels,
inversion takes placef; < f

3.2.4 °Inversion in semiconductors

Consider the condition for quantum amplification througkiirband transitions in
semiconductors. The incident field, with the frequenagxceeding the gap width
&y/h, leads to almost ‘vertical’ transitions of electrons fraeae! 1 of the valence
band to level 2 of the conduction band (Fig. 3.2(a)). Thelketg2 within the
bands are unambigously defined by the conservation lawseo§erio = E,—E1,
and momentum (or, to be precise, quasi-momentéki} p2 — pi.

The number of stimulated transitions up scales as the pilitigade filling
the ground levelN;/2 = f(&;1) = fi1, multiplied, in accordance with the Pauli
principle, by the probability + f, of a hole being on the excited level. Similarly,
the number of transitions down scalesfagd — f;), with the same proportionality
factor (see (2.26)). The overalffect of field energy amplification or absorption
scales as the flerence,

a~ fi(1-f) - fa(1-f1) = 1 — f2= (N1 - Np)/2. (3.36)

Thus, the contribution of a single pair of resonant levels absorption scales
as the diference of their populations, similarly to the case of ladi electrons,
and the inversion condition has the form

£(&) > F(E1). (3.37)
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In an equilibrium semiconductof, = ©, and this condition is not satisfied.
However, if, for instance, a flicient number of carriers (electrons and holes)
is injected into the bands with the help of an external DC enirsource, then
condition (3.37) can be satisfied, see Fig. 3.2(c). One caityeshow that this
requires degeneracy of the carriers in the bands,

He — py > Tiw > Ey. (3.38)

Here,uc, uy are the Fermi quasi-levels in the conduction and valencesalm
addition to the injection method, semiconductor lasersopsieal pumping, either
single- or two-photon one, and pumping with an electron heam

Let us mention here that amplifiers and oscillators using &ectrons, such
as gyrotrons, free-electron lasers etc., can be also teslr terms of population
inversion (occupation numbers). For instance, in a quasionhromatic beam
with the mean energ§g, only a small group of levels in the vicinity d is
occupied; therefore, inversion takes place with respeali fower levels,f(&Ep) >

f(&).

3.3 Evolution of the density matrix

3.3.1 Non-equilibrium systems

The density matriymn of a system, similarly to the distribution functidt{(q, p)
in classical physics, contains complete statistical imi@tion about the proper-
ties of the system, i.e., allows one to calculate ensemblnsidg) = Tr(fp),
higher-order moments, correlation ¢beients(fg...) = Tr(fg...p) etc. Ther-
modynamics mainly deals with equilibrium systems wheredresity matrix and
the ensemble means are time-indepengéfit="(f)© = 0. Note, however, that
the correlation functionsf (t)g(t"))© may depend on the timeféérence — t'.

In quantum electronics, on the contrary, of most interestsgstems where,
due to the ffect of external fields, essentially non-equilibrium statlormed o #
Q. If the external perturbation is alternatiny, = ‘V(t), then the density matrix
and the ensemble means are naturally time-dependeng(t), (f) = (f(t)). On
the other hand, after the external field is switché&gdtbe initially non-equilibrium
(o(to) # p©@) system will relax and tend to equilibrium, and its densitgtrix and
means will be again functions of time. However, the relaaprocesses can be
also described by alternating perturbatidf(t), acting on the system from the
thermostat.

Non-equilibrium and non-stationary systems are studieddry-equilibrium
statistical thermodynamics, also called the kinetic thielr contrast to dynamics,
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kinetics studies not the time dependencies of coordinata®menta of separate
particlesg(t), p(t), or of the wave functiontf(q, t), but the behavior of the means,
(f(p, g, 1)), distribution functionsP(q, p, t), or the density matrixpmn(t), for sys-
tems interacting with the thermostat and (or) with exteati@rnating fields.

3.3.2 Von Neumann equation

Let us first consider, in terms of the Schrodinger equatioa,dynamic problem

about the behavior of the density matrix for a system with@kmenergy operator
H. For this, we substitute expansion (3.2) in the Schrodieggation and left-

multiply the resulting equation by the operatﬁdrgo;‘n. Because the functions
¢m are orthogonal and normalized, we obtain the following exysbf equations

determining the dynamics of th®, codficients:

inbm = Z Hnrbn. (3.39)

Recall that, in contrast to Eq. (2.14), this equation inelkithe matrix elements
of the total HamiltoniarH rather than the interaction operatdt This is due to
a different definition of state amplitudes. In addition, the b&snctionsym, used
here are not necessarily eigenfunctions of the energy tipera

We multiply (3.39) byb; and write its complex conjugate,

ibibm = " Hinbibn,
n

_ (3.40)
inbeby, = = > Hombib;,
n

Here, we used the Hermiticity of the energy operatét,= H. Let us interchange
them, kindices in the second equation and take the sum of the twdieqgaaAs
a result, taking into account the definition of the densitytnirdor a pure state,
(3.4), we find the following equation of motion:

ihpmk = Z(q{mrpnk — PrnHnk). (3.41)
n

According to definition (3.10), the equation for a mixedtstdensity matrix
has the same form. Using the matrix multiplication rule gmel¢commutator no-
tation, [f,g] = fg — gf, one can write Eq. (3.41) in a compact invariant form,

inp = [H, p). (3.42)

This equation, describing the evolution of the density iRais called thevon
Neumann equationlt is the starting point for non-equilibrium thermodynam-
ics. Its classical analogue is the Liouville equation fag thistribution function

P(g, p. 1).
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3.3.3 Interaction with the thermostat

In the most general approaghin Eq. (3.42) is understood as the density matrix
of a closed system in a pure state, with the energy contathmpllowing terms:

H=Ho+V, Ho=Hp+Hg, V=Vi+Vo, (3.43)

whereH, andHg are unperturbed Hamiltonians of the system and the thermo-
stat whileV; andV, describe, respectively, the interaction of the system with
the thermostat, i.e., relaxation, and with the externatifieThe von Neumann
equation is solved in terms of the perturbation theory, &ed taveraging over the
variables of the thermostat is performed, see the seconuititefiof the density
matrix (3.15).

In a less rigid approaclp, only relates to the system under consideration, i.e.,
an atom, a molecule, ety = Ha, andV; is assumed to be a stochastic function
of the time with given statistical parameters. Let the iegdlc m, n numerate non-
perturbed energy functiongfex = Exex), then Eq. (3.41) takes the form

d . 1
(d_t + Iwmk) Pmk = E Zn:(q/mrpnk - Pmnq/nk)» (3-44)

where the'V operator includes the action of the thermostat and the exté&eld.
Note, however, that this approach does not explain the ooty of the ‘up’
and ‘down’ relaxation transition probabilities; > > w1, see the next section.

Finally, in quantum electronics, as a rule, relaxation ketainto account phe-
nomenologically, using a small number of constants, whighessumed to be
known from a more detailed theory or from experiment.

3.3.4 Evolution of a closed system

Before introducing relaxation parameters into the dernsisitrix equation, con-
sider the case of a closed system. ggbe eigenfunctions of the energy operator,
thenHmn = Endmn, and Eq. (3.41) takes the form

,bmk = _iwmlqomk- (3.45)
Thus, the density matrix of a closed system has a trivial dépece on time,
pmk(t) = pmi(0) eXpi-ivmt), (3.46)

i.e., non-diagonal elements of the density matric oseillgith the corresponding
Bohr frequencies while the diagonal elements (relativeufatiipns) are constant.
Note that this result also follows directly from the expotigitime dependence
of the state amplitudeb;, = ¢, expi&nt/h), and the definition of (3.4).
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The dipole moment of an isolated atom can be calculated fron{3&46),

(d(®) = Tridp(®) = ) damprmr(0) XPl-icomit). (3.47)

At the same time, it follows from Maxwell's equations that@scillating dipole,
similarly to an aerial, emits electromagnetic waves inteefispace; therefore,
within a certain time an atom should lose all its energy andrge the ground
state, i.e.pmn() = dmndno- Thus, an atom cannot be isolated from electromag-
netic vacuum, which plays the role of the thermostat Witk 0. This example
reminds us that isolated systems do not exist, and henc)(&¥uld be com-
pleted by relaxation terms describing the evolution intoikdgrium, p(c0) — p©.

3.3.5 Transverse and longitudinal relaxation

The most simple models of relaxation, based, in particdarthe Markovian
approximation, lead to the following form of kinetic equats for the density
matrix (see, for instance, [Fain (1972); Apanasevich (3p77

d .
(d_t + Iwmk)pmk = —YmkOPmk, M #* k (3.48)
d
% = znl(WmnOn = WamPm), Pm = Pmm: (3.49)

According to (3.48), non-diagonal elements of the densigyrio behave like
amplitudes of exponentially decaying oscillators,

Pmk(t) = pmi(0) €Xpliwmk — Ymit]. (3.50)

The damping constant for a given pair of levels; = y»1, is often denoted as
1/T,. The relaxation timerl, of the non-diagonal componept; is called the
time of spin-spin, or transverseelaxation. (The meaning of the second term will
be clarified in Sec. 4.4.)

From the experimental viewpoint, transverse relaxatiarsiglly revealed in
the broadening of spectral lines. (So far, we ignore noiostaty experiments,
which will be considered in Chapter 5.) It will be shown in Sé@ that (3.48)
leads to a Lorentzian line shape with the FWHM

Aw = 2’)/12 = 2/T2. (3.51)

In rarefied gases, relaxation is only caused by the intenacti atoms with elec-
tromagnetic vacuum. This interaction leads to the spowtasmemission, with
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the probabilityA;, = 2y1,, and the corresponding broadening of the upper level
AE; = hA1,, as well as the spectral broadening, calledrithiral broadening,

Awnat = 2y12 = Ar2. (3.52)

If the lower level of the transition under consideration @& the ground one, its
broadening has to be taken into account as well. gty .., Amn be the total
probability of a spontaneous transition from lemeb all lower levels, then

Ymn = Ym + ¥n. (3.53)

In reality, A f 5 is on the order of MHz for the case of visible-range alloweahir
sitions, andl, ~ 108 s.

For suficiently dense gases, natural broadening is masked by tlisiaol
one, andT, coincides, within an order of magnitude, with the mean tirge-
tween the collisions of atoms with each other. As a result,~ 2/, and the
line width scales as the pressysgprovided, of course, that the Doppler broad-
ening is smaller than the collision one. For rough estimaiae can assume that
atp = 1 mmHg,Af ~ 10..100 MHz. Note, however, that under certain con-
ditions, the increase of the pressure leads to line narggwin ~ 1/p, called
collision, or dynamical, narrowing. One of the models oft#tect is considered
in Ref. [Akhmanov (1981)].

Interaction of atoms with the thermostat leads not only eoedamping of the
states, but also to a certain shifb of the transition frequency. In the case where
the thermostat is a vacuum, this shift is called tia@nbshift. Both dfects can
be formally taken into account by substituting a complexugdbr the transition
frequencywmn,

(:)mn = Wmn + (S(I.)mn - |')/mn (3.54)

It is important that transverse relaxation is not alwayatesl to the energy
transfer to the thermostat. For instance, elastic colisin a gas lead to random
changes in the phases of complex state amplitudes for Sematmns,bﬂ?, and
their pair productsh®b!)". If these phases are initially equaln # 0, then, after
a certain time interval, = 1/ymn, Which is on the same order of magnitude as
the mean time interval between collisions, the phase willfiéormly distributed
within the interval O- 2r, so thatpm, — 0. A similar dfect is caused by the
dipole-dipole interaction of neighboring dopant atomsiigstals. Perturbations
of this kind, which do not change populations, are caleliabatic Certainly,
non-adiabatic perturbations, such as non-elastic omfifgialso contribute to the
relaxation of non-diagonal elements, as they change bethrtiplitudes and the
phases of the ccﬁﬁcientsbﬁ?.
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Let us now consider the relaxation of diagonal density malements, i.e.,
populations. Kinetic equations (3.49) contain a set of phegnological cofi-
cientswpn with the dimensionality /5. Thew,; codficient defines the rate of
transition from state 1 into state 2 due to thEeet of the thermostat. (Recall
that in quantum mechanics, transition indices are read fight to left.) The
role of the thermostat can be played, for instance, by tttibrations in crystals,
translational degrees of freedom of atoms in gases, antt@teggnetic radiation.

In the case of two-level systems, one denotes

T1= (Wi +Woy) ™t (3.55)

T, determines the relaxation time of populations, i.e., ofrttean energy, and is
called the time o$pin-lattice orlongitudinal relaxation. The time of longitudinal
relaxation depends on the thermostat temperature andswaitiein broad limits,
from 1071%s in the case of nonradiative optical transitions in conddmsatter, to
hours and days in the case of nuclear magnetic resonancthigloase, interac-
tion with lattice is weak due to the small value of the nucleignetic moment,
i ~ 10722 CGS.) Note that adiabatic perturbations, like dipole-tipoteraction,
do not change the populations; therefore, usudjly> T,. In experiment, longi-
tudinal relaxation manifests itself in the saturatidieet (Sec. 4.3).

Equations (3.48), (3.49) should also involve the case ahtlbeynamic equi-
librium, wherep = p© andp© = 0; hence, the following relation should hold
true:

Z(Wmnon — Whmom) = 0. (3.56)

This equality is satisfied, in particular, if one assumesgheciple of detailed
equilibrium,

erpn = Wnn'pm. (357)

Hence, taking into account the Boltzmann distribution, vel fihe relation be-
tween the probabilities of relaxation transitions and theduce the number of
independent parameters in Eq. (3.49) by a factor of two,

Winn/Wnm = €XP@iwnm/«T), (3.58)

with T being the temperature of the thermostat. This conditiorvides dy-
namical equilibrium for the populations. Thusy, > ws1, in contrast to the
case of stimulated transitions in a classical field, wheoepaling to (2.26),
Wi, = Whi. When the thermostat is at low temperature, it has no eiaitst
(photons, phonons, etc.) with high enerlyy, > «T. Therefore, it can only absorb
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energy from the system under consideration, and transitigo are practically
absent. An extreme example is realized for transitions éetanuclei levels in
they range. Even in condensed matter, such transitions usuailyr@nly due to
spontaneous emission, with the probabiitg = A = 1/T;. In the case of nuclear
isomersA is extremely small because the transitions are forbiddeh]acan be
as large as days, similarly to the NMR case.

The parametengi, can be calculated, in principle, using some model of the
thermostat. An example where the role of the thermostasigqal by the field has
been considered in Sec. 2.5. Then,

W1 = Bp,wi2 = Bp+ A, (3.59)
1/T1 = Acoth(iws/2<T) = A/AO), (3.60)

whereA, B are the Einstein cdicients for spontaneous and stimulated transitions,
p = pO(wsy) is the spectral density of the equilibrium field, given by flanck
formula, andA®© is the equilibrium relative populationfiiérence (see Eq. (3.29)).

3.3.6 Interaction picture

Usually, one has to solve the von Neumann equation for theityematrix by
means of the perturbation theory, i.e., a sequence ofibesatThe only exception
is the case of a two-level system, which will be considerefién. 4.3. As in the
case of solving the Schrodinger equation in the energyessmtation (Sec. 2.1),
we will assume that the influence of the external alterndigld on the electrons
in an atom is much weaker than thffeet of the nucleus constant field, which
determines the unperturbed stationary states of a bouatlate As we will show
in what follows, a more precise formulation of the conditfonthe perturbation
theory to be valid has the forf2 < @, whereQ = |dmn - Eol/7% is the Rabi
frequency, i.e., the matrix element of the perturbatiorrgyné frequency units,
andd is the mismatch between the field frequency and the closastfaequency,
i.e., the energy deficiw — wmr in the virtual state (Sec. 6.2) or the transition
bandwidthymn given by the relaxation.

Before solving the von Neumann equation, it is convenietraiosfer the triv-
ial time dependence of the unperturbed density matrix tooferators. To do
this, let us introduce the following notation for the mateiements of an arbitrary
operator in the energy basis:

fron = Tmnexplwmnt) = fdrd);;](r,t)fd)n(r,t), (3.61)

where the functions, = ¢, expi&nt/h) satisfy the equatioid, = Ho®,.
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Transformation of the matrix elements (3.61) correspoads followingunitary
transformationof the operators:

£(t) = Ug fUo, (3.62)

Uo(t) = expitHot/h), UiUp = 1. (3.63)

The unitary operatddy is called theunperturbed evolution operatpit is diago-
nal in the energy representation and has the eigenvaluésié€xp/#), so that

@ (t) = Uo(t)¢n, (3.64)
Yn = US(t)CDn(t)- (3.65)

In the Dirac notation, the time evolution of a state vectorthe caseV = 0,
is described as

[t) = Uo(t — to)lto). (3.66)
The inverse transformation has the form
1) = Ito) = Uglt). (3.67)

Let us now substitute into the von Neumann equation (3.42), and Vo,
the primed values, according to (3.62), and take into addhatimn+wnk = Wmk-
As a result, we get the equation for the density matrix inititeraction picture
also called th®irac picture,

B0 = D (Vinebl = Pron V- (3.68)
n
In the invariant notation, it is written as
inp’ = [V, 0] (3.69)

Note that the time dependence of an arbitrary operatis given by the
Heisenberg equation,

inf =[f,H). (3.70)

Here, it is assumed thdtdoes not depend on the time directly, i@f/ot = 0.
Transformations of operators of the form (3.63) accomphhietransforma-
tions of state vectors of the form (3.67) means passing téntieeaction picture,
and in the casél = 0, to theHeisenberg picture These transformations are
similar to passing to a rotating frame of reference.
In the initial Schrodinger picturestate vectors, and also, according to def-
inition (3.4), the density matrix elements are functiondinfe. Operators can
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depend on time only due to a varying external force (as, fetaimce, the energy
operatorV(t) = —d - E(t) in dipole interaction). On the contrary, in the Heisen-
berg picture all time dependence is transferred to the ¢@erand their matrix
elements, except the density matrix operator, and the géati®rs are constant.
The interaction picture is intermediate, and it has all galtime-dependent.

However, it is important thathe observables do not depend on the choice of
the picture

(fy = Tr(fp) = Tr(F'p)). (3.71)

This can be proven using definition (3.63), the unitarilglJj = 1, and the in-
variance of the trace to cyclic permutations,ab) = Tr(bca).

3.3.7 °Perturbation theory

It is not difficult to find the formal solution to the von Neumann equatio693
using the iteration method. For this, let us represent theitleoperator as a series
expansion (the primes will be temporarily omitted),

o) = p© + pDOt) + p@(1) + ... (3.72)

and substitute it in (3.69). Herp©® = p(to) is the initial condition. By setting
equalities between the terms of the same order in the patiarsy, we find the
relation

inp® = [V, p*1]. (3.73)
Integration yields
t o
PR = @(in)™ | di... f du[V(t), ... [V(t), p©]...]. (3.74)
to to
From this, we find the mean value of an arbitrary operator,
> t -1
(f(0) = Z(ih)‘k dty . .. dt
k=0 to to
AL TF @,V D], ...V (DO (3.75)

In the last expression, averaging is over the initial (ubypeed) density matrix
p©; the initial time momenty is usually assumed to beco. Eg. (3.75) was
derived using the property &l) = Tr(ba), which leads to the following equalities
under the Tr operation:

alb, c] =[a, b]c, a[b,[c,d]] = [[a, b], c]d. (3.76)
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Relation (3.75) determines the response (reaction) of atguasystem to an
external perturbation. For instance, assuming d,, V(t) = —d - E(t) one can
find the mean dipole moment of an atom, i.e., the charge dispiant due to a
given electric field, in the form

(d(t)) = aE + BE2 + JE3 + ..., (3.77)

whered, 3, 7 are some integral operators whose structure is clear froms)3Ex-
pansion ofd(t) andE(t) in Fourier integrals or series determines piodarisability
tensorsa(w), B(w, '), ... of an atom. Further, by multiplying atom polarisabil-
ities by the densityN of the atoms, one can find the macroscopisceptibility
tensors of the matterY(w), v (w, '), ...

As a result of such calculations, some of which will be den@ted in
Secs. 4.2 and 6.2 below, polarizatiBn= N(d) of the matter can be expressed
in terms of the external field and the parameters of the atdipsle matrix ele-
mentsdmn and the transition frequenciegn.
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Chapter 4

The Susceptibility of Matter

In classical electrodynamics, the interaction betweenenaind a field is con-
ventionally studied in two steps, the microscopic one amdnttacroscopic one.
The microscopic part is focused on the behaviour of chargatbmal particles
in a given external field. As a result, one finds the averagesroscopic, pa-
rameters of the matter, such as the susceptibility tepsorhich determines the
polarizationP = y - E of homogeneous matter caused by the field, or the dielectric
functione = 1+4ny. As aresult of frequency Fourier expansion of the field,¢hes
guantities become complex functions of the frequea@y) = €' (w) + i€’ (w).

In the macroscopic approach, the susceptibility of the enadtassumed to be
known, and the emission and propagation of the field areetiugsing Maxwell’s
macroscopic equations.

The present chapter considers first the definition and thergéproperties
of the susceptibility tensor (Sec. 4.1). Further, in Se2.te susceptibility is
calculated in the framework of the simplest model of ideadtienotionless and
non-interacting molecules. Both classical and quanturmrihis used in this case.
Section 4.3 considers saturation, the most importéiecein nonlinear optics,
in which populations of two levels get balanced due to a stn@sonant field.
Finally, in Sec. 4.4 the Bloch equations, which are widelgdig quantum elec-
tronics, are derived.

4.1 Definition and general properties of susceptibility

By definition, linear dielectric susceptibilify(w) is the proportionality factor be-
tween a monochromatic macroscopic fiéliv) at frequencyv and the polariza-
tion P(w) emerging in a homogeneous medium due tofifsa. In an anisotropic
medium, polarization can be non-parallel to the field, s¢ ithéhe general case,

67
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susceptibility is a tensor,

Po(@) = D xap(@)Es(w), (4.1)
B

with @,8 = X, y,z Usually, the summation sign is omitted. In more compact
notation,

P(w) = x(w)E(w). (4.2)

4.1.1 Symmetry

Here,E(w) denotes the Fourier component of the figlf). As it is common in
physics, a function of timd (t) and its Fourier transform(w) are denoted by the
same symbol and only their argument§et,

f(t) = f dwe ' f(w), f(w)= f dtd“t f(t)/2x. (4.3)

The absence of the integration limits means that they-ase Note that if f (t) is
real, then (4.3) leads to the following symmetry propertyfft):

f(-w) = (). (4.9)

Thus, the real part, (w), is an even function while the imaginary paft,(w),
is an odd function, so it is shicient to knowf (w) for positive frequencies. From
the definition (4.2), it follows that all components of thesseptibility tensor also
satisfy (4.4),

X(-w) = X (). (4.5)

They(w) tensor and its inverse Fourier transfopp(t), calledthe Green func-
tion or the response functiphave one more general property, typical for arbitrary
physical systems: they are symmetjics y, or

Xap = Xpa- (46)

Here, y"is thetransposedensor,y,s = xg.. This equality is an example of the
generalOnsager symmetry principle for kinetic indicdsis also confirmed by the
microscopic theory (see (4.59)). The symmetry @ only violated in the case of
optical activity, either natural or caused by a constantmeég field. In the latter
case, instead of (4.6) we hayéHo) = ¥(—Ho).

Additional relations between fierent components gf,s are imposed by the
symmetry of the medium. For instance, in crystals with cudyimmetry,y,z =
X3qs, @s in isotropic media.
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4.1.2 The role of causality

Dependence of susceptibility on the frequendyy), cannot be arbitrary. As we
will see, its real and imaginary parig,(w) andy” (w), are related via the Hilbert
transformation.

Consider polarization induced in a dielectric by a very sHmld pulse,
E(t) ~ 4(t), so that the pulse duration is much less than the periodeofrtbst
high-frequency eigenmode of the matter. In the spectrumuoh s pulse, all
frequencies are distributed uniformli(w) = const, and the spectrum of the
polarization, according to (4.1), repeats the shapg(a@): P(w) ~ x(w). (For
simplicity, the medium is considered as isotropic.) Herloe,polarization pulse
P(t) repeats the shape of the Fourier transform of the complkeqtibility,

P(t) ~ f dwe Yy (w) = 2y (t).

Apparently, the system cannot respond before the extesrad fs ‘turned on’;
hencey(t) should turn to zero &t< 0,

f dwe Y (w) ~ 6(t), (4.7)

wheref(t) is the Heaviside step function, which is unitytat O and zero at < 0.

The causality principle, according to (4.7), restrictssidarably the allowed
class ofy(w) functions. Indeed, it follows that(w), considered as a function of a
complex frequencyw = «’ + w”, should be analytical in the upper semiplane. Let
us calculate the integral in (4.7) using the residue thebhg integrand contains
the factore”™!; therefore, at > 0, the integral should run along a contour in
the lower semiplane (see Fig. 4.1), whiletat 0, the contour should be in the
upper semiplane. However, due to the causality princiglé,<a 0 the integral
should turn into zero. Therefore, téw) function cannot have poles in the upper
semiplane (see, for instance, [Vinogradova (1979); Lar{d882, 1964)]).

Further, according to the integral Cauchy formula, theaedlimaginary parts
of an analytical function are related via the Hilbert tramsfations,

' (w) = PVfdwl/M, oy (w) = PVfdle (@) , (4.8)
w1 — W w — W1
where ‘PV’ denotes the principal value of an integral. Thiesegral equations
are called th&kramers-Kronig relationsThey allow, for instance, the real part of
susceptibility to be calculated from the measured imagipart. The above-given
derivation can be extended to the case of an anisotropicumedihen, equations
(4.8) will be valid for all components of thetensor.
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Fig. 4.1 Proof that the susceptibility of a dielectji¢w) is an analytical function of complex fre-
guency in the upper semiplane: tat 0, the response functigp(t) turns to zero due to the causality
principle. At the same time, it is equal to the integralygs)e 't along theC contour. Hence,
according to the Cauchy theore@ should not contain poles gfw).

4.1.3 Absorption of a given field

In the linear optics approximation, susceptibilitycompletely determines emis-
sion, propagation, and absorption of a macroscopic field imomogeneous
medium, as well as the properties of surface waves, refraatid difraction at the
boundaries. Moreover, according to the fluctuation-degiim theorem (FDT)y
also determines the equilibrium thermal field in matter (Set).

Let us show that the imaginary part of the susceptibijty{w), determines
the power of radiation absorbed or, @t < 0, emitted by the matter. We start
from macroscopic Maxwell's equations for a linear non-nmetgnmedium with
D = E +47P = (I + 4ny)-E andB = H,

crotH — D = 4xj, (4.9)
crotE +H = 0, (4.10)
divD = 4np, (4.11)
divH = 0, (4.12)

wherej andp are external (given) densities of current and charge.

At j = 0, the powerP absorbed by a unit volume of the matter, due to the
energy conservation law, should be opposite to the divegehnthe energy flux
densityS,

P(t) = —cdiv(E x H)/4r = ¢(E - rotH — H - rotE) /4n.
From (4.9, 4.10), it follows that
P(t) = (E-D+H - H)/4r.

In the case of a monochromatic field, this expression cost@ms oscillating
at a double frequency. After time averaging, it turns intmzeso that the mean
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power per period is
P =P(t) = E- P = wIm(E) - Po)/2 = iw(Eoox,5Eds — EgoxasEop)/4  (4.13)

Let us interchange the, 8 indices in the first term and take into account that in a
non-gyrotropic material, susceptibility (4.6) is a symreetensor, then

P = wyisEpEos/2 = wEg - ¥ Eo/2. (4.14)

In the case of a gyrotropic material, the imaginary part af (4.14) should be
replaced by the anti-Hermitian park € xy*)/2i. For an isotropic medium or a
cubic crystal, (4.14) takes the form

P = wy”|Eol*/2. (4.15)

4.1.4 °Susceptibility of the vacuum

Further, let us find the field generated in a homogeneous mmeb external
sources, i.e., a given polarization with a harmonic vasiath time and space,

P = (1/2)Poec™ ! 4+ c.c. (4.16)

Here,k andw are independent variables. In a homogeneous mediinguces

a plane monochromatic wave with amplitud&sH,. Let us substitute (4.16) in
(4.9, 4.10) and take into account that P. We get a system of algebraic equations
for Ep, Hp (n = ck/w),

nxHg+ eEg = —4nP, (4.17)
nxEg—-Hg=0. (4.18)

ExcludingHg, we get
n X (n X Eo) + e-Eg = —4nPy. (419)

Double vector productin (4.19) projects thEg vector onto the plane orthog-
onal to the propagation directidn Let us denote this projection operationliy
Apparently, thdl tensor has the components

Mop = 6op — Keks/K>. (4.20)
As aresult, Eq. (4.19) takes the form
(I — €) - Eg = 4nPp. (4.21)

Thus, the problem is reduced to solving a system of two linean-
homogeneous algebraic equations. The solution can bessqutein a standard
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way, in terms of the minors and determinant of the matn31(— €).5. Instead
of solving the system directly, we expreSgin terms ofPy using the formalism
of the inverse matrix or tensor. By definitiof,- A1t = A“LA = |; therefore, it
follows from (4.18) and (4.21) that

Eo=G-Pg, Ho=nx (G- Pp), G = 4rn(n’ll — €)1, (4.22)

TheGs(k, w) tensor is called thepectral Green functiofor Maxwell's equa-
tions. It determines a macroscopic field induced by polédna4.16), i.e., the
response of the electromagnetic ‘vacuum in matter’ to aarexi excitation. The
tensor functiorG(k, w), similarly toy or e, satisfies the Kramers-Kronig relations.
Its Fourier transformG(r, t), determines the fields emerging in a homogeneous
medium due to an arbitrary distribution of the polarizati{n, t) or a current.

Consider the case of a homogeneous medium. Let #xés be along, then
from (4.20) and (4.22) we find

Eoxy = 47Poxy/(N* = €), (4.23)
Eoz = —4nPo,/€; (4.24)

recall that hera@ = ck/w. The last equation for the field,,, which is longitudinal
with respect to the propagation direction, shows that ihtdependent ok: we
usually exclude thefiects ofspatial dispersiorwheree = e(k,w). According
to (4.24), longitudinal field created by this polarizatismiaximal at frequencies
wherele(w)| is minimal; these frequencies are given by the conditi¢w) ~ 0.
Note that the Green function for a longitudinal field can teoabbtained from
Eqg. (4.11) by assuming that= divP.

Transverse components of the fielhyy, considered as functions &f ac-
cording to (4.23), have a ‘wave resonancekat w Ve /c, i.e., atn® = €. Then,
Gxx = Gyy = i/x”, and the radiation power is (c.w. (4.15))

P = w(|Poxl? + |Poyl?) /2y . (4.25)

4.1.5 °Thermodynamic approach

Between the ranges of strong absorption in matter, ther&ramsparency ‘win-
dows’ where one can neglect the energy dissipation, i.eyrmas|y”/y’| < 1.
(We consider the matter to be non-gyrotropic.) In the abserficissipation, the
vibrational energy of the particles caused by the exteralal i conserved; hence,
the work of polarization can be defined as a function of thd @@hplitude A(Ey).
This work consists of displacing the charges and is perfdrinethe sources of
alternating fields. Note that fok to be defined, a finite time is necessary for a
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stationary amplitud®, of polarization oscillations to be formed, which is only
possible in the presence of some finite absorption. Afteothicing the notion of
work A(Ep) we can consideEg as one of the thermodynamic parameters defining
the state of the matter, in addition to entrd@ydensityp, etc. In the framework of
this approach, one can formulate thermodynamical defirstfor the polarization
Po(S, p, Eo) and susceptibility (S, p, Eo) as functions of the state of the matter.

In transparency windows, dispersion is small as well; thoeeg polarization
follows the field almost instantaneously,

P®t) = x(w)E(Y), (4.26)

wherew is the central frequency of a quasi-monochromatic fieldhéndase of an
optical field,y(w) is certainly defined without accounting for the inertialcha-
nisms of polarization, for instance, orientation of the emiles by an alternating
field (Sec. 6.2). Such mechanisms only contribute to theestad radio-frequency
susceptibilities.

Let us first ignore the dispersion completely. Then the sibtiee matter has a
time dependence only via the fieit{t). Then, in (4.13) one can assure: ,\/-E,
so that the variation rate of the macroscopic field (per wilitme) takes the form
E2+H?2 1

- +ZE-y-E| 4.27
8 ToEX (4.27)

P(t) = (EE+H-H)/4r + Ex - E = d%(
In the last equation, we have used the symmetry oftkensor. The expres-
sion in brackets is obviously the energy density of the mswpic field, the first
term being energy of the field in the vacuum, at the sé&iyid, and the second
one having the meaning of additional wolkperformed by a field source in the
presence of the matter. Additional energy of the matter invargfield has the
opposite sign,

v=-E.y-E/2 (4.28)

Strictly speaking, the macroscopic fiedkdnside the matter should be replaced
here by the externalfiel’ in the absence of the matter (see Ref. [Landau (1982)],
Sec. 11), but for the sake of simplicity we ignore thfatience betweeh andE’.

Equations (4.26)—(4.28) assume a linear relation betvikand E, which is
valid only for a stfficiently weak field. An evident generalization of (4.28) is

dv=—P(S,p,E) - dE, (4.29)

aTaking dispersion into account leads, in the linear appnaion, to replacingy in (4.27) by
d(wy)/dw [Landau (1982)].
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or

E
v:-fo P(S,p, E) - dE. (4.30)

PolarizationP and, hence, the elementary work of polarizatiedy, certainly
depend not only ot but on the other parameters defining the state of the matter.
Therefore, the integral in (4.30) is along a curve, and ireotd findyv, this curve
should be specified. The work of polarization can be definedrdtant entrop$
and density, i.e., for a thermally isolated material with a given corcation of
moleculesN = p/m. In this case, polarization will not change the internalrgge
of the matter per unit volume in the absence of the fielglS, p) (by definition,
dUp = TdS+ udp, u being the chemical potential). Therefore, the internatgye
of the matter in the presence of the field is

U(S, p, E) = Uo(S, p) + (S, p, E), (4.31)

whereE plays the role of an external thermodynamical parameter.
Now, one can define polarization and susceptibility therymaghically as
functions of the state of the matter,

Po(S.p, E) = —0U/0E,, (4.32)

Xap(S,p) = —(0°U/IE,0Ep)E=0. (4.33)

Thus,by defining thg tensor in terms of the thermodynamical potential one
can provide its symmetrin (4.27)—(4.32), one can assure= E(r, t) if the dis-
persion is neglected; hence, the state of the matter depertilee and coordinate
as parameters.

Further, doing the Taylor expansion of the internal enésdl) or the energy
of adiabatic polarizatiom(E), near theE = 0 point one can define the nonlinear
polarization and the nonlinear susceptibility tensdfs(Sec. 6.1).

It is often convenient to use, instead Of other thermodynamic potentials
such as, for instance, the free enekfil, p, E). The field part ofF, which has
the meaning of the work of polarization;, should be calculated at constant tem-
perature, so that in the general cage+# vy. However, in weak fields, the field
parts of all potentials are the same (see Ref. [Landau (196d¢. 15) and equal
to v(E). As a result, various macroscopifferts in electromagnetic field, such as
electrostriction, electrocaloridfect etc., are determined by partial derivatives of
x in density, temperature, and so on (Sec. 6.2).

Let now the field be quasi-monochromatic, theshould be replaced bhy(w).
Thus, transmission of light by transparent matter leadsitmerease of thermo-
dynamic potentials by a value of

V(t) = —[Eo - x(w) - Ej + Eo - x(w) - Eoe %! + c.c.}/8. (4.34)
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Only the constant, or slowly varying, part of the potentsabf practical interest,
v=—-Eg x(w)- Ey/4 (4.35)

This expression for thefkective potential of the matter in a monochromatic
field describes, according to the known thermodynamic éguusitthe &ect of
light on the state of the matter. Variation of the state (terafure, density, etc.) of
the matter, in its turn, influencgsand the transmitted light, i.e., causes a nonlinear
optical dfect (Sec. 6.2).

Note that, according to (4.35), one can define the poladmatmplitude and
the susceptibility in terms of thefective potential,

0 = —4V/OE},, Xop = —40™V]IE}, OEqs. (4.36)

Let the density of the molecules b, then in the approximation of non-
interacting molecules, polarizability of a single molexig « = x/N, and from
(4.35) one can find theffiective potential of a molecule in an alternating field,

V= —%Eo - a(w) - Ej, (4.37)

This potential defines the mean force of light pressure geima molecule in a
monochromatic field in terms of the molecule polarizability

F = -VV = V(Ep-a(w) - E})/4. (4.38)
This expression can be transformed as

1 5EOﬁ d*

Fo = A% (EoﬁaﬁyEoy) o + C-C.
10 —_—
46 —dy- Eo(r) +c.c.= —d(t) E(r,1). (4.39)

The factor Y2 is absent here since we assume thaMloperator does not act on
the dipole momend = « - E of the molecule. The force (4.39) corresponds to the
potential’V(r) = —d - E(r). Light pressure will be considered in more detail in
Sec. 6.2.

4.2 Dispersion theory

4.2.1 Dispersion law

In the transparency windows, = 0 and, according to (4.23), the Green function
turns to infinity atn = +/e. Usually, it is this ‘resonant’ value of the ratak/w
that is denoted by and called the refractive index.
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The same condition provides the existence of a nontrivilitem (Eo # 0)
to homogeneousy = 0) Maxwell's equations. Therefor@, medium without
sources can only support propagation of waves with a centaliation between
the wavelength) = 2z/k, and the frequencyfhis relation,

k(w) = wle(w)]Y?/c, (4.40)

or the inverse of itw(K), is calledthe dispersion laywand the waves satisfying
it are calledfree, or norma) ones. The condition for normal longitudinal field to
exist ise(w) = 0. It follows from (4.40) that the phase velocity of transverse
normal waves isye times as small as the speed of light. The group velocity, as
we know, is given by the derivativaio/dk = u. It follows that longitudinal waves
do not propagate, since, according to (4.24k) = const andu = 0. (Here, we
again neglect theffect of spatial dispersion.)

In an anisotropic medium, the condition for normal wavesxisteor for the
Green function to turn to infinity, according to (4.22), hlas form

det’Il — €) = 0. (4.41)

This condition is called the Fresnel equation. With the fiexicy w and the
wavevector directiork/k fixed, Eq. (4.41) only has solutions for tivparticular
directions of the polarization vectey, (v = 1,2). In the general case, the polar-
ization vector is not orthogonal o and may be complex, which corresponds to
the elliptical polarization of the normal wave (for more ait, see Ref. [Landau
(21973)]). The two normal waves havefgirent dispersion laws, (k), which leads
to birefringence. In an anisotropic medium, the group Vigyogectoru is equal
to Vw, (k) and, in the general case, is not parallel to the phase ¥gloettor.

4.2.2 The gfect of absorption

With an account for absorption, the Fresnel equation hagisenk only for com-
plex w andor k. The choice depends on the particular problem. A stationary
experiment corresponds to a real frequency and a complgragetion constant.

If the wave vector is complex, a free monochromatic wave géter damped

or amplified in the course of propagation. Let us make a reptnt in (4.40),

k — k = k+ ie/2, then the dispersion law of a normal transverse wave in an
isotropic medium takes the formk ¢ ia/2)? = (¢’ + i€”)w?/c?. Hence,

K2 — o?/4 = w?e |c?, ak = W€’ /2,

bWe neglect the féects of spatial dispersion, which can be described bgkpdependence (see, for
instance, Refs. [Vinogradova (1979); Landau (1982)]).
CEffects of spatial dispersion may double the number of normakwat a given frequency. The
corresponding waves are called ‘new’ ones (Fig. 4.5).
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or
N\ 1/2
K= %Re\/} %('dzf ) , (4.42)
w w(lel - € 12
a/2 = Elmx/_z < > . (4.43)

The sign by the square root is chosen from physical condidesm These equa-
tions define the positions of the two poles of the Green fonsG(k, w) in thek
plane.

In the case of weak absorbtiar’, << k?, Egs. (4.42), (4.43) take the form

k=wVe/c, (4.44)
a=ke" /€. (4.45)

It should be stressed again that the dispersiondg(k) and a fixed polariza-
tion e, only take place for free waves, i.e., waves generated bgrtisburces. In
the presence of given sources, the spatial and temporahdepeies of ‘stimu-
lated’ field are determined by the distribution of the cutseand can be arbitrary.
In particular, thermal fluctuation field inside the mattecisated by the chaotic
motion of charged particles and the field at a given frequénaysuperposition of
plane waves of various lengths. Note that waves with maxamadlitudes do not
always satisfy (4.44) (see Eq. (4.79)).

Thus, the macroscopic theory enables all basic observaleleof waves emis-
sion, propagation, and absorption through the phenomgiwalofunctiony(w).
The next step is calculating(w) in the framework of the microscopic theory.
This is a traditional problem of non-equilibrium thermodynics, and its com-
plete solution is still absent.

4.2.3 Classical theory of dispersion

In order to find the order of magnitude and the dispersion niégece for linear
dielectric permittivity, let us use the simplest model of thatter as a set of inde-
pendent, motionless, and identical atoms or molecules.t@akernating electro-
magnetic field, the electron cloud of a molecule oscillaties Quclei are assumed
to be motionless), and the molecule gains the dipole mordght= —e " ri(t),
which, in the first approximation, scales as the field. Here, O is the electron
charge and; is the radius vector of theh electron. As a rule, magnetic dipole
moment, quadruple moment and higher-order moments camloesd since the
scale of the spatial field variation,> 10-° cm, in the optical range exceeds much
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the typical size of a moleculgy, ~ 108cm. The product ofd and the con-
centration of moleculesl is equal to the dipole moment per unit volume, i.e.,
polarization,P = Nd = yE.

Thus, the problem of calculating the susceptibility is reghlito calculating
the dipole moment of a molecule induced by an external field.

Thermal motion of charges can be taken into account in thedveork of the
kinetic theory. In the quantum theony,and, henceg, are operators; therefore,
one should do both quantum and statistical averaginguse.the density matrix
formalism.

Consider first the classical Lorentz model, which represamholecule as an
oscillator. The equation of motion of a linear isotropicitiator has the form

i+ 2yF + wir = €Ejpe/M, (4.46)

wherem, wg ande are the éective mass, frequency, and charge of the oscillator,
respectivelyy is the phenomenological damping constant, &pd is the field at
the centre of the molecule, known as tbeal field After multiplying (4.46) by
eN, we find the equation of motion for the polarization,

P +2yP + w3P = w3Eic/4r, (4.47)

wherew,, = (47€?N/m)2 is the so-called plasma frequency.
The field Ejoc at the centre of a motionless moleculdelis from the space-
averaged macroscopic fiel According to Lorentz,

4 €+2

Eoc=E+ =—P= E, 4.48

loc + 3 3 ( )
so that (4.47) takes the form

P+2yP + &3P = w3E/4n, (4.49)

@f = wh — wh/3. (4.50)

Hence, assuming the field to be monochromatic, we find
w?/4n
w5 — w* = 2yw
In what follows, we will assume that the eigenfrequencytshi.50) due to the
Lorentz correction are included into the definitionua.
Suppose now that there are several types of independeltatissiwith eigen-
frequenciesvj and concentration§N, }; f; = 1, then

2
_ Y f

X (4.52)

4 ; J)Jz—wz—Ziyw.
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The parametef; is called theoscillator strength A similar expression, which
in many cases describes well the observed dispersion oégtilsitity, will be
obtained below using the quantum theory.

Note that for very high frequencies or in the case of freetedes in a plasma
or metal, one can assume in (4.52)> wj, So that

2
P

 w(w + 2iy)’

w
e~1

4.2.4 Quantum theory of dispersion

Let us now start from the kinetic equations for the densityring3.48), (3.49)
with the phenomenological relaxation parametgrs wmn. In the dipole approx-
imation, the perturbation energy = —d - E, and its matrix elements in the case
of a monochromatic field have the form

Vin(t) = —AQmne ' /2 + h.c, (4.53)
where
Qmn = dmn - Eo/7. (4.54)
Notation ‘h.c.’ stands for the Hermitian conjugate matrix,
~dn - Eg€/2 = —dmn- Ejet/2.

Monochromatic perturbation will cause, in the linear apmation, the same
response; therefore, let us seek the density matrix in the fo

pi(®) = pip(w)e™ + h.c. (4.55)

In the zeroth order of the perturbation theory, the denségrixis diagonalpfﬂz, =
p(rﬁ)émn, so that, after substituting (4.53) and (4.55) in (3.48)493, we find for
m=#n

M QuunAT/2

= - , 4.56
pmn(a)) Omn— @ — Ymn ( )

whereAnm = pn — pm is the relative population fference for level$ and m.
The diagonal elemenﬁsﬁ?, according to (3.48), (3.49), will scale as the inverse
frequencyw of the perturbation; if one is only interested in resonanects,
under the conditiony/w < 1 one can assuménl) = 0. Thus, the amplitude of
the response to a harmonic perturbation scales as the pioputitference and
reaches its maximum at resonanoes wmn.



80 Physical Foundations of Quantum Electronics

After substituting (4.56) in (3.6), we find the dipole momehthe molecule
and the polarization,

P = N(d(t)) = Poe Wt 4 c.c.

Anmdnm(dmn EO)
hZ

Wmn = @ = iYmn
Hence, according to definition (4.1),

N AR
Xaop =

h w W — 1Ymn
mn ¢/mn Ymn

(4.57)

whered®@ = d, is the projection of the molecule dipole moment onto the axis
a=XY,Z

One can easily verify that the obtained expression has tbessary symme-
try (4.5) and satisfies the causality principle (Fig. 4.1pté&that (4.57) can be
represented in a somewhatffdrent form,

. ” 4.58
) = Z[ dadh, | dads (4:59)
n Wmn— @ = Ymn  Wmn+ @ + IYmn

Here,a™ has the meaning of the polarizability tensor of a moleculstaten.

In the absence of a static magnetic field, unperturbed wawtifins and, hence,
the matrix elementsl,, = d,, can be considered to be real (see Ref. [Landau
(1964)]). Then, according to (4.6), (4.58) is invariant e permutation of, 3
indices,

wmnd )&
=l =3 3 e (4.59)

Using (4.57) and (4.14), one can easily show that the carttab of each pair
of levels (m,n) into the field energy is positive or negatiepending on the sign
of wmnAnm, i.€., amplification of the field requires population invers see also
(4.60).

In the case of a gas, (4.57) should be averaged over randemtations and
velocities of the molecules. Due to orientation averagimag-diagonal elements
of the d,ds turn into zero, and the diagonal ones bechﬁﬁl2 = |dmn%/3. As a
result, the susceptibility tensor (4.57) becomes a scalar,

2N WmAT dmnl?
3h Wi~ (w + iymn)?

Y= (4.60)
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In the last equation, we have taken into account that theld®uion contains twice
each term withm # n,

Zamnz Zann+ Z(amn+ anm), (4.61)

and the diagonal terms in (4.60) are zero singe= 0.

4.2.5 °Oscillator strength

In order to compare (4.60) with the classical expressiob2y let us define di-
mensionlesgscillator strengths

fon = 2Mewpm| Omnl 2/ 37€2. (4.62)

Note that the oscillator strength can be also defined phenolwogically, in terms
of y”’, see Ref. [Landau (1982)].

Let us number possible pairs of states i) by a single index = {m, n}, as-
sumingm > n. If we neglect they? terms in the denominator of (4.60) and put
fi = famAQ, Eq. (4.60) takes the form of (4.52). Therefore, quanturoudat
tion confirms the Lorentz modeln the first approximation in the amplitude of
the external field, matter behaves like a set of linear catwils with damping
However,f; may now take negative values, which manifests itself in tfeces of
quantum amplificationy” < 0) and negative dispersiofy’/dw < 0 outside of
the resonance).

Recall that, according to (4.7), a fieddpulse causes a pulse of polarization
shaped as the Fourier transformytv). According to (4.60), the poles gf(®),
understood as the function of a complex frequency, are atpd} = +w;j — iy,
in the lower semi-plane; therefore, the polarization pussa sum of damped
harmonic oscillations,

2
f.
x(®) = H(t)Z—; > w—’] exp () sin ;). (4.63)
i

This expression defines the Green function for the poldomatf the matter in
terms of the eigenfrequencies and the oscillator strergfttiee transitions.

The oscillator strengths satisfy tkam rules For instance, for single-electron
transitions,

> fm=1. (4.64)

This equation can be obtained from the commutation rale][= i, p = py.
Let Ho = p2/2m+ V(r), then

[, Ho] = ifip/m, Pmn = IMwmnXmn, (4.65)
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hence,
U)mn|an|2 = XmnPnm/M = —iPmnXnm/M,

Z U)mn|xmn|2 =i[p, X]nn/2M = i1/2m.
m

From the last equation, we obtain (4.64).

For most strong optical transitions in atoni,, ~ 1. For instance, for the
‘resonance’ line of atomic hydrogeh,= 0.416 (the 5—2ptransitionA = 0.12u).
Hence, according to (4.62),

which corresponds t{dy| = 4.8 - 10*¥CGSE = 4.8 D. Here, 4. = ii/mc ~
4.10" cm is the Compton wavelength. For allowed transitions betwetational
levels in the millimeter rangedmn is also on the order of 1D, but in this case,
according to (4.62)fn, ~ 10°°. Note that the sum in (4.64) should also include an
integral over the continuous spectrum of ionized statespkiance, in hydrogen
the ionized state fon = 1shas a contribution of = 0.43.

4.2.6 Isolated resonance

In the vicinity of a narrow isolated resonance, only a singlen in the double
sum of (4.60) has to be taken into account,

2ywolix (4.67)

X T X Wt - w? - 2iyw’
Here,Ay = ANd?/3hy = fw3/8mywo andy., is the contribution of other reso-
nances, which is real. In the denominator of (4.67), the tgtimas been omitted;
similarly to the Lorentz correction (4.50), it can be incorated into the defini-
tion of wg. The parameteky, scaling as the product of the active particle density,
AN, and the squared dipole moment of the transitafndetermines the maximal
value ofy” and the amplitude of’ variation (Fig. 4.2).

In the optical range, th@-factor of a resonancis usually highwo/2y > 1;
therefore, in the close vicinity of a resonance one can useples approximate
formula,

Ax
X—Xoo_x+is (468)

with

X=(w—wo)y, w~wy>vy>0.
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Fig. 4.2 Dispersion dependence of susceptibilitw) in the vicinity of an isolated resonance, for
the Q-factorwp/2y = 5 andy. = 0: solid lines correspond to (4.67), dashed lines, to apprate
formula (4.68), and dash-dotted lines, to approximate tdani4.69).

This equation yields an even dependenceyfofx) and an odd dependence for
X' (X) — ¥ (see Fig. 4.2). ltis clear from Fig. 4.2 that even for a resoeavith

a low Q-factor, this formula provides a good approximationf’ and somewhat
worse one foy’.

Note that far from the resonancg; — x| decays much slower thag”|;
therefore, in the transparency windows, whefe < 1, the refractive index
can still noticeably dfer from unity. At a stficient distance from the resonance,
absorption can be neglected, and (4.67) takes another #atyerfprm (Fig. 4.2),

2
~ fu)p/47r _ X0 — Xoo
wg—wz 1—w2/wo’

X~ Xeo (4.69)
whereyo = x(0).

In the description of optical experiments, insteag of e = 1+ 4ry, one uses
parameters that are more close to experiment, the refeaictilex and the index
of absorption,

n = kc/w = Reve, « = ac/2w = Im +e. (4.70)

The valuex™ has the meaning of the length of the wave penetration into the
matter, int/2 = c¢/2w units. Figure 4.3 shows the dispersion dependence of these
parameters, according to (4.68), (4.69) and (4.42)—(4ia5he vicinity of an
isolated resonance.
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M &u—wa)/y

Fig. 4.3 Dispersion dependence of the refractive indard the absorption indexin the vicinity of
an isolated resonance, for the resonance ‘amplitd@dedeing 1 (a) and 5 (b): solid lines correspond
to (4.42), (4.43), and (4.68); dashed lines, to (4.44) 5}(4e., weak absorption approximation), and
dash-dotted lines, to (4.69) (i.e., approximationeéf= 0, whenn = /e ate > 0 andx = v—¢ at

€ < 0); shading denotes the energy gap, whére 0.

In laser media, as a ruléy| < 1 cnt?, so thatle” /€| = |a|/k < 1074, and
approximations (4.44), (4.45) are certainly valid. Suhstig into them (4.68),
we find

Ae X
NxNe(l-———|, 4.71
( 260 1+ x2) (“.71)
wA€/CNy
ny 206 4.72
@ 1+x2 ( )
wheren,, = €2/? = (1 + 4ny.,) 2 is the refractive index at > 1 and
fwf  arANC?
A€ = dnAy = P - ﬂ—d (4.73)

2ywo iy
is the resonance ‘amplitude’ fer Note that (4.72) coincides with the result of
a ‘probabilistic’ calculation, (2.65), and that populatimversion leads to a sign
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change iny’, x”’, anda. In this case, the dispersion dependence of the refractive
index looks opposite to the usual one:decreases with the growth of the fre-
guency outside of the resonance and increases in the alosorgrge. This fect

is callednegative dispersian

In condensed matter, narrow resonances often have largiguses,Ae > 1.
This is especially typical for the dispersion in the infrared range, near lattice
eigenvibrations of ion crystals. The corresponding eldargrexcitations quasi-
particles are calledbptical phononsLet, for instancegd = 1D, AN = 10?° cm3,
andAw = 2y = 1 cnt!; then, according to (4.73\e = 49 If, in addition, f = 1
andlg = 1 cnt?, then the plasma frequency is much larger thanbut still much
smaller thanvg: wp = (woAwA€)Y? = 200 cnT?,

From homogeneous Maxwell's equations, it follows that itundjnal oscilla-
tions are possible, their dispersion dependence h€ind) = 0. In the neglection
of dissipation and spatial dispersion, such an oscillatias a fixed frequenay;
and an arbitrary wave vector, i.e., zero group velouity dw/dk. According to
(4.69), atf = e, =1,

W = Wi+ w3 = wo + w%/Zwo = wp + YAe. (4.74)

Hence, atAe > 1, the splitting between the longitudinal and transversquden-
cies,w; andwyg, is much larger than the damping constanThe same condition
defines whether the eigenfrequency shifts of molecules altteeir Coulomb in-
teraction, (4.50), are high, s@ in (4.74) should be understood as — yAe/3.

In the intervalwg — w, according to (4.69)¢ < 0, and the wave number
k = we/cis purely imaginary, so that the field is not a wave any moreusTh
this interval is a ‘forbidden zone’ where the module of Fe&nreflectivity R=
(Ve - 1)/(+/e + 1) becomes a unity, and the dielectric behaves as a metal. Note
that a metal, in its turn, is ab > wp similar to a dielectric

4.2.7 °Polaritons

In the case of low absorption, macroscopic field in the matierbe treated quan-
tum mechanically (Sec. 7.4). In this case, the notiom @hoton in matteror
apolariton, emerges. (It should not be confused with a polaron, anreled a
dielectric considered together with the polarizationdhines.) A polariton (some-
times also called Bght excitor) is an elementary excitation of a macroscopic field
and the molecules interacting with it, having an enér@yand propagating with a
velocityu = dw/dk As w approachesay, more and more of the polariton energy
is contained in the internal energy of the molecules.

dHere, the scaling factor2 betweerw and frequency in cmt has been omitted.
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When a photon enters a medium from a vacuum, it becomes dtpalawith
a probability of 1- |R?; after passing an average distancexof, the polariton
gets absorbed. The momentdikof a photon in matter diersn times from the
momentuntiw/c of a vacuum photon with the same energy.

Polaritons can be also excited through thermal energy, iictwbase their
mean number per mode is given by the Planck funciéiw). According to
FDT (Sec. 7.7), thesk spectrum of equilibrium field fluctuations in matter scales
as N(w)G”(w, k), whereG is the Green’s function for macroscopic Maxwell’s
equations (Sec. 4.1).

Above, we discussed the dispersion law, i.e., the relatetwveen the fre-
quency and the wavelength, for free waves created by a tlistamce. One can
suggest other definitions for the function@v) or w(k), for instance, given by
the maximum of the Green'’s function imaginary p@ft(w, k). The correspond-
ing dispersion dependence manifests itself in experimemight scattering by
polaritons (Sec. 6.5).

Let us substitute(w) in the single-pole approximation (4.68) into Egs. (4.23),
(4.24). Then, fow > 0,

4r
x = m, (4.75)
G, = ar (4.76)

—€w + A€/ (X +1)’
where
X= (- wo)/y. ¥ = (Ck/w)* - €.

Hence, the spectra of transverse and longitudinal fielduatains are described
by the functions (Fig. 4.4)

4 Ae
(= 4.77
X (Ae+ xy)2 +y? ( )
- 4rAe (4.78)

(A€ - Xew)2+ €2

If the y dependence ow is neglected, then the spectra of fluctuations at fixed
have Lorentzian shapes with the central frequencies giyehéequations

&(w) = (ck/w)?, &w) =0, (4.79)
wheree{w) coincides with (4.68) under the conditign= 0,

€= €o—Ne/X~ € + fw%/(wg - w?). (4.80)
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Fig. 4.4 Spectral density of equilibrium fieIdE(%)wk, normalized taiN /273, as a function of the
frequency and wave vector in the vicinity of a dielectricdtian resonance fapg/y = 20 andAe = 5.
Solid lines refer to transverse (with respectidooscillations , dashed lines, to longitudinal ones. It
is clear from the figure that the frequency spectrum of théfrell fluctuations is described by the
dispersion dependence (dash-dot) without the anomalatis pa

Thus, thedispersion law for field equilibrium fluctuations (4.79)fdrs from
the dispersion law for free waves (4.42)/ck= Reve(w) by the absence of the
damping parametey.

The dispersion law (4.79) corresponds to the condidiGfi/ox = 0. At the
same time, the condition for th&, maximum at a fixed frequenc§Gy /dy = 0,
leads, according to (4.77), to the known dispersion law4} Res(w) = (ck/w)?.
Hence, it follows thathe dispersion law observed near a resonance depends on
the experimental conditions.

Dispersion properties of a medium can be qualitativelyespnted as a graph
showing the relation between andk, instead of the:(w) or n(w) dependencies.
Figure 4.5 shows such a relation infférent approximations and provides the
commonly used names of the corresponding quasi-particles.

If the coupling between the transverse field and the osioilatof charges is
negligible, which is possible & > wq/c, the elementary excitation, i.e., the en-
ergy quantum of the matter, in the case of polar oscillatwiigns in a crystal
lattice, is called amxciton or anoptical phonon Excitons, similarly to photons,
depending on the wave packet describing them, can be edbealized within a
certain area in the crystal, or spread over the whole spaté¢helAe = 0 ap-
proximation, dispersion dependencies of photons and anibverlap without
interaction, which means that the incident field does noitexlee excitons.
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Fig. 4.5 Dispersion in various approximations. The numisersespond to the following quasipar-
ticles: 1, photon 2, mechanical excitonor optical phonon 3, Coulomb excitor(longitudinal and
transverse); 4polariton (light exciton) 5, ‘new’ waves. The following cases are shown: (a) osdillat
strength or the particle density is small, and dispersigeddencies ‘anti-intersect’ with a small gap;
(b) Coulomb interaction between the molecules lifts theedegacy between the frequencies of lon-
gitudinal and transverse excitons; (c) interaction betwtbe molecules and the transverse field leads
to polariton défects, namely, to the energy gap (shaded area), to the dmperfsthe polariton phase
velocity w/k outside the gap and to its group veloadityurning into zero at both boundaries of the gap;
(d) dissipation leads to the smearing of the dispersion mi#grece, to finite life time and finite free
path length la = ur for polaritons; in this case, waves excited externally havemalous dispersion
(dashed line); (e,f) anisotropy of the matter leads to thEeddence of exciton and polariton frequen-
cies on the wavevector directidg’k. The figure shows frequency and angular disperdi@n, ), for
the extraordinary wave in a uniaxial crystal in the cases@dkye) and strong (f) anisotrop#;is the
angle between the wave vector and #raxis of the crystalwj andwy are frequencies corresponding
to €2z beingeo and O, respectivelyyy andw] are the same frequencies with respeato= ey.

At small Ae and negligible dissipation, there is ‘anti-crossing’, @pulsion’,
of the dispersion dependencies, which look, in the intéradrea, like two hy-
perbolas separated by a small gap (Fig. 4.5(a)).

At Ae > 1, oscillations of the charges and the field strongly inflgeeach
other, and the dispersion dependence changes consideitiiye appears the
longitudinal branch and the energy gap, near which> 0 (Figs. 4.4, 4.5(c)).
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The electromagnetic wave is followed by an in-phased(wp) or anti-phased
(w > wo) polarization wave, whose contribution into the total gyedensity is
considerable. Note once again thangitudinal oscillations, in the u= 0 ap-

proximation, do not propagate, i.e., these are waves witheadffrequencw, and

arbitrary wavelengths

Certainly, the simplest models considered here providg amjualitative de-
scription of the field dispersion in realistic media. For thescription of spatial
dispersion &ects, one has to take into account the dependenade afd wy on
k [Vinogradova (1979); Landau (1982)]. Doppler broadeniag be included into
the model by integrating (4.67), (4.68), (4.69) w.rby over the Maxwell dis-
tribution in the case of gases and over the Fermi-Diracitigion in the case
of inter-band transitions in condensed matter. Transitioetween narrow exci-
ton bands in semiconductors and molecular crystals argideddy dispersion
dependencies (4.67), (4.68), (4.69) with, wy, andk depending onw, k. Calcu-
lation of these parameters is an interesting problem il Stéite theory.

Note, in conclusion, that sometimes, instead of calculgdirit is simpler to
calculate directly the Green functi@or the spectral density of equilibrium fluc-
tuations [Zubarev (1971)], which is related to it througl tBreen-Kubo formula
(Sec. 7.7).

4.3 Two-level model and saturation

Susceptibilityy calculated above determines the response of the matteaitean
nating field only within the first order of the perturbatiomtity. This calculation
does not take into account saturation of populations anerattects nonlinear

in the field. Nonlinear fects are most pronounced under resonance conditions,
when the field frequency is close to the eigenfrequencidseitatter.

4.3.1 Applicability of the model

This section considers two-level model, which is widelydige quantum elec-
tronics and spectroscopy. The model is based on the asaumiptt the field is
guasi-monochromatic and a resonaace w1 = wop takes place only for a single
pair of non-degenerate levels of a molecule. Such a situaitypical for mag-
netic resonancefiects, nuclear (NMR) or electronic (EPR) ones. If a molecule
has a single uncoupled electron, or the nucleus has d spit/2, then an exter-
nal magnetic fieldHo splits each level in two Zeeman'’s sublevels, with the tran-
sition frequencywo = yHo, y being thegyromagnetic ratio Usually,wg is in the
microwave range and flers much from all other frequencies of the molecule.
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However, in the absence of a constant magnetic field the amah, as a
rule, is invariant to certain symmetry operations, suclogations etc., and there-
fore all energy levels are degenerate. Nevertheless, avéisicase the two-level
model provides a qualitatively correct description.

Note that in some cases, the two-level approximation is pptieable at all.
For instance, it is not valid for NMR dt > 1/2 or for transitions between vi-
brational levels of molecules with weak anharmonicity. Isaanolecule behaves
as an oscillator with nearly equidistant levels, so thatsamance takes place for
many pairs of levels simultaneously.

4.3.2 Kinetic equations

A two-level system is described by density-matrix equati(®44) withm,n =
1,2 and phenomenological relaxation timeg, andy.; = 1/T, (see (3.48),
(3.49)). LetVy, = 0, then

p21 = —(iwo + 1/T2)p21 — i(p11 — p22) V21/H, (4.81)
P11 = Wi2p22 — Wa1p11 + i(V21012 — p21V12) /. (4.82)

In the case of two levelgy 1 + p22 = 1, hencepir = —p2o. Denote
P11 — P22 = A, Wi2 + W1 = 1/T1. (483)

With the perturbation ‘switched®, <V = 0, populations should take their equilib-
rium valuesof%); therefore, the relaxation rates, andws,; are related by (3.58),
which leads to

(W12 — W21)/(Waz + Wap) = A, (4.84)
With an account for (4.83) and (4.84), Eq. (4.82) takes thefo
A = (A9 = A)/T1 + 4Im(p21V12) /. (4.85)

Let the field be quasi-monochromatic and have the mean fregue > 0
close towo,

E(t) = (1/2)Eq(t) explicwt) + c.C, (4.86)

whereEq(t) is the slowly varying amplitude of the field. Then, in theaipand
resonance approximations, one can assume in (4.81) that

Va1 ~ —(1/2)dp1 - Eo(t) expl-iot) = —(1/2)hQ expliwt +ig).  (4.87)
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Here, we have omitted the non-resonant negative-frequentiy proportional to
€t and introduced the Rabi frequen@y= |d,; - Eg|/% and the interaction phase
¢(t). For a linearly polarized field and real wave functiopss simply the phase
of the wave. Let us also define the slowly varying ‘envelogeghe non-diagonal
density matrix element,

p21(t) = po(t) eXp-iwt). (4.88)

As a result, kinetic equations for a two-level system taleeftiim
po = [(i(w — wo) — 1/To)po + iQAE¥ /2, (4.89)
A = (A® — A)/T; - 2QIm(poe™). (4.90)

This system of three equations for three real functig3, p” (t), andA(t) deter-
mines the evolution of a two-level system due to the theratastd the external
field. According to (4.89), theftect of the field orpg scales as the population
differenceA, which, in its turn, is related to the field through, according to
(4.90). It is this relation that leads to the nonlinearitytioé two-level system
response. Under stationary conditions, this nonlineandayifests itself in theat-
uration gfect, i.e., A tending to zero provided th&? > 1/T,T,. Non-stationary
effects caused by the anharmonicity of a two-level system wiltbnsidered in
Chapter 5.

4.3.3 Saturation

Consider now a stationary response of a two-level systemrnm@ochromatic
field, with Q, po, ¢, andA being constant. Then it follows from (4.89) (compare
with (4.56)) that

QA2 gy (4.91)

P e

Substituting this expression in (4.90) allows one to findgtagionary population
difference,

A =A9/(1+2TW), (4.92)

where
O2T,/2

W=s ——
1+ (wo - w)?T2

(4.93)

€We also neglect higher-order harmonics of the density matrhich oscillate with frequenciesw
and are on the order of magnitude &/¢)".
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These equations describaturation the decrease of populatiorfidirence due
to a strong resonance field. Note that (4.93) coincides \hi¢httansition rate
calculated in Sec. 2.2 for the case of a Lorentzian shape twéhunsaturated
width Awg = 2/T,. The second term in the denominator of (4.92) is called the
saturation factor

S= 2WTy = 2W/(Wiz + Way). (4.94)

Itis clear from (4.94}hat saturation results from the competition between the
transition rates due to the noise field of the thermostai, + w»1)/2, and the
external monochromatic field, W.

According to (4.93), saturation is most pronounced at esestinance, where
the saturation factor takes its maximal value,

S = QT T, = 200F T, = F/F. (4.95)

Here, we have introduced the transition cross sectiegnW/F, photon flux den-
sity F, and the photon flux density corresponding to a two-fold €ase in the
population dfference,

Fs = 1/(200T1) = hic/ (8rwoldY2T1To). (4.96)
Thus, in a resonant field the populatioffdience decreases as
AO)
A= [T (4.97)

4.3.4 °Lineshape in the presence of saturation

By substituting (4.92) and (4.93) into (4.91), one finds thée of pg with an
account for population saturation. The dipole moment of @ level system (we
consider a non-polar moleculd,, = 0) is

(d(t)) = d12p21 + C.C, (4.98)

so that the susceptibility of a medium consisting\bfwo-level molecules takes
the form (see (4.57))

Xap(Eo) = NADAEA/n(wo — w - 1/T2)

- AONdDgY o @* T
(wo — w)? + (1 + %) /T3

(4.99)

Recall that here, frequencies and wo are positive and the values gf at
w < 0 are determined by (4.99) with, i replaced by-w, —i. Note that atsy # O it
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follows from (4.99) that the susceptibiliiyw, Ep), considered as a function of the
complex variablev™= «’ +iw”, has poles both in the upper and lower semi-planes,

& = +wo £ i(1+ )4/ To.

As a result, the functiof(w, Eg) does not satisfy the Kramers-Kronig relations
(4.8) atEp # 0.

Let us find, using (4.99) and (4.14), the power of absorbedatax© < 0,
emitted radiation:

P = hwAONWb/[1+ S0+ (wo — )?T2] = Prmaxso/[1 + o+ (wo—w)?TZ], (4.100)

whereW, = |dy1 - Eo/7i|2T,/2 is the stimulated transition rate at exact resonance.
It follows from this equation that at saturation, the spacline maintains its
Lorentzian shape of the formy (L + x?), but its width increases/I + s, times
(Fig. 4.6),

Aw =21+ 50/Ta. (4.101)

This dfect is calledadiation-induced broadeningr field-induced broadening
Let s > 1+ (wo— w)?T7 (strong saturation), then it follows from (4.100) that

P = hwAON/2T; = Prax (4.102)

Thus, at strong saturation the power absorbed by the matter is ncerde-
pendent on the intensity and frequency of the field and is detgrmined by the

b
I~ =1
¥
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Fig. 4.6 The absorbed powét as a function of the frequenay at different saturation factorsy,
according to (4.100).
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rate of energy transfer from the molecules to the thermositiahe case of strong
saturation, the susceptibility real part, according t8%4. scales linearly with the
frequency,

X' ~ (wo — w)/%. (4.103)

Let us make a numerical estimate. For a wave with the intehsit1 W/cn?
and wavelengtil = 1y, iw = 2- 10 erg, F = 5- 10'8 photori(s cn?), and
Eo = v8rl/c = 0.1G= 30 V/cm. Ifdi2 = 1D, thenQ = 10° s'1, so thatsy = 1 at
T, =T, = 108s. The transition rate i/ = 5- 10’ s'1, and if AON = 10*° cm3,
asitis the case for a doped crystal or a gas at atmosphessipig then it follows
from (4.100) tha® = 50 MW/cm®. This estimate shows that in the optical range,
saturation is accompanied by strong heating of the matteith® other hand, for
electronic paramagnetic resonance in ghe 1 cm range and a; = 103 s it
follows from (4.102) tha® = 0.1 W/cn?®, so that stationary saturation is possible.
This is used in paramagnetic amplifiers.

Saturation is very important in quantum electronics. It $edifor creating
population inversion by means of auxiliary radiation (pgritplasers based on
doped solids and in paramagnetic amplifiers. It is also agbr producing short
strong light pulses via Q-switching and mode locking. Sation stabilizes the
amplitude of quantum oscillators and limits the dynamiealge of quantum am-
plifiers.

In the case of inhomogeneous broadening, for instance ooihe Doppler ef-
fect, saturationfiiects not all the line but only its part, with the width on theler
of collision or natural bandwidth. Thidfect, leading to th&ennett hole burn-
ing in the velocity distribution of the molecules (Fig. 4.7)used for frequency
stabilization of lasers and in saturation spectroscopy.(Gd).

AN

|
! -
0 V(@) [

Fig. 4.7 Bennett hole burning. For a line inhomogeneoustabtened due to the Doppleffect,
saturation only fiects those molecules whose velocities have given projedtigw) = (wo — w)/k on
the directionk of the wave propagatiom\N(Vv;) is the velocity distribution of active particles.
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4.4 °Bloch equations

4.4.1 Kinetic equations for the mean values

In the previous section, we first solved kinetic equatiorstiie@ density matrix
and then, with the help of the obtained solutigt), we found the necessary mean
(observed) value according to the formyfqt)) = Tr{fp(t)}. It seems natural to
try to excludeo and to find kinetic equations for the observables directlycts
equations can be obtained from the equationgfdaut here we will find them in
a different way.

In the case of a closed system, equations for the observaebaitebe found
by averaging the Heisenberg equations, which determingrtfeedependence of
operators in the Heisenberg picture,

ind f/dt = [f(t), H(1)]. (4.104)

(We assume that has no direct time dependence.) The averaging is over the
initial density matrix, which is usually considered as difpuum,

id(f)/dt = Tr{[ f (t), H(t)]p(to)}. (4.105)

In the case of multi-particle systems, the derivatiy€)/dt depends, as arule,
not only on the mean valud (t)) but also on the second moments or correlation
functions(f (t)g(t")). One can write the Heisenberg equations for the second mo-
ments, but after averaging, the result will contain thedmroments, and so on.
In order to ‘unlink’ this infinite chain of equations for theaments, one has to
neglect the correlation of some values at a certain pofigh, ~ (f){g).

As a result, after excluding ‘excessive’ variables, one chtain relatively
simple kinetic equations for the observables of a singl¢igar In these equa-
tions, interaction with other particles and with the thestadis taken into account
with the help of a few phenomenological parameters, likaxation timesT, T,
for a two-level system or kinetic transfer dbeients. It is noteworthy that, ac-
cording to FDT (Sec. 7.7), kinetic cfirients for the first moments provide infor-
mation about the second moments, i.e., fluctuations.

Approaches based on the density-matrix equations ardrdgréguivalent to
the ones based on the equations for the mean values, andhihelg yield simi-
lar results. Note that in classical statistical physiosiilsirly, there are two basic
methods of describing the kinetics: the first one is basedthenlistribution func-
tion (Liouville’s equation, Boltzmann’s distribution, kker-Planck equation), and
the other one, on the momentsffdsion and transfer equations).

Macroscopic Maxwell’s equations are, in fact, kinetic etiprgs for the first
field momentgE), (H), with the phenomenological functi@fw). The relaxation
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time v of a monochromatic field is apparently equal to the ratio &f émergy
density,& = €|Eol2/8r, and the loss poweg, = we”’|Egl?/8r, i.e.,7 = € we”.

The same result is obtained if we set equality betweand the absorption
length Y« divided by the velocity of the wave/n.

Below, we will consider equations for the observables of a-lgvel system
in two typical cases, namely, for electric dipole and maigragipole interactions,
the energy of interaction with the field beirgd - E and —u - H, respectively.
In the latter case, the observable is the magnetic mofperif the particle or
magnetizatiorM = N{u); kinetic equations for these observables are called the
Bloch equations In the case of electric dipole interaction, kinetic eqoiasi for
(d) and the population ffierenceA, i.e., energy imiwg units, are similar to the
Bloch equations and are called thgtical Bloch equations

4.4.2 Pauli matrices and expansion of operators

Description of two-level systems is most convenient in ohtwo-dimensional
Pauli matriceswhich are defined as

O'XE(g (1)), O'yz(? Bi), O'ZE(é _](?) (4.106)

These matrices,mn = (Mo, [N) representcertain operators,, whose eigenval-
ues arel = =1. (Recall that the eigenvalues of a matfjy, are defined as the
roots of the characteristic equation, {dgt — 26mn} = 0.) The matrix represen-
tation (4.106) is theeigenrepresentatiofor the o, operator. From (4.106) and
the rules of matrix multiplication, we find the multiplicati table for the Pauli
operators,

OOy = —0y0y = 107,
o2 =1, 0y0; = —0,0y = 0y, (4.107)
00 = —0x07 = i0y.
Thus, the Pauli matricemnti-commutevith each otherd,o3+ 030, = 2045).
and their commutation relations coincide with the oneslierCartesian compo-
nents of the angular momentusn

Itis also convenient to introduce elementary matriceedalladic tensorsor
outer productf vectors,

10 01
@ = = ) = -
o —I1><1|—(0 O)’ o —I1><2|—(0 0)

00 00
o) = = @ = =
—|2)(1I—(1 0), o —|2)(2I—(0 1)-
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In the general case, two arbitrary vect¢as and|b) can always compose a di-
adic tensor, with the matrix elements given by the produtte®corresponding
components of the vectors,

@ = jaxb|, 0@ = (mja)(bjn).

A symmetric diadic operatar™ = |n)(n| is called a projector, since its action on
a vector consists of projecting it onto tfme direction,

oMja) = [n)(nja) = const: |n).

Usually, [n) is a unit vector(njn) = 1. Note that the mean value of a diadic
operatoio™ coincides with the corresponding element of the transpdeadity
matrix,

(@™) = Triplmynl) = > padlim(nik) = oo
ki

The Pauli operators are related to the diadic operators as

200 = | + 0, 209 =1 — 0y, 20%) =0y & ioy,
oy = 0D 160, oy =0 — o), 7y = eV — @,
| = o® 4 @,

One can easily find the multiplication table and the comnmniatelations for the
diadic operators,

o = O g 20 gD = gD,
o = ¢@ [¢), 6O = oy, [0®), 0] = T20.

Note thato™® are non-Hermitian operatorso®)* = o®. They can be called
creation and annihilation operatorfor an energy quantum. Indeed, 18 be
the ground-state wave function of the system. &€ operator turns it into the
excited-state wave functiomr")|2) = |1). Similarly, o)1) = |2).

One can easily verify that any Hermitian operator actincghim Hilbert space
of a two-level system can be represented as a sum (sometimeslvkeep the
‘hats’ over the operators),

f = al + by + cory + dd, (4.108)

wherea, b, ¢, d are real numbers. Indeed, combining (4.106) and (4.108jinsle
the relations that define the d&eients in the expansion (4.108) in terms of the
matrix elementsn,

A a+d b-ic
f_(b+ic a—d)' (4.109)



98 Physical Foundations of Quantum Electronics

Recall that quantum mechanics, similarly to vector calsulperates with
three types of variables: usual complexmbers(c-numbers, scalars), complex
vectors(wave functions of discrete or continuous variables), gigg n numbers,
andoperatorg(matrices, tensors), given Iof numbers. (Here) is the dimension-
ality of the vector space, equal to the number of states ofykem.) For a given
operator, one can find, according to certain known rules;dineesponding scalars
(eigenvalues and trace), which are invariant with respeat¢hange of represen-
tation, i.e., to a rotation of the basic vectors. The Pautieed = {6, Gy, 677},
and the orbital momentu) which is proportional to it, are vectors in a real three-
dimensional space and, at the same time, operators in thractispace of states
having two complex basic vectol, |2).

Note that the coicients in the Pauli-matrix expansion (4.108) of an arbjtrar
operatorfA have a clear physical meaning. They determine two valudsttlea
observablef can take at single measurements. By writing the equatiothi®r
eigenvalues of matrix (4.109), one can see thasfrectrum f, = f, consists of
two numbers,

f1o = a+ (b + ¢+ d?)2, (4.110)

Let the basic vectors for the representation (4. 106) berbeyy states of the
system. Then the operatﬁfo is diagonal and, fof = Ho, it follows from (4.109)
thata=b=c =0, d = —hwo/2. Therefore, the Hamiltonian of the system scales
as theo”; operator,

Ho = —hwod/2, (4.111)

wherefiwg = Hozzo — Hor1. The relative population eierence is in this case equal
to the mean value af,,

(02) = p11—p22 = A (4.112)

Let the eigenfunctionjgn) of the7:(o operator and, hence, the matrix elements
of the electric dipole moment,,, be real,d;2 = dp; = do. Let us also assume
that the diagonal elements are absent (the molecule is alam}pd,, = 0, then
the operatoﬂ = —ef scales agry,

d = dodry, (4.113)
and the perturbation operator takes the form

V= —(do - E)ox. (4.114)
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4.4.3 The Bloch vector and the Bloch sphere

Let us define théloch vectorR (also calledpseudo-spipas the mean value of
the Pauli operatar. Using (4.106)R can be also written in terms of the density
matrix,

R = (o) = {205y, 2051, A). (4.115)

Thus, theR vector, similarly to the density matrimn,, fully determines the
state of the system. In other words, an arbitrary state ofcaléwel system is
given by three real numbers, which can be explicitly showa Ippint or a radius
vector in some three-dimensional space. In the case of algpiparticle, this
vector is parallel to the mean orbital momentum. In the cédsm@lectric dipole
two-level systemR does not correspond to any observable vector, butdsdz
components, according to (4.111), (4.113), have a cleasipalymeaning.

Let us find the length of thR vector. According to (4.115) and (3.18),

R = (p11— p22)® + dpanf < L. (4.116)

In the case of a pure state, by definition (3|d)/? = p11022 andR is a unit vector.
Thus, an arbitrary pure state of a system can be shown by & @oia sphere
called theBloch sphere If the state is mixed, then (see (3.18ph1l? < p11022,
andR < 1.

During time evolution, the depicting point (tit) vector) moves along some
trajectory on the unit sphere. This trajectory, for an adbyt perturbatiornV(t)
(4.114), can be found using the Heisenberg equation (4fb@4), and the com-
mutation rules (4.107). AV = 0, (3.46) immediately yields

Ry = Ryo COSwot + Ryo sinwot,
Ry = =Ry Sinwgt + Ry COSwot, (4.117)
R; = Rp.

Thus, in the case of a closed system, the end ofRRhector circles around
the z axis, similarly to the precession of a spinning top arouredghavity force
direction (Fig. 4.8). According to (4.111) and (4.113), #reergy is constant in
this case, while the dipole moment oscillates with the ttamsfrequency. In

particular, for a pure coherent state, with= exp(¢n)/ V2, it follows from (3.4)
that

Ry = COS(ot + @1 — ¢2),
Ry = —sin(wot + ¢1 — ¢2), (4.118)
R, =0,
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fy,

,RZ

Fig. 4.8 The state of a two-level system represented gemalgtrusing the Bloch vectoR whose
components determine the dipole momédiit = doRy and the population éierenceA = R,. The

z axis is directed downwards, so that points denoting thetexkatates of the system are above the
point denoting the ground state. Under free evolution ofsygtem,R undergoes precession with the
frequencywo, the angle of precessiaghbeing determined by the initial conditions.

i.e., the depicting point moves along the ‘equator’ of awysjthere, and thpre-
cession anglés ¢ = arctanR, /R;) = x/2. For an energy state, the point rests at
one of the polesa, = 0 or 1,9 = 0 orx). A weak resonant perturbation causes
a slow variation of the precession angle with the Rabi fregyethe so-called
nutation(Sec. 5.1).

4.4.4 Higher moments and distributions

Recall that the density matrix (or, according to (4.119)g vectorR = (o))
provides full statistical information about the system,,iallows one to find the
higher momentgfky and the probability distribution3(f) of an arbitrary observ-
ablef. Moments can be easily expressed in termg of (o,) using (4.108) and
the multiplication formulas (4.107). In particular, it folvs from (4.107) that

2k+1 2k _ [
ry .

o =0y, 05

Hence, the main measure of fluctuations, the variance, is

Ao? = (%) —(0,)?=1-R

e

(4.119)

For an energy state, wheRy = +1 andR,y = 0, the energy variance is equal
to zero, while the variance of the dipole moment is a unitydgrunits). In the
case of a coherent state, according to (4.118), the eneigydites with the unity
variance (infiwg/2 units), while the variance of the transverse componenis,
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depends on the time instance of the measurement, as itabssillvith 2o fre-
guency between 0 and 1.

Consider the uncertainty relations containing the vaearaf the Pauli vector
components and limiting the accuracy of their simultaneoessurement. Ac-
cording to (4.119),

Ao?Ac? = 1+ RRE - R - R,
A0§+A0§:2—R(21—%.

For an arbitrary state, the length of tie vector does not exceed unity (see
(4.116)); therefore, the following inequalities hold true

AaiAaé > Rﬁ + R?,Ré, (4.120)
Aos+Aoh > 1+ R, (4.121)

wherey # a, 8. Inthe casé&r, = 0, inequality (4.120) takes the form of a standard
uncertainty relation,

AfAg = ([f,gDl/2. (4.122)

Let us now find the probability distributions. LB}, (+1) be the probability of
o, taking valuest1, then

(0a) = Pa(1) = Po(=1) = 2P,(1) - 1.
Hence,
P.(£1) = (1+R,)/2
For instance, for a coherent state (4.118),
Py(1) = co(wot + @2 — ¢1)/2].
Similarly, for an arbitrary observable of a two-level syste

P(f1) = 1 - P(f2) = ((f) - f2)/(f1 - f2). (4.123)

4.4.5 Bloch equations

Let us find the equations of motion for the Pauli vector. Frémi@4), (4.107),
(4.111), and (4.114), it follows that

0.-)( = U)Oo-y,
oy = —wooy + Q(t)o, (4.124)
o7 = —Q(t)oy,
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whereQ(t) = 2dy - E(t)/% is the ‘instantaneous’ Rabi frequency. Let us introduce
the vectorA(t) = {Q(t), 0, wp}, then (4.124) can be represented as a vector product,

o=o0xA. (4.125)
From (4.125), we immediately find a similar equation for tHed vector,
R=RxA. (4.126)

According to (4.126)the R vector, which represents all properties of a two-
level system, is precessing around the instantaneoustidireaf the gfective field
vectorA(t).

Further, let us take into account, in the simplest approtionathe interac-
tion between the particle and its environment. Assume tieaktis an exponential
relaxation with two positive parameters, T,, which characterize the rate of ap-
proaching thermodynamic equilibrium after the perturdmais df. As a result,
the Heisenberg equations (4.125) turn into the so-calfgital Bloch equations

R=RxA-R,/T,— 2R, — AO)/T,, (4.127)

whereZis a unit vector along theaxis.

One can easily verify that these equations, with an accamif.115), co-
incide with the density-matrix equations (4.81), (4.85)d dence all results of
Sec. 4.3 are still valid. However, now the system behavigrdraobvious geo-
metric interpretation.

It should be stressed that the Bloch equations (4.127) aetikiequations,
describing only the first moments of the observalites (o); they provide no
information about fluctuations and higher moments. Theilatan be only found
by choosing some particular stochastic model of relaxation

In the case of a monochromatic field, a settled stimulatedamatf R is pre-
cession with the field frequeney around thez axis (Fig. 4.8). The precession
angled, according to (4.91), is given b¥)(= |do - Eol/7%)

R _ 2pal _ sign)QT;

tand = — = = , 4.128
R, A [1+ (wo — w)?T3]Y? ( )

and the length of th& vector, according to (4.92), is
R= A/ cos? = AQ/[cosd(1 + tarf 9)], (4.129)

whereé = T1/T,. LetTy = T, = 7 andw = wp, then theR vector, due to
the resonance field, shrinks §1Q°7%)%Y2 times and precesses at an angle-

arctan{2rsign(A)).
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Fig. 4.9 Relaxation of the Bloch vectd®. After the perturbation is switchedffo the transverse
component goes down to zero at a raté'pf, while the longitudinal component takes its equilibrium
valueA© at a rate off ;L.

If the perturbation is suddenly switcheff,dhe R vector, according to (4.127),
will simultaneously precess with the Bohr frequengyand undergo relaxation to
the equilibrium valug0, 0, A©)}, i.e., move along a spiral (Fig. 4.9). Th > T,
then the first to disappear is the transverse compoirent.e., the non-diagonal
element of the density matrixy;, and after thaR, takes its equilibrium value.

4.4.6 Equation for polarization

In the framework of the two-level approximation, the ob&arequations (4.127)
fully determine the optical properties of the medium, bdttienary (Sec. 4.3)
and non-stationary (Chapter 5) ones. To make it more obyletsis pass from
the variablesR,, Ry to polarizationP = NdoR [Pantell (1969)], which enters
Maxwell's equations. From (4.127), it follows that

P+ P/T2 = woNhR,. (4.130)
Taking the second derivative, we get

|5 + P/T2 = a)oN do(—Ry/Tz - (UORX + Q(t)RZ) (4131)
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In practice, alwaysgT2 > 1, so that af2 < w ~ wp, according to (4.130), one
can assume in the right-hand side of (4.131) that

woNdoR, ~ P. (4.132)
As a result, we find that polarization satisfies the secowi@dimear dfferential
equation (we assume thdg||E)

Zwodg
—EAN, (4.133)

. 2.
P+ T—2P +wiP =
whereAN = NR, is the population dference per unit volume. Substituting
(4.132) into the equation fd®;, we find the equation fokN,

AN + i(AN - AON) = _2 Ep) (4.134)
Tl hwo
This equation has a simple meaning: according to (4.EEI?)js the power ab-
sorbed in the matter.
Thus, a two-level system behaves as a harmonic oscillatbrttve damping
1/T» whose coupling with the external foreedepends on the force itself, with the
inertia timeT;. In the case of a weak field, with the saturation fa€6t, T, < 1,

the system is equivalent to a linear oscillator.

4.4.7 Magnetic resonance

As it was already mentioned, two-level approximation is treggplicable to a
spin-12 particle. In a magnetic field, an electron acquires adui@nergyH =
—u - H, with g being the magnetic moment of the electron, anti-parallétgo
mechanical momenspin) s, u = —(guo/%)s. Here,g = 2.002 is the so-called
factor of a free electronyg = ei/2mc = 0.927- 10-2%rgG is the atomic unit of
magnetic dipole momenB@hr's magnetoj The spin is usually given ik units:

s = s/h. The operators of spin projections,, scale as the Pauli matrices, i.e.,
S = o /2. Thus, if we ignore the éierence betweegand 2, themu = —uoo, and

H = poH - 0. (4.135)

Now, using commutation relations fot, (4.107), we can easily find equations
of motion for any operator. For instance,

ihoy = MO([O-X’ O'y] Hy + [O-Xa 0'2] Hz) = 2iHO(HyO'z - Hzo'y)- (4-136)

Derivatives for other components can be written in a similay. As a re-
sult, equation of motion for the Pauli vector takes a simplenf (compare with
(4.125)),

o=y x H, (4.137)
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wherey = —2up/h = —2r - 2.8 MHz/G is thegyromagnetic ratio Since theo
vector scales as the magnetic and mechanical moment of einogleequations
for u ands have a similar form, for instance,= ysx H.

The last equation has the same form as the classical equatioatational
motion, according to which the rate of angular momentumatan is equal to the
torque of the forces acting on a dipole in a magnetic figlg,H = —2uosx H /.
Thus, an electron in a magnetic field behaves similarly toia &p under the
action of two forces. In the case of a constant magnetic f{@ld,37) describes
precessionthe motion of the momentum vector along a cone arddgn(Fig. 4.8).
The precession frequeneyp = |y|Ho, coincides with Bohr’s transition frequency,
(Hoo — Ha1) /.

However, in contrast to a classical spin top, the observabigilar momen-
tum of an electron can have only a single absolute vaue (¥, $2)V/2, equal to
hV3/2, sinces? = 1. Also, a single measurement of its projection onto an axis
can only yield one of the two valuesfi/2. Note thats® # (s)? = Y.(s,)?; forin-
stance, in a mixed state with equal populatiohs=(0,; = 0), all three projections
are equal to zero, so th&k)? = 0.

Let the magnetic field have, in addition to the constant cameptH, a time-
varying componeni | (t), orthogonal tdH,. Let thex axis be parallel tad, and
thez axis be anti-parallel tédo. Then the electron energy (4.135) can be written
in terms of the Pauli operators,

H = Ho + V(1) = ~h(woors + Q)o)/2, (4.138)

where, this timeQ(t) = yH, . We have choseH;, to be negative for the subscript
1 to denote the lower level. Once again, the Heisenberg iemsaiake the form
(4.124).

Let us average these equations over the initial densityixpaéiss to magne-
tization M = —ugN({o), and add relaxation. We get

My = —My/T2 + woMy,

Mz = (M£0) -My)/T1 - VMyHL,

whereM? = —,)NA®© is the static equilibrium magnetization.

This system of equations, determining the magnetizatinatids of a param-
agnetic material (electronic or nuclear) in a constant oaée field, is called the
Bloch equationsThe Bloch equations describe magnetic resonance, isenaat
absorption of radio waves. Thisfect forms the basis of the most important di-
rections in radio spectroscomlectronic paramagnetic resonan(EePR),nuclear
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magnetic resonand®MR), andferromagnetic resonancé®ne can easily verify
that the Bloch equations are equivalent to the densityiraduations in the case
of a two-level system; therefore, all above-made conchssare also valid for the
case of magnetic resonance, witt - E(t) replaced byio - H (t).

As we have already mentioned, oftda > T,, since the relaxation of the
population energyo-) is only caused by non-adiabatic interactions of the particl
with the environment, for instance, non-elastic collision a gas or spin-lattice
(spin-phonon)interaction in a crystal. Atthe same timeiaten of the transverse
components{o-, ) (or p21), does not require energy transfer, and hence the ‘life
time’ of (o-,) reduces as a result of both adiabatic (spin-spin) and n@batic
perturbations. One can say that perturbations ‘distudpttecession phagg—¢;
in (4.118), which is the argument p$;, and hence the time and ensemble mean
values tend to zer@g, ) — 0.



Chapter 5

Non-Stationary Optics

In previous chapters, we mostly considered settled, statjocases of the inter-
action between a field and matter. With a harmonic field omsient processes
decay due to the relaxation, and the oscillation of charges gn with a station-
ary amplitude, given by the susceptibility Susceptibility with an account for
saturationy(Eo) (see (4.99)), determines the response of the matter, gaofel
the polarization amplitud®y, to a quasi-monochromatic perturbation, provided
that either the amplitudg is constant or the time of its variation is much greater
than the relaxation timeg > T1.

If the field is weak and there is no saturation, the populat&axation time
T, does not play any role, and the stationarity condition hasfdhm g > T,.

It is important that in the absence of saturation, the eqonatof motion of matter
are linear, and hence the susceptibilifw) also determines non-stationary, tran-
sient processes. For instance, the response of matter wrta(sh <« T,) weak
pulse scales as the Fourier transforny@b), i.e., Green'’s functiog(t), and has
the form of a set of oscillations decaying with the tin®eg,, (see (4.63)). The
response to a weak pulse of an arbitrary sh&{8, is given by the convolution
of x(t) andE(t).

A question arises: what will be the response of matter totséwod strong
pulses? In this chapter, it is shown that under such comditieeveral unusual
optical dfects can be observed. Among theskeds, calledcoherent ones,
there are, for instanceself-induced transparency, optical echo, and superradi-
ance Some of these essentially non-stationafe&s have been observed in ra-
dio spectroscopy relatively long ago; however, in the @itiange they have only
been observed after the invention of the lasers. Apart df teneral theoret-
ical importance, optical non-stationarffects are of practical interest from the

an this book, instead of the ambiguous term ‘coherent’ wé ugk the term ‘non-stationary’, which
is more accurate for the description of theeets considered.
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viewpoint of spectroscopic applications and for the optattion of lasers. They
also form the basis afoherent(non-stationary) spectroscopy [Steinfeld (1978);
Manykin (1984)]. More detailed description of non-statiopeftects can be found
in Refs [Allen (1975); Macomber (1976)]. In Sec. 5.1, usihg Bloch equations,
we find the variation of the state of a two-level system undshart resonant
light pulse. Further, we consider emission from a singlena(Bec. 5.2) and an
ensemble oN atoms (Sec. 5.3) underftérent initial conditions.

5.1 Stimulated non-stationary dfects

Consider the reaction of a two-level system to a quasi-haronerturbation of
finite duration. For simplicity, assume that the pulse empelis rectangular, with
the durationrg < T», so that one can neglect relaxation and use the relations for
the density matriym, or the equivalent Bloch equations fr= {205,, 207, p11—
p22} at T2 = oo. Then, the Bloch equations (4.126) have the same form as the
Heisenberg equations for tleeoperator (4.125). In other words, at time intervals
much shorter than the typical times of the interaction betwie system and its
environment, it can be considered as isolated and describstgad of kinetic
equations, in terms of the Schrodinger equation for theewfawnction, the von
Neumann equation fqgx(t), or the Heisenberg equations for the operators.

We have already solved this problem using the Schrodingeaitgon in Chap-
ter 2, where we have found the amplitudes of the perturbeadsstaq(t) and the
transition probabilityP, = |cmnl® for a multi-level system in the first order of the
perturbation theory. However, in the case of a two-leveleys there is no need
to represent the solution as a perturbative series.

5.1.1 Atom as a gyroscope

Let us turn to the geometric representation of the instaté gif the system us-
ing the Bloch vectoR. According to (4.126), it behaves similarly to the orbital
momentum of a body with a single fixed point,

R=RXA. (5.1)

Here,A = {2doE(t)/%, 0, wo} is the dfective field vectordy = dy1 = djz is the
dipole moment of the transition, which is assumed to be redlgarallel to the
field E(t), andwg is the transition frequency. Equation (5.1) preserveseahgth
of theR vector, which is unity in the case of a pure state. The endedRtliector
moves then along the surface of a unit sphere.
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Consider the trajectory of this motion in a quasi-monochatiatield,
E(t) = (1/2)Eo(t)e™ ™ + c.c.

Let us pass to a reference frame rotating with the field fraque around the
zaxis,
p21 = po€ ",
Ry = Rox Coswt + Roy sinwt, (5.2

Ry = —Rox Sinwt + Roy coswt.

Let the conditiongw — wo| < wg, doEy <« Twg hold, then the rotating-wave
approximation is applicable and the functigngt), Ro(t) are slow compared to
e !, These functions have a simple physical meaning: they miterthe ampli-
tude and the phase of the mean dipole mom@ht= 2dgp’, = doRx. The power
absorbed from the external field is proportionaRg(t), see (5.12).

Itis not difficult to verify that in the rotating-wave approximation, atjon of
motion (5.1) takes the form

RO = Rg X fz, (53)
where

Ro = {205, 205, A},

Q = {Q coSyg, Q Singy, wo — w}, (5.4)
A = p11—p22,Q = doEo/ 1,

o is the initial phase of the field at the center of the atom; endhse of a plane
wave,¢g = kz+ ¢1. Recall that for simplicity, we assume the matrix element of
the transition to be real. In the general cages= arg(dz: - Eo).

Thus, in a harmonic field thRg vector, which represents the state of the sys-
tem, rotates with the rat® = [Q? + (wo — w)?]*2 around the ‘Gective field’
directionQ (Fig. 5.1). This slow rotation is calledutatior it adds to the fast
stimulated precession with the rate equal to the field fraque. In other words,
the angle of precessiaf(t) (see (4.128)) slowly varies within the pulse duration,
so that the depicting point moves along a spiral on a sphetethgé fixed radius
R= (A% + 4o) "%

In the resonant case, whete — w| < Q, the nutation axi€2 is in the equa-
torial plane. If, in addition, the initial state is an eneaye, i.e.R(0) is at one of
the poles and(0) = 0 orx, then, due to thefiect of the fieldR moves along a
meridian with the longitudeq + /2.
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Fig. 5.1 Nutation of the Bloch vectd®. Due to a monochromatic fiel&, in addition to precession,
rotates around the direction of th&etive fieldQ with the nutation rat€): (a) the frame of reference
rotates with the field frequenay; (b) a fixed frame of reference; solid line corresponds toetkesct
resonance, dashed line,do# wo.

As to the non-resonant casep — w| > Q, the nutation axis is almost parallel
to thez axis, so that th& vector moves approximately along latitudes, with the
angular rat€) ~ wp — w in the rotating reference frame, i.e., with the ratgin a
fixed frame.

In practice, of course, the envelope(t) of the field increases and decreases
gradually, so that the rate® andQ are slow functions of time. At exact reso-
nancew = wo, variation of the precession angle is determined by the'arethe
pulse [Allen (1975)],

9(t) - 9(0) = fo t Qdt = do fo t Eodt/. (5.5)

The phasey, of the field is assumed to be constant, i.e., only amplitudduts
tion is considered.

Note that equation (5.3) provides a recipe for preparingsathitrary pure state
of the system (with given ‘latitude’ and ‘longitude’) witihé help of a coherent
field: one should first cool the system, i.e., move the damgbioint to the South
pole, and then apply a resonant pulse with a given area arstpha

5.1.2 Analytical solution

In the casdey = const, it is not dificult to describe nutation algebraically. Let, for
instance, the initial state be stationary, i.e., the deggboint is att = O at one
of the poles, ango = 0. Then (5.3) is satisfied by the following functions of the
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time [Allen (1975)]:

2Q(wo — w) . 5, ~
Rox = A(0) == 2—sirf(0t/2),
Roy = A(O)% sin(Qt), (5.6)
202, -
R, = A(O)[l— = S|n2(Qt/2)].

The last equation can be understood in terms of the trangiiobability. Let
the system initially be at the ground leva0) = +1, then the probability? of a
transition up isp22 = (1 - Ry)/2, and (5.6) leads to theabi formula

2
P= [g sin(fzt/z)] . (5.7)

Note that alQ < |wo — w|, (5.7) coincides with the transition probability (2.34),
which was found using the perturbation theory,

(wogi 9 sin(woz_ wt)r. (5.8)

Hence, if one finds the transition raté = ‘é—[" from (5.7) and averages it over

the exponential distribution of interaction times (seeehd of Sec. 2.2), the re-
sulting expression will be equivalent to formula (4.1003d#bing the stationary
absorption with an account for saturation Tat= T).

Thus,in the presence of a resonant perturbation, a quantum sypiesees
periodically from the ground level to the excited one andkb@dg. 5.2). The
transition time, according to (5.7), is

t, = 7/Q = 771/ doEo. (5.9)

P=

oL '

Wy E,

Fig. 5.2 Transition probability as a function of time, aatiog to the Rabi formula, in the case of
exact resonance (solid line) and with- wp = V3Q (dashed line).
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This picture should be compared with the idea of ‘quantumgsimcommonly
used at the early stage of quantum mechanics.

Let a transition withdy = 1D be caused by a strong plane wave with the peak
intensity 1 GWen?; then,Eq = 1 MW/cm, and (5.9) leads ty = 1ps. This time
is in many cases much smaller than the relaxation time, hemcapproximation
T12is valid.

But for usual optical experiments, > T1», and theR vector, depicting the
state of a two-level particle on the sphere, does not havegimtime to move far
from the South pole before the next ‘collision’ of the pdsiwith the neighboring
ones, which returnR into the equilibrium position withR, = 0. As a result, on
the average, dynamical equilibrium takes place, with aagedtationary angle of
precession (4.128).

Note that the amplitude of the field required for stationaatusation,Ey >
h/doVT1T2 (See (4.95)), does not exceed, on the order of magnitudegutise
amplitude required for observing coherefieets,

Eq > h/doT>. (5.10)

In other wordsa field that can cause a transition within a time much shottat
the relaxation time, will cause, on a long-time scale, sfysaturation

Below, we will consider several experimental methods ofepbisg non-
stationary €ects.

5.1.3 °Nutation

Let an equilibrium two-level system interact with an eleatagnetic wave with
the amplitudeEg and the resonant frequenay = wg. At short time intervals,

t <« T, the response of the system is described by equation (5&)ording to
this equation, the Bloch vect®, which denotes the instant state of the system,
performs, like a spin top, nutational motion, i.e., peroodriation of the preces-
sion angled with the Rabi frequencf® = dyEo/%. At exact resonanc&® moves
along a meridian from the South pole (the equilibrium stétedugh the equa-
tor (a coherent state) to the North pole (population ineersand back, with the
angular rate.

Evidently, when theR vector moves upwards, towards the North, the
ensemble-averaged energy of the system increases duedndtgy of the wave,
and at the time instance whén= Qt = r, the wave, on the average, loses exactly
one energy quanturiw. Further, wherR goes downwards, towards the South,
the system gives the stored energy back. As a result, the besngmes amplitude
modulated with the nutation frequenfy(Fig. 5.3). Provided that there are suf-
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Fig. 5.3 Hfects of transient optical nutation and free polarizatiocage The front slope of a resonant
pulse (dashed line) creates in the matter a transient mpoegation, which leads to the intensity
modulationl (t) of the transmitted light (solid line) with the Rabi frequgnHere,« is the absorption
codficient with an account for saturatiohis the layer thicknessl, is the transverse relaxation time.
The back slope of the observed pulse gets a ‘tail' causedéfréle polarization precession.

ficiently many atoms, the wave transmitted through the matie have a 100%
modulation. This periodic variation of instantaneous cgdttensity of the matter
is calledoptical nutation

Let us find the power absorbed by the matter. According t}blarization
of a medium with the densiti of two-level atoms is

P = 2dpNp5,; = doN(Rox OSQt + Ry sinwt) = P coswt + Pssinwt,  (5.11)

where thein-phase P., and thequadrature Ps, polarization components have
been introduced. (We assume thaty = 0 andE = Epcoswt.) From (4.13), it
follows that the loss power averaged over the periot2per unit volume of the
matter is determined by the quadrature component of theipateon,

P) = %wEoPs(t) = wdpEgNRyy(t)/2. (5.12)
Hence, with the help of (5.6) we find
P(t) = hwA(O)NQ sin(Qt)/2. (5.13)

This result agrees with the above-given qualitative carsition assuming that
the field and the atoms periodically exchange energy qualai® that, because at
t <« T1, relaxation is too slow to manifest itself, real absorptios., irreversible
energy dissipation into the thermostat, is absent here.

Further, at > T 5, the amplitude of atoms nutation reduces due to relaxation,
and a stationary angle of precession is established (4.AB8prption of the field

bEditors’ note: the terms come from radio spectroscopy; iminear and quantum optics they would
be called amplitude and phase quadratures.
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occurs then in a usual way and is described, according toELb), by the imag-

inary part of the susceptibility. Modulation of the transied wave disappears,
and its amplitude is given by the Bouguer law with an accoanséturation (see
Fig. 5.3 and Sec. 6.4).

If then the field is suddenly switchedfpthe matter will continue to emit light
for some time (Fig. 5.3) due to the free precession ofRheector; the matter
is then in a cohererduperradiance stat€Sec. 5.3). This #ect is calledfree
polarization decay

In the presence of inhomogeneous, for instance, Dopplmdadening, these
formulas refer to only a small group of atoms with a certaiojgction of the
velocity. In order to find the total polarization, they shibide integrated over
Maxwell’s distribution.

Optical nutation can be used for finding the transition dégabment by mea-
suring the modulation frequengy and for the study of relaxation processes by
observing the modulation decay rate.

5.1.4 Self-induced transparency

Further, let us consider interaction of two-level atomgwghort resonant pulses
with durationtg < T12. According to (5.13), such pulses increase the energy per
unit volume of the matter by a value

&= f N Pdt = AwA(O)N sir(Qre/2). (5.14)
0

Let, for instancerg = 27/Q, so thatEqre = 2n7/dg forms the so-called ‘2
pulse’, thenS = 0, and the pulse should pass through the matter without pbsor
tion! This theoretical prediction seems paradoxieaiaterial that is completely
opaque in the usual sense has full transmission fg@tcently short and strong
pulses.

This dfect, namedself-induced transparendisiT), or self-bleachingis in-
deed observed in experiment. (It should be distinguishewh fthe saturation ef-
fect, which also leads to deviations from the Bouguer lawhe Hfect of the
matter on the radiation is manifested here only in the rédndif the propagation
velocity and in the pulse distortion. However, it is impartéhat the ‘area’ of the
pulse,® = Qe (see (5.5)), remains equal ta.2

SIT can be qualitatively explained as follows. The first hadlthe pulse in-
cident on the matter)( = x) is absorbed by the atoms, which pass into the ex-
cited state with the population inversion. However, theosechalf of the pulse
‘eliminates’ this inversion, so that the absorbed energyoiserently returned to
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the field. Note that irradiating the matter with sharpulses is an example of a
non-stationary way to create population inversion in texel atoms.

For the quantitative description of SIT, it is necessaryaosider the inhomo-
geneous wave equation in combination with the equation tiemae., Maxwell's
and Bloch’s equations (see, for instance, Ref. [Allen ())755uch a consider-
ation shows that the propagation velocityof a 2t pulse is determined by its
‘length’, cre = |, and the usual absorption deientay,

c/u=1+agl/2. (5.15)

Thus, the longer the pulse, the more delayed it gets. Foarost atrg = 1ns
(I = 30 cm) andag = 107 cm! the pulse is slowed down by three orders of
maghnitude.

An interesting result of the wave theory in nonlinear matisris the prediction
of solitons stable pulses whose shape and amplitude do not changegouhse
of propagation [Rabinovich (1989)]. In the case of two-learharmonicity,
solitons have a hyperbolic secant shape,

Eo(7) = (2h/dote)sech¢/te), 7=t - z/u. (5.16)

One can easily verify that (5.16) is & pulse, i.e.,ftho = 2nth/do.

It follows from (5.14) that 4 and, generally, 2n pulses do not get absorbed
either. According to the wave theory, in the course of prepiag such pulses
split in separate stablerZolitons.

Note that SIT also takes place for inhomogeneously broatieaesitions (for
instance, in the presence of the Dopplfeet in gases or ingomogeneous static
fields in solids), where Aw = T; < T». Itis important that the condition
e < T, is not necessary. SIT is also observed under inter-banditi@ms in
semiconductors.

5.2 Emission of an atom

Consider an equilibrium two-level system after the incickenf a resonant/2
pulse with the durationg = 7/2Q. According to (5.3), in the end of the pulse
duration the system is in a coherent state with the coorglinat= ¢ = n/2
on the Bloch sphere (the initial field phase is assumed tpde 0). Recall
that in a coherent state, the energy of a quantum ensembleol@definite value.
When measured, it randomly takes values @@, the mean value being half of
a quantumég = (Ho) = hiwp/2, if the energy is measured from the ground level.
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According to (5.6), after the/2 pulse is over, the density matrix of the atom
has the following elements:

p21(t) = IA(0)e'°/2, A(t) = p11— p22 = 0. (5.17)

Hence, the mean dipole moment of the atom oscillates (see2Fiy with the
transition frequencwg = wpyy, its amplitude being equal to the transition matrix
elementdy = dp; (we assume thaty; = di» andA(0) = 1),

(d(t)) = 2dgp(t) = do Sinwot (5.18)

5.2.1 Emission of a dipole

Let us now take into account the spontaneous emission ofttm, avhich we
so far neglected. As it was already mentioned in Sec. 2.5tapeous transfer
of energy from the atom to the vacuum can be considered asati&la with a
typical timeT; = T»/2 = 1/A, whereA is the spontaneous transition rate and
1/Ais the radiative life time of the excited state. The vacuuaygplthen the role
of a thermostat with a zero temperature and infinite heata@gpaSpontaneous
emission is the simplest quantum model of an irreversibegss.

Consider the spontaneous emission of an oscillating dif®8) from the
classical viewpoint. It follows from Maxwell's equatiorisat the time-averaged
power emitted by moving charges is equal, in the dipole agpration, to [Lan-
dau (1973)]

P = 2d2 /3¢ (5.19)
If we identify d. with (d), we will underestimate the power twice compared to the
prediction of the quantum mechanics (see below). Assunrettiatd, = V2(d),
then

Peon = Kd)2/3c% = 2wid2/3c%, (5.20)

In addition to estimating the total power of spontaneousssion, the semi-
classical model predicts its polarization and directidigggram. For instance, in
the case of an electric dipole transition, the field in thefiield zone is

E(r,t) = —(d. (t))/cr, (5.21)

whered, is the projection of the dipole moment on a plane orthogomaland
' =t —r/c. Hence, the directivity diagram has a usual ‘dipole’ sh&pe sir? ¢,
whered is the angle betweenand(d).

Note that an atom that is initially in a coherent state emdtisi fivith a definite
phase. This means that another atom, being in a ground st@istance from
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the first one, with a certain probability, scalingra$, can get into a coherent state,
with the precession phase shifteddyr/c.

5.2.2 Probability of a spontaneous transition

Emission (5.20) will lead to a constant decrease in the dterergy and the os-
cillation amplitude of the dipole moment, so that the systétheventually come
into the ground state. The Bloch vect@rwill then move along a spiral con-
verging to the South pole (in a fixed reference frame), andathplitude of the
dipole momentd) oscillations in (5.18) and (5.20) will slowly (& < wg) de-
cay, see Fig. 4.9. Similar behavior will take place afteritaxg the system with
any pulse, except farn or 2rn pulses, which yieldd) = 0. Thus,an atom in
a non-stationary state has an oscillating dipole moment, awtording to the
classical electrodynamics, it spontaneously emits a goasiochromatic wave
with the frequency equal to the transition frequengy The angle of precession
gradually tends to zero in this case, due to the radiativeggriess.

The semi-classical expression (5.4) for the pofRgj;, emitted in the case of
a coherent state allows one to estimate the probability pbateneous transition
per unit time,A. To do this, let us postulate that the power of the atom eonmissi
decays exponentially,

P(t) = P0)e™, (5.22)
then the total energy is
&= fom P(t)dt = P(0)/A. (5.23)
Assuming that it is equal to the initial energy of the atdig/2, we find, with
the help of (5.20), that
A = 4w3d2/3nc3, (5.24)

which coincides with the result of a more consistent catiata(Sec. 7.7).

In addition to using an arbitrary numerical ¢beient® this reasoning has
other, more serious, flaws. Namely, it does not result in goegntial decay and
predicts the stability of an excited energy state=(—1, p12 = 0) with (d(t)) = 0.

One can try to improve the situation by substituting intd € (d?) instead of
(d)2. However, thad? operator is proportional to the unity operator,

» (0 do)\[0 do) (2 O\ .,
d _(do ola 0)=1o e = &I, (5.25)

Recall that we voluntarily assumel/(d) = V2.
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therefore(d®) = dg regardless of the state of the atom; this also follows from
(4.107). For instance, in this model the atom should emihéuethe ground
state, which contradicts the energy conservation law.eatsbof a stable excited
state we have obtained an unstable state. The same prolikas ar the well-
spread interpretation of spontaneous transitions as ddwseero-point vacuum
fluctuations.

A consistent theory of the spontaneous emission, as wethtistgcal optics
in general, should be based on the quantum description dielldg Chapter 7).

5.2.3 °Normally ordered emission

However, spontaneous emission can still be described attyrimn the frame-

work of semiclassical theory, provided that the squaredldimoment in (5.19)
is replaced by the mean value of thermally orderedsquared dipole moment
(Sec. 7.7),

P = (2/3c3)(: (d) :2) = (4/3c®N(dOdM). (5.26)

The colons denote normal ordering, i.e., plagiogitive-frequency operators*
on the right ofnegative-frequency operator§y By definition, anf™) operator
in the Heisenberg picture contains only positive-freqydrarmonics,

fO(t) = Z fr expCiwnt), wn > 0.
n

Similarly, the Fourier transform of aj”)(t) is only nonzero for negative
frequencies.

Any operator can be represented as a sum of positive- andivee@@quency
parts (disregarding the constant componeaht),d® + d©; for Hermitian opera-
tors,d®) = (d©))*. Hence,

02 = d®2 4+ 2dOd®) + dO2 = 2dOd™), (5.27)
while according to (5.25),
d? = d*2 4 dOd® + D) 4 dO? = d2 (5.28)

(in what follows, we will show that®? = 0).
During a spontaneous transition, tthg) dependence in the Heisenberg repre-
sentation can be approximately considered as unpertustregA < wo,

3 0 expEiwot)
d(t) = do explwol) o ) (5.29)
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wheredy = o1 = iz, wo = wp1 > 0. Henced = —w?2d and, by definition,

At = do exp(—ia)ot)(g é) = Ao (1),
(5.30)
) = do eXPGwot)((l) 8) = o),

wheres® = oy + ioy (Sec. 4.4). By multiplying these matrices, we find

(o= 2d§(8 (1)) =d3(l - oy); (5.31)
recall thatd = dpoy. To justify this procedure, let us point out that it is namely
the normally ordered square of the fieE()E®) ~ d©)d™) that determines the
‘useful’ energy, which can be absorbed by the other atom.(&&¢. Also, note
that this procedure does not require time averaging ovdr-freguency oscilla-
tions of the power (see (5.19)).

From (5.26), with an account for (5.31), it follows tifat= 2wid%(I —o,)/3c3,
or

P = hwoApzz. (5-32)

Let us stress that this result is valid for any state of thenatacluding a purely
energy or coherent one. In the latter cgse, = 1/2, and (5.32) coincides with
(5.20). Thuspower of the spontaneous emission of a two-level atom atengiv
time moment scales as the upper level population

Due to the energy conservation law, evidently, the follaywguality should
hold true:

woA = 2P. (5.33)

The factor 2 takes into account that each transition chatigesopulation dter-
ence by a value of 2. Hence, replacipg in (5.32) by (1- A)/2, we find the
kinetic equation,

A=(1-A)T/Tinat Tinat = 1/A. (5.34)
Thus, we have confirmed the exponential law (5.22) of thetedstate decay,
At) = 1+ [A(0) - 1]e™™. (5.35)

A more rigorous description of the interaction between alku@| system and
the vacuum can be obtained using the Heisenberg equatidi&sj4or the Pauli

dThis conclusion becomes evident in Dirac’s notatiof?) = |12, = 21, =
12)(2, () = po.
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vector, by substituting, for the external field, the emiedield in the zeroth-order
approximation, i.e., theeaction field(for more detail, see Ref. [Allen (1975)]).
Such equations describe th&eet of radiation-induced dampingwell known
from classical electrodynamics [Landau (1973)]. legr they lead to an equa-
tion of the form (5.34), while forr®, to harmonic-oscillator equations with the
eigenfrequencyy + éw F iA/2, wheredw is the correction to the transition fre-
quency, called th&éamb shiff 5w ~ A. For instance, for the resonant lihg of

a hydrogen atomyw/2r ~ 10° Hz. The imaginary correction to the transition
frequency has the meaning of the inverse tini€,lof transverse relaxation due
to the radiation reaction. Thus, for an isolated at®gia; = 2T 1nat = 2/A.

5.2.4 Relation between spontaneous and thermal emission
According to the semiclassical theory, spontaneous tiiansiin atoms lead to the
emission of exponential wave ‘trains’. Then, the field dafseon the time as

E(t) = 6(t)Eoe V2 cosgot + ¢o), (5.36)
whered(t) is the Heaviside step function. The Fourier transform a3@%, giving
the spectrum of the radiation, has a Lorentzi@disgersion shape,

E(w):iE—O expiigo)  explyo)
w-wo+iA/2  w+wo+iA/2)

= (5.37)

A similar result follows from the quantum theory. The spaltiine widthAwna: =
A due to the spontaneous emission is calledideiral one.

Emission spectra observed in practice are usually createdlérge number
of atoms excited at random time moments into states withaanphases. (The
opposite case, leading to superradiance, will be congideter.) For instance,
in a heated gas at low pressure the atoms are excited thraligtioms. During
a collision, an atom is in the pulsed field created by the r®ghg atom, and
this field changes its state according to the general forsnaflahe perturbation
theory (Sec. 2.1). After the collision, atoms, accordinthesemiclassical theory,
emit exponential wave trains of the form (5.36) with randmitial phases. The
average length of a train is determined by the spontanefautirtie 1/A or the
time T between collisions.

Usually, radiation cooling of a gas is compensated for byettiternal heating,
so that the superposition of all trains creates the statyofield of thermal radia-
tion. In the case of a small optical density of the gas 1, the intensity will
scale as the upper level populationalf> 1, one has to take into account not only
spontaneous transitions but also stimulated ones, leéalthg absorption and fur-
ther re-emission of photons (thadiation trappingeffect). In the limital > 1,



Non-Stationary Optics 121

the gas emits equilibrium Planck’s radiation. In Sec. 7.meconsider a simple
qualitative model of this process, also covering the casargdlified spontaneous
emission atr < 0.

5.2.5 On the emission of fractions of a photon

Let us mention here an interesting paradox, hamely, therappaontradiction
between our theory and the traditional picture of photonst &coherent state
with the precession anglg, according to (5.14), the energy stored by the atom
is & = hwosin’(¥9/2). As a result of spontaneous emission, this energy after a
certain time will be transferred to the field. At the same tinmethe ‘photon’
language this means that the atom emits a fraction of theophertergy, equal to
E/hwgy = sinz(ﬂ/Z). For instance, after an atom is excited by/& pulse into a
coherent state on the equator, it emits an exponential wiinthe energy equal

to half a photon, in contradiction with the initial postdatby Planck and Bohr.

However, this conclusion by no means contradicts to quartestirodynam-
ics, which states that field contains an integer number of photons N only in pure
energy statesThis class of states with a definite photon number is a vezgiap
one, and even exotic from the viewpoint of its experimentapgration, with the
exception for the vacuum state with= 0. As to coherent, as well as mixed states
of the field,(N) = (H)/hwo can be any non-negative number.

The paradox, as usual, originates from a terminology caofusS = %wg/2
is the energy at = 0 averaged over the atomic ensemii#,(0)) = &, it has
no relation to the result of singleenergy measuremer#;, which yields either
&1 = 0 or & = hiwp with equal probabilities. At > 1/A, the energy of the
field is7iwp/2 only on the average; a single measurement of the photon enimb
i.e., of the field energy, yields, according to the basic plagt of the quantum
mechanics, only an average number of photqris?®) .. ..

Thus,the energy exchange between the atoms and the field is stililge via
fractions of quanta, but only if ‘energy’ is understood as #tinsemble-averaged
one,& = (H). As to the energy that is transferred in a single interaatieant, it
is not definite, as the initial state of the atom is almost gbwaot an energy one.

5.2.6 °Quantum beats

In the case of a multi-level system, the natural bandwidthlmexplained by the
finite lifetimes of all excited levels,

Aty = 1/An =1/ Z Aame (5.38)

n<m
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due to spontaneous transitions to all lower levels. The givdities A, are de-
termined by (5.24) withw3d? — w3 |dim?>. Due to the uncertainty relation
AEAL = 1, the lifetimeAt,, of the system on a certain level corresponds to the
broadening of this level, which is equal, in circular fregag units, to the inverse
lifetime,
Awm = AEm/h = 1/ Aty = Z Anme (5.39)
n<m

Finally, the linewidth of emission or absorption corresgioig to a certain pair

of levels is obviously given by the sum of the widths of the texels,

Awmk = Awm + Awg. (5.40)

Hence, it follows that a weak line witth3 ~ O can have a large natural width due
to larged;» andd;s.

Spontaneous emission of a multi—level system excited byreott radiation
has an interesting feature: its power oscillates in timet useconsider the time
dependence of the dipole emission power.

According to the ‘upgraded’ semiclassical formula (5.26% power of radi-
ation emitted by an atom at a given time moment scales as tha w#ue of the
normally ordered square of the dipole moment second des/at

P() = % > pad ) Od50. (5.41)

kim

(For simplifying the notation, we assume that the dipole rants of all transitions
are parallel.) Hergyy is the density matrix of the atom at the initial time moment
to = 0. Itis determined by the excitation, which should be pulsgdbserving
guantum beats, i.e., the duration of the excitation pulssilshbe much smaller
than the beat periodsn2ws,. In the case of a gas, this is achieved using a pulsed
laser or discharge while in the case of an atomic beam ttex kttbuld be passed
through a thin foil. As a result, a considerable number ofret@re in the same
pure non-energy stajg€0), so that the beat signal has a definite phase and a large
power.

After the excitation pulse is over, the dynamics of a givermais determined
by its unperturbed Hamiltonia#f,. (Relaxation can be neglected provided that
the beat frequency is fiiciently large,ws,T2> < 1.) The matrix elements in the
energy representation will then depend on time harmonicall

Omn(t) = dmnexplwmnt), dmn(t) = _wﬁmdmn(t) (5.42)

Let us number the levels according to increasing energyn fthematrices of
positive- and negative-frequency operators have ‘triéangshapes,

dS2() = dmnn()8nms G = drn(t)omn (5.43)
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Fig. 5.4 Quantum beats: (a) dipole moment of a three-lev&ksy in a coherent state with indefinite
energy (dashed line) oscillates with the frequeneigs andws1; (b) as a result, the powé? of the
spontaneous emission is modulated with the beat frequepgy: ws1 — w21.

wherefn, = 1 atm > nand 0 atm < n (see (5.30) for the case of a two-level
system). As a result, the only nonzero terms in the sum (S jhe ones with
m<k m<|,

4
PO =25 D hnhioaOmOmcexplend). (5.44)
m<k,m<I|
In particular, the power of radiation emitted by a threeslesystem contains
four terms,

P(t) = h(w31A13 + w32A23)P33 + Tiw21A12022

+ 2h(wa1w21A13A12) " ?|p32] COSWast + ), (5.45)

where
Anam = 4w ldmal®/30C%, ¢ = argloaadaichy).
The first three terms in Eq. (5.45) scale as the populatiotiedcéxcited levels and
correspond to usual spontaneous emission with the powetamatrin the frame-
work of our approximation. To take into account radiativeergy losses, one
should add factors exp@nt) to these terms. The last term in (5.45) describes,
at Amn < w32 < wz1 ~ w31, quantum beatghe periodic modulation of the total
power of spontaneous emission from two close levels 2 andtB tiae diference
frequencyws, = ws1 — wy (Fig. 5.4)¢
Let us represent (5.45) in the form
P(t) = Po[1l + mcossat + )],
Po = hwz1A12022 + hwz1A13033, (5.46)
m = 2h(ws1w21A13A12) Y232l /Po,

eNote that if superscriptst” are omitted in (5.41), then (5.45) will contain beats witte tfrequency
w21, Not observed in experiment.
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where we have neglected the weak radiation at tiierdince frequenays,, which
is usually in the microwave range. If the atom is in a puresstdienom, = cmCp,
and

m = 2/(e + 1/€), € = |w3,C3031/w3;Calny]. (5.47)

Thus, the modulation céiécientmreaches a unity g1 ~ Ap;, provided that
the atom is excited into a coherent statg, = (|2) + |3))/ V2. From the classical
viewpoint, the atom emits two sine waves, which interfecetrat at some time
moments the radiation is completely canceled while at otimes it is doubled.
However, one should keep in mind that it is impossible to okessquantum beats
by measuring the field energy in the case of a single atom:ipleiftheasurements
are required, with dierentt. In practice, one uses many atoms in the same state.

Usually, levels 23 correspond to the fine or superfine structure, or Zeeman’s
sublevels, so that the beat frequency is in the microwavgeamd the modula-
tion can be discovered by radio electronic methods. (Fdaimte, PMTs enable
observing modulation up to frequencies on the order of 10N H is important
that quantum beats are a single-atom phenomenon; therédfer®oppler &ect
has nearly no influence on the beat frequency, which alloes@measure small
splitting of levels [Aleksandrov (1972)].

Note that there is another method, developed in the 196Gigvalso uses
the spectral analysis of the photocurrent rather than theetdanalysis of light,
but in a stationary regime. This method, called spectrogadmptical mixing
or spectroscopy ohtensity fluctuationsallows one to observe extremely small
frequency splittings on the order of 1 Hz [Cummins (1974)].

5.2.7 °Resonance fluorescence

Consider now the case of a cold gas, wheéfex hwg, and the atoms are excited
by external directed radiation. The total secondary field nfacroscopic sample
can be divided in two parts, the one that is coherent with tleelent field, and
the scattered one.

The coherent part is determined by the space-averaged aosity] it inter-
feres with the incident primary field, and a joint resultirgldi propagates through
the medium in the same direction. Homogeneous mattethieeconstant compo-
nentin the space Fourier distribution of the matter madyg,sdows the wave down
and, if the energy dissipation is taken into account, regiitseamplitude. These
effects are described by the macroscopic susceptibility ofem@gChapter 4).

The secondary radiation that is scattered sideways is dduysthe atomic in-
homogeneity of the matter. The fields offérent atoms are not coherent with
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each other; therefore, the total power of the scatteredhtiadi is additive, i.e.,
equal to the number of atoms times the emission p&wef a single atom (pro-
vided that multiple scattering is negligible — tBern approximatioj. Due to the
optical anharmonicity of the matter (Sec. 6.2), the speafthe secondary radi-
ation contain, in addition to the elastic (unshifted) comgat, new components,
providing valuable information about the structure of thatter (fluorescence,
Raman scattering, etc.).

Here, using the gyroscopic model, we will considesonance fluorescence
(resonance scattering), which is emission of radiatiom wifrequency close to
the transition frequencyy, provided that the excitation frequenayis close to
wp as well. This phenomenon, discovered by R. Wood in Na vapeady as at
the beginning of the 20th century, attracts much attentawadays in connection
with its two interesting features.

First, resonance fluorescence of single atoms brings theeifigd states with
unusual statistics, which cannot be described in termsagkatal statistical optics.
These are states wifthoton anti-bunchingndsqueezed statétr more details,
see Chapter 7).

Second, in the case of a large intensity of the incident I{gte pump, the
spectrum of the scattered light contains, near the elaRéyléigh) component,
two satellites with the frequenciesandw + Q (Fig. 5.5). HereQ = [Q2 + (wo —
w)?]Y? is the generalized Rabi frequency add: dyEo/%. Besides, amplification
of weak probe light at these frequencies due to the pump gieapserved.
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Fig. 5.5 Resonance fluorescence. A monochromatic exterldlrfiodulates the wave function of
a two-level system with the frequenciesandw + Q. Therefore, the spectrum of the scattered field
consists of three components. The following cases are sh@ysmall mismatch and strong field; (b)
large mismatch; (c) in the case of a large mismatch, sa®lippear due to the four-photon process in
which two pump photons (thick lines) become two photons ¥igquenciesvg and 2v — wo.
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The spectrum of the scattered light is observed under statjoconditions.
In this case, a quantitative theory requires an accountHerrelaxation and
gquantization of the field (see, for instance, Ref. [GrishgP81)]); however, the
emerging of the satellites can be easily explained quiaidtigtin the framework
of the semiclassical theory and neglecting the relaxatidocording to (5.3), a
monochromatic field, in addition to the precession off{# vector with the field
frequencyw, also causes its nutation with the frequefryFig. 5.1). As a result,
the mean dipole moment of the atqui(t)) ~ R«(t), and the emitted field should
contain frequencies andw + Q. Therefore, the nonlinearity of a two-level sys-
tem leads to the modulation of the field scattered by it, withgeneralized Rabi
frequencyQ. (This should be compared with the Raman scattering, wirere t
modulation frequency coincides with one of the frequencfdle system, so that
the satellites have frequencies: wg, and with the optical nutation, see Sec. 5.1.)

Consider two limiting cases. Lébg — | < Q, thenQ ~ Q, and the spec-
trum of resonance fluorescence is a triplet symmetric wipeet to the transition
frequency,wo, wo + doEo/A (Fig. 5.5(a)). In the opposite case, ~ |wo — wl,
and the spectrum consists of the central elastic compeneatine at the transi-
tion frequencywo, and the ‘mirror’ component at«2— wo (Fig. 5.5(b)). From
the photon viewpoint, radiation at frequencies and 2v — wq is a result of
a single four-photon elementary process, i.e., absormffdwo photons of the
incident light and emission of two secondary photons, atiogrto the scheme
2hw — hwo + K(2w — wo) (Fig. 5.5(c))f

Note that in a non-resonance case, emission in the vicifitytoansition is
not exactly at frequenayg but shifted. LetQ <« wp — w > 0, then the frequency
of the anti-Stokes satellite (the right-hand one, on theufescy scale) is

wh =+ [Q% + (wo — )22 ~ wo + (doEo/R)?/2(wo — w). (5.48)

This shift of the observed transition frequency, dependerthe intensity of
the exciting radiation, is called thegh-frequency shifior theoptical Stark gect
It follows from (5.48) that on the order of magnitutlee shift is equal to the
squared excitation energy in frequency unids divided by the mismatch

Let us estimate the total power of emission. According t@)&nd (5.32),

P(t) ~ hwoAo2a(t) = hwoAQ/Q)? sirf(Qt/2). (5.49)

Thus, if the relaxation is negligible oscillates with the frequendy, i.e., the
process is non-stationary and the notion of the spectraigeis non-applicable.
Itis noteworthy that in the non-resonant caBescales asly/(wo — w)?.

fEditors’ note: in modern terms, this process is cafipdntaneous four-wave mixirigr more details,
see Chapter 7.



Non-Stationary Optics 127

Above, we did not take into account relaxation. It is inttety clear that it
should lead to the broadening of discrete spectral comgengnto a width of
about 2T, (Fig. 5.5). Hence, the condition for observing the satdlin the case
w = wp is Q > 2/T,, i.e., strong saturation should take place, which is only
possible with the help of lasers. (Th&ext was first observed in 1974 [Delone
(1975)].) Note that according to the Bloch equations withaaonount for relax-
ation (Sec. 4.4), nutation of thHe vector disappears under stationary conditions,
so that the above-given explanation of tikeet seems to be not valid. However,
the kinetic Bloch equations do not describe the fluctuatmnR caused by the
thermostat and containing the frequetizy

If we put aside the rotating-wave approximation, the tweelenodel will de-
scribe other nonlinearcts, for instance, emission at the frequeney ® the
case of a polarized atom (or molecule) with nonzero diagovatix elements of
the dipole momentl,, # O, or in the case of the magnetic resonance, the model
will describe two-photon absorption and the Raméed, i.e., emission at fre-
guenciesv + wg. Thus,according to the simplest two-level model of an atom, the
matter can scatter the incident light with changing its dpem, which is a mani-
festation of the nonlinear properties of the matter, ilee dptical anharmonicity
Another simple nonlinearfiect, saturation, has been considered in Sec. 4.3.

5.3 Collective emission

As we have already mentioned, emission from macroscopi¢cemdepends
strongly on the conditions of its excitation. Under usudlaatic (incoherent)
excitation, the states of flierent atoms are statistically independent, the matter
is described by a diagonal density matrix, and as a res@ltethission poweP
depends on the total number of atoMdinearly. (We assume that the linear size
of the sample is much smaller than the free path of a phatios; 1.) In the case

of a coherent excitation, aNl atoms are in the same state, and the sample can
be described by a joint wave function. Then, as one can eesilfy using the
semiclassical theory? can depend olN quadratically, which should drastically
change the situation. In what follows, we will consider twaigual optical fiects
originating from the quantum coherence formed in a macisgample.

5.3.1 Superradiance

Let at the initial time moment there é¢identical atoms in independent coherent
states,

Wi = {|11)j + 12); expl-i(wot + ¢))]}/ V2. (5.50)
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This is a particular case of a possible state of a system icamgaN particles
distinguishable through their coordinatgswith the wave function of the system
being factorable,

N
v=yao...un = | |u (5.51)
=1

The mean dipole moment of the system is

(=l Y dilvy = > Wildily) = do ) cosuot + ), (5.52)
] ] ]

where the transition dipole momerug = d;, are considered as real and oriented
along a certain axis. Here, the phagef the j-th atom coherent state has a clear
meaning: this is the phase of the Bloch vector precessiahel$tate is prepared
by means of ar/2 pulse, this phase is determined by the phase of the fielgat th
pointr; of the atom. IfN = 2, then, according to (5.52), the oscillation amplitude
of the total dipole moment is doubledat = ¢, and turnsinto zero at; — ¢, = 7.

In the case oN atoms with the same;,

(d) = Ndy cosgot + ¢).

Suppose then that the linear size of the system is much sritzdle the wave-
length,| < A9 = 27C/wg, so that formula (5.19) for the dipole emission power is
valid. Replacing therd by (d), in the case of equal phases weBgdh ~ N?, i.e.,
the power emitted by dipoles oscillating with equal phasedes as the square
of their number This dfect of coherent (collective, cooperative) spontaneous
emission of a multi-atomic system is callsdperradianceAlthough its classical
interpretation is trivial, the quantum theory has been @iostsidered only in 1954
by Dicke [Fain (1972); Allen (1975)].

A close phenomenon had been observed earlier in the miceovemge, in
nuclear magnetic resonance (NMR) experiments. In suchrigmpets, a para-
magnetic sample is placed between two crossed inductanise(ite magnetic
inductionmethod). A resonance current in one of the coils excitestiheutated
precession of the macroscopic magnetic monMrdf the sample around the di-
rection of a constant magnetic field (see (4.139)). TheirggahomentM induces
the induction electromotive force in the other coil, theaiger one. As a result,
the power of the observed signal scales as the squared nwhbaclei in the
sample.

Coherent emission of phased dipoles is observed in manynsamloptical
effects such as generation of optical harmonics. However, Bardlarly to the
effect of nuclear induction, emission is at the frequency of ék&ernal force,
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which in optics can be very fierent from the eigenfrequencies of the transitions.
It is important that the conditioh< A is not necessary: at an appropriate phase
of stimulated or free precession along some direction, ab¢#h = kz;, where
k is the wave vector ang; is the j-th atom coordinatespatial phase matching
condition), the emission along this direction will be codrer Thus, superradiance
of extended systems is not isotropic; it has a maximum albaghase matching
directionz9

The semiclassical approach, based on the formula (5.1%égpower of co-
herent radiation withd replaced byd), yields an exact result only & > 1.
Recall that aN = 1, we had to introduce an additional factor of 2 into formula
(5.20). As we have mentioned above, in the general case wetbawse, instead
of d2, the normally-ordered squarédf)d™), which leads to the replacement of
N2 by N(N + 1),

(d(—)d(+)> — Z<d§_)dl(<+)>
K

= 2 @ildd ) + 3 wld v wndd v
J

j#k

= d3

N + Z cos(p; — m} /2= dEN(N + 1)/4. (5.53)
j<k

Substituting (5.53) into (5.26), we obtain the superracéapower ofN atoms in

coherent states,

Peoh = hwpoAN(N + 1)/4. (5.54)

The last equality in (5.53) implies that all phaggsare equal, i.e., the states are
mutually coherent.

Otherwise, if the precession phases are independent ramdoables, dis-
tributed uniformly within the Q2x interval, then all cosines will turn into zero
after averaging, and (5.53) will only contdihdiagonal terms,

Pincon = woAN/2. (5.55)

Here, the subscript ‘incoh’ indicates that separate ateash of them being in a
coherent state on the equator of the Bloch sphere, emit @reokly.

Apparently, in addition to the limiting cases (5.53) and@.considered here,
there are many other states offdratom system. In particular, as one can see from
the above-given example for two atoresjission-free statege possible, in which
collective dfects suppress dipole spontaneous emission.

9In Sec. 5.1, we have already come across such a phenomesepolarization decay.
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Due to the energy losses accompanying the emission, spantarsuperradi-
ance has fast decay. The pulse duration of superradiandeecastimated as the
ratio of the energyiwoN/2 stored by the system to the initial power of coherent
emission (5.54),

Teon~ 2/A(N + 1), (5.56)

Thus,at N > 1 and | <« A the radiative lifetime of the coherent state of an N-
atom system is reduced/Ritimes due to the collectivgfect However, as it has
been already mentioned, superradiance in extended sy&eainsctive, i.e., only
part of the field modes ‘work’ ficiently and take the energy, and this leads to an
increase of¢n. The increase is approximately AAQ times, withAQ being the
effective solid angle into which the emission is directed. Fetratched sample
with the Fresnel number?/ Al ~ 1, this slowing down of the superradiance is on
the order of §/1)? ~ 1/1 > 1, wherea? is the sample cross section anig the
length.

Consider now the case where the initial state oNaatom system is an energy
one,y(0) = [112)j. The Bloch vector of each atom is directed up, towards the
North pole. Initially, the atoms emit independently,

P ~ 2ulddDpy) = N, (5.57)

and gradually pass from the energy state into coherent wiithssome precession
anglesy; and phaseg;.

However, one can expect that the atoms influence each otioeigihthe trans-
verse field, and therefore the precession phases shoul@hygynchronize, pro-
vided that the atom density isficiently high [Andreev (1980)]. As a result, after
a certain delay timg the system will pass by itself into a superradiance coherent
state with phased dipoles. At this moment, slow spontaneoussion will turn
into a short strong superradiance pulse with a definite pbitbe field (Fig. 5.6).

5.3.2 Analogy with phase transitions

A consistent theory, as well as the experiment (see Ref. [@ad(1980)]), per-
formed for the first time in 1973, confirm this qualitative foie. Often, it is
this surprising &ect that is called superradiance. Spontaneous emergingwf a
dered coherent state from an initially chaotic state of arogstem is generally
of huge interest in physics. Let us mention the analogy betviee spontaneous
formation of a superradiance state in a system of excitetistnd phase tran-
sitions in equilibrium matter. Another example of such aggh&ransition in a
non-equilibrium system is emerging of auto-oscillatioridwa certain phase and
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Fig.5.6 Time dependence of the emission power for atomsaekat timet = 0: 1, usual (incoherent)
spontaneous emission, observed at low atom density; 2rraulgnce of atoms that are initially in a
coherent state; 3, superradiance in the case of an enetigy state occurs with a typical delay.

a macroscopic amplitude in a laser operating above thehbletgHaken (1977);
Klimontovich (1980); Arecchi (1974)]. In this case, agahe interaction of atoms
through the field of the cavity makes the chaotic noise fielwbbe a regular one
and leads to the formation of regular macroscopic altemgatolarization. Note
that in equilibrium systems, phase transitions are alssexhiby the interaction
of atoms or molecules through the field, but a static one. Ayhadescription of
the ferroelectric transition is provided by the Lorentz rabdccording to (4.50),
the frequency of the polarization resonance turns into peveided that the atom
density is sfficiently high. In this case, susceptibility at zero frequeturns into
infinity and a macroscopic static polarization is createth@gsystem.

Superradiance in a system with a population inversion shibeidistinguished
from superfluorescencéstationary or pulsed), amplified spontaneous emission
(Sec. 7.1). During superfluorescence, emission-free aélaxprocesses (such as
collisions in gases or interaction with phonons in solidg€vent a macroscopic
volume from emitting coherently, and therefore the emissiepends on the num-
ber of particles linearly, and not quadratically.

5.3.3 Photon echo

In the case of inhomogeneous broadeningfedent atoms have slightly fiker-
ent eigenfrequencies due to the Dopplffeet, inhomogeneous static fields, etc.
Then the observed linewidthw = 2/T; of a transition is much greater than the
collision-induced or radiation-induced width .

Let a short e < T3) resonantr/2 pulse drive the atoms of the sample from
the ground state into the same coherent state on the equater Bloch sphere
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Fig. 5.7 Photon echo. After being excited by two short lighisps (dashed lines, top), the matter
emits a flash of light (solid line) delayed by a timigequal to the interval between the pulses. The
effect is explained by the fact that at timé 2different molecules have the same phase of charge
oscillations (bottom).

(Fig. 5.7). It creates a polarization
N
P@:Z@mpmiﬁﬁmzngmga (5.58)
j=1 i i

Here,N is the particle number densitgy = d(ljz) the transition dipole moment,
RU the Bloch vector of thgth atom, with the componentg)’, 204", o)) — o).

_Atthe initial stage, wheh < T3, the diference between the eigenfrequencies
‘“(211) can be neglected, so that

P(t) = Ndo Sinwot), (5.59)

with wg = w(zjl) being the mean transition frequency. The macroscopic izalzon
(5.59) is accompanied by strong superradiance. Howevarsimort timeT;, the
dipoles in (5.58) get out of phas®(t) becomes close to zero, and only slow
spontaneous emission remains, with a typical decay Tine 1/A.

The dephasing process can be illustrated with the help of¢leeor model
(Sec. 5.1). In the frame of reference rotating with the fesgaywo, the Rg) vec-
tors will undergo precession clockwise or anti-clockwiséh the angular rates
Aw; = &) -wo, which are within the intervat Aw - - -+Aw. Prior to ther/2 pulse,
all Rg) are directed down along tteaxis, while immediately after the pulse, they
are directed along thgaxis, RgB(O) = 1. (We assume the pulse to be very short.)

Let T; be much smaller than the superradiance tigaggandt < Ty, then the
radiative energy losses can be neglected and each Bloabriggrrecessing with
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its own velocity in the equatorial plane. The Bloch vectoit ke unfolding like
afan (Fig. 5.7), and at timés> T; they will uniformly fill the equatorial plane.

The precession of thgh atom can be described analytically in the rotating
frame of reference by the formula

P = (i/2) expEidwit), (5.60)

wherepl = pl!) exp(uwot) is the ‘slow’ amplitude of the density-matrix non-
diagonal element.

At first sight, this decay of the macroscopic order is irreilele. However,
there exists a smart way to restore the coherent state of/#itens provided that
t < T,, whereT is the typical time of irreversible precession dephasinged by
collisions. The idea is that a second resonant pulse, withattea'r, is incident
on the system at a tintg. _

According to the gyroscopic Bloch equation (5.3), thpulse ‘turns’ aan)J)
vector by 180 around thex axis (5.7). SinceR(()j) is in the equatorial plane, the
rotation is equivalent to the mirror reflection with respecthexz plane or to the
change of théigy) sign, i.e., complex conjugation pf)’)(to).

One can easily see that after this operation, the ‘fanR@r vectors starts
folding, and at the time = 2to all vectors will be parallel once again (5.7), this
time along-y : ng)(Zto) =- (‘)(Zto) = —i/2. Again, we consider the pulse to
be very short.

At this time moment, a superradiance pulse is emitted agaidyration about
T; (Fig. 5.7). Itis this pulse of emission from the sample, @ in a timety
after the second external pulse, that is calledpheton, or spin, echoAs the
intervalty increases, the amplitude of the echo signal reduces as2xp1>).

The appearance of echatat 2ty can be illustrated by an analogy with runners
at a stadium, who start running tit= 0 with different speeds. At = t; they
simultaneously turn round and run back with the same spdéddarly, att = 2t
they will cross the start line simultaneously.

The coherence recovery underrgulse can be also described analytically.
Before the pulse,

pD(to - 0) = (i/2) explidwito), (5.61)
while immediately after the pulgk,

pP(to +0) = pY (to - 0)" = —(i/2) exp{Awjto). (5.62)

PNote that a similar operation of amplitude complex conjimgtor time reversal, forms the basis of
the phase conjugatioeffect (Sec. 6.5).
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Further, att > tg, free precession takes place again, with the initial arnngét
given by (5.62),

pD(0) = p(to + 0) expl-iAwj(t — to)] = —(i/2) expl-iAwj(t — 2t)].  (5.63)

Hence, at = 2t all pg) become equal.

This dfect, one of the most beautiful phenomena in quantum eleécsomas
been discovered by Hahn in 1950 in NMR experiments, with inbgeneous
broadening caused by the magnetic field inhomogeneity, anted as the spin
echo. In optics, it was first observed in ruby by Kurnit et al1B64 using a ruby
laser. Photon and spin echo are used for the measuremelaaitien parameters
and fine structure of transitioneg¢ho spectroscopgee Ref. [Manykin (1984)]).



Chapter 6

Nonlinear Optics

Some nonlinear optical phenomena have been already coediebove (satura-
tion, resonance fluorescence). This chapter will presenbie reystematic de-
scription of these féects.

Although most nonlinear optical phenomena are well desdrity the semi-
classical radiation theory and do not require the quambizaif the field, many
effects have a clear interpretation and classification in texhpdhotons. For in-
stancefrequency doublingan be represented as resulting from elementary three-
photon processes where, due to the interaction betweereldeafid the matter,
two photons of the incident light (pump) are destroyed andatgn with the
double energy 2w is created (Fig. 6.1(a)). It is clear from the figure thatcsin
the process does not change the energy of the matter (sucksges are called
parametricones), the energy of the created photon is exactly twicerge ks the
energy of the pump photon.

In the case of a biharmonic pump with the frequencigs w,, the matter
emits photons with the combination frequencies,= w1 + w,. These aresum-
and djference-frequency generatieffects, see Figs. 6.1(b) and 6.1(c). A simi-
lar description can be suggested for four-photon and highaer processes. The
processes that take place iparametric oscillatorand in the corresponding spon-
taneous ffect, spontaneous parametric down-conversiare inverse to the sum
frequency generation. Namely, a pump photon is split in tlotpns with frac-
tional frequenciespy — w1 + wy (Fig. 6.1(d)).

The dficiency of parametric processes in a macroscopic materiftbisati-
cally increased under the condition of photon momentumemasion,k; + ko =
ko. This equality is called thepatial phase-matching condition

In non-parametric processgthe matter changes its energy and passes to other
energy levels. For instance, in two-photon absorption, pump photons are
annihilated and an atom goes to an excited level (6.1(e)th $fliects lead to

135
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nonlinear absorption scaling as the square of the lighhsitg In aRaman two-
photon transitiona photon is annihilated and another one, withféedeént energy,
is created (6.1(g) and 6.1(h)).

All these dfects, both parametric and non-parametric, are widely usadn-
linear spectroscopy, as well as for the variation of lasdiatéon frequency. An
important role is played by nonlinear optic#liects in laser thermonuclear synthe-
sis, laser separation of isotopes, laser chemistry, ang other fields of quantum
electronics. Also, note thahe possibility of quantum amplification is princi-
pally related to the nonlinearity of the materjaince in a linear system the lev-
els are equidistant and the stimulated emission is alwaygeasated for by the
absorption.

o ———— —— ——————  ——— — ——— — — —————

@,
(1)7—(1)2
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Fig. 6.1 Elementary multi-photon processes. Solid hot&lolines show real energy levels of the
matter; dashed horizontal lines denote virtual levels.ofs pointing upwards are absorbed photons;
arrows pointing downwards, emitted ones. Bold arrows epoed to the photons of the primary
radiation (the pump), thin ones, to the secondary or speoia radiation. Top row: three-photon
parametric (coherent) processes; bottom row: two-photomparametric processes; (a) second har-
monic generation; (b, c) sum- andigirence-frequency generation; (d) parametric down-ceiver

(e) non-resonance and resonance (cascaded) two-photorpédns; (f) two-photon emission (stimu-
lated, spontaneous-stimulated, and spontaneous); (gok@sSand anti-Stokes Raman processes.



Nonlinear Optics 137

In the quantitative description of nonlinear opticélleets, similar to the case
of linear optics, the theory is divided in two parts, the roggopic and the macro-
scopic ones. The microscopic theory is aimed at calculdtiagolarizatiorP(E)
induced by a given fiel&. (In the general case, the magnetic fieldshould be
taken into account as well.) The equations of motion of chdigarticles are non-
linear; therefore, the function, or, rather, the functidRéE) can be written as a se-
ries expansion containing the quadratic tefiE?, the cubic oney®E?, etc. At
the macroscopic stage of calculations, one substituteutietion P(E) into the
Maxwell equations, and a self-consistent solutirH is searched at given field
sources and boundary conditions. According to this sch&ae, 6.1 discusses
the general properties gf™, Sec. 6.2 considers various models of the optical
anharmonicity of the matter, which allow one to estimgf®. Sections 6.3-6.5
describe the basic problems of macroscopic nonlineargmEwell as the ways
to solve them, and some observahfieets.

It should be stressed that nonstationary problems of neatiaptics are solved
by writing joint equations for the field and the matter, witthaising the sus-
ceptibilities. For instance, a quantitative analysis df-seluced transparency
(Sec. 5.1) requires a joint solution to Maxwell's and Blachguations.

Nonlinear optics can be studied in more detail by readingsRpfino-
gradova (1979); Akhmanov (1981); Fain (1972); Apanase\i®¥7); Landau
(1982); Akhmanov (1964); Bloembergen (1965); Kielich (QR8Fabelinsky
(1965); Klyshko (1980); Letokhov (1975); Akhmanov2 (198Dglone (1978);
Dmitriev (1982); Butylkin (1977); Schubert (1973); ZeraiK1973); Walther
(1976); Letokhov (1983)3.Currently, there is also a new rapidly developing field,
nonlinear optics of the surfad€hang (1981)]. One of the most interesting phe-
nomena in this field igiant Raman scattering of lighty molecules adsorbed on
a rough metal surface. Cross section of this scattering @rédgrs of magnitude
greater than the cross section of usual bulk scatteringeenmlecule.

6.1 Nonlinear susceptibilities: definitions and general ppperties

Before analyzing various models of optical anharmonidtiig, reasonable to find
out the general properties, such as the symmetry of thememarliresponse of the
matter, which do not depend on the choice of the model. Fsr i us generalize
the notion of the phenomenological susceptibility (Set) th the nonlinear case.

aeditors’ note: See also [Agrawal (2007); Boyd (2008)].
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6.1.1 Nonlinear susceptibilities
Let a field with a discrete spectrum,

E(t) = (1/2)2 Enexplion) +c.con=12,..., (6.1)

be incident on the matter. Equations of motion for the chauggrticles of the
matter are nonlinear. As a result, charge displacementéeaiby the field (6.1)
and, hence, the polarizatid?(t) will contain not only the Fourier components
with the frequencies of the external foreg but also the ones with the combina-
tions of these frequencies, = wm, including multiple frequenciesu2, and the
zero frequencyy, — wn = 0.

Let us first reduce the consideration to the case of the neelity quadratic
in the external field. Then, the phenomenological relatietwieen the spectral
components of the polarization and the electric field hasdhma

PP = ¥ (w1, wp) E1Ez, (6.2)

wherePy is the complex amplitude of polarization oscillations witle frequency
wo = w1 + wz, and we are so far assuming # w,. Thequadratic susceptibility
(or quadratic polarizability ¥ defined this way sets a relation between three
vectors and is therefore a third-rank tensor. Notation)(§.8ot based on a certain
frame of reference (often, the relation is written with actglPg = x@ : E{E)).

If some Cartesian frame of reference is chosen, (6.2) tdlesfotm

P& = ; X (w1, w2)ExsEsz. (6.3)
Y

In what follows, as usual, we will omit the summation overnal indicesg, vy.

Each of the 27 componer;fé%(w, w’) of the @ tensor is a function of two
independent argumends «’ taking values from-co to +c0. Since the Fourier
components of the field and the polarization are comp‘@g is also complex,
and in total, there are 54 real functions of these variabtswvever, as we will
show below, there are many relations between these fursgigonl the number of
independent variables is reduced.

By analogy with (6.3), the nonlinear susceptibility of arbitnary order is
defined as

Pg:) = XEyTy)l.A.am(wl, ..., wm)Ei1o; - . - Emas

(6.4)

wo =w1t+w2+--+wn.

For instance, the cubic susceptibib{tﬁj?yé(wl, w2, w3) is a fourth-rank tensor, and
each of its 81 complex components depends on three consnusoiables. Note
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that the Cartesian indices g,... can be also considered as argumentg®¥,
each of them taking three discrete values.

The relation between the polarization and the field can bgemrsymbolically
as a power series,

P(E) = i YME™ (6.5)
m=0

In the spectral representation, this relation is an algelmae, while in the time
representationy™ should be understood as integral operators. Their kernels,
x¥™(ty,...,ty), calledmulti-time Green’s functioner response functionsf the
matter, are defined in terms of the spectral susceptibiffy(ws, . . ., wm) using
the m-fold Fourier transformation (fan = 1, see (4.7)). By analogy with the
linear case (Sec. 4.1), the causality principle leads tegiat relations between
the real and imaginary parts gf™, similar to the Kramers-Kronig relations.

The dfect of the magnetic field can be taken into account by doingudleo
power-series expansion in (6.5, x™YE™H". Some nonlinear opticalfiects
reveal spatial dispersion, which can be described as thendiemce of™ not
only onws, ..., wm but also on the wavevectoks, . . ., kn,.

6.1.2 °Various definitions

Often, one uses the definition of spectral amplituBgshat difers from (6.4) by
the absence of the/2 factor,

E(t) = Z E.expCiwnt) + c.c, En = En/2. (6.6)

Similarly, atwg # 0, Py = Py/2, sO (6.2) leads to the following relation for the
guadratic nonlinearity:

~ (2 ~ o~ ~ ~ o~
P(()) = (1/2)X(2)E1E2 = ZX(Z)E]_EZ EX(Z)E]_EQ. (6.7)

Thus, two diferent definitions for the field and polarization spectral kmp
tudes correspond to twoftierently definedn-th-order susceptibilities, related as

M = 2m1y Mg £ 0. (6.8)

An exception from this rule are even-order susceptibdliitwy = 0, describing
theoptical rectificationeffect. For this case? = Py, and

™ = 2" = 0.

Assume now that the inertia of the material response can glected. This
is the so-callednertia-freg or Kleinman’s approximation, which is valid in the
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case where the field frequencies and their combinationsatfeei transparency
windows of the matter. In this case, the polarization foBathe field instanta-
neously, and fom = 2,

PA() = xup, Es()E, (1), (6.9)

wherey is some real constant tensor. In particular,

P§<2)(t) =X xxxE>2((t) + X xoyEx(D) Ey(t)
+ XoyxEy (D Ex() + oyEs () + ... (6.10)

From this example, one can see that only the sup) + xa,s has a physical
meaning; these components cannot be measured separateifezefore the
tensor is symmetric in the last two indices while Jfi& tensor is symmetric in
all indices except the first ofeAssuming the field in (6.9) to be biharmonic, we
obtain

PE(t) = (1/2)apyRel ) [EnpEr, + EngEry €Xp(-2int)]
n=12
+ 2E1'3 E27 exp[—i(wl + a)z)t] + 2E1'3 EZy exp[—i(wl - a)z)t] 1 (611)

The first term here describes optical rectification, the sdame, harmonic gen-
eration, the third and the fourth ones correspond to thergéina of sum and
difference frequencies.

On the other hand, from the definition of the susceptibila] it follows that

POM = " Xapy(wn, —wn)EnEp,
n=12

+Re Z /\/aﬁy(wns wn) Enﬁ En'y expE2iwnt)
n=12
+ Xapy (w1, w2) E1gEoy €Xpl-i(w1 + wa)t]
+ Xapy (w1, ~w2) EypE;, expl-i(wr — w2)t]}. (6.12)
(Here we have omitted the order index of the susceptibikityich we will some-

times do in what follows.)
Comparing (6.11) and (6.12), we see that in the dispersieadpproximation,

X(w, o) = 2¢(w, w) = 2¢(w, -w) = x. (6.13)

wherew # «’ # 0. Similarly, one can show thgt(w, 0) = 2y. The first equality
in (6.13) is obviously still valid in the presence of dispers provided thatv and
«’ are stficiently close. Thusgvery component of thew, w’) tensor, considered

bBelow, we show from the energy considerations thafiff& tensors are fully symmetric.
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as a function of two variablesy andw’, has a peculiarity on the line®’ = +w
where its values are twice as small as at the neighbouringtpoi

Higher-order susceptibilities have similar peculiagti coincident frequency
arguments. The corresponding bgents can be found by repeating the deriva-
tion of (6.13).

6.1.3 °Permutative symmetry

Definitions (6.3), (6.4) lead to the invariance of th& tensors to permutations
of their frequency arguments together with the correspogn@iartesian indices,

Xapy(W1, W2) = Xayp(w2, w1), (6.14)

/\/arﬁy(i(wls w2, w3) = Xaﬁ(sy(wl, w3, W) = ... (6.15)
Indeed, (6.3) can be rewritten in other equivalent forms,
P = Xapy (w2, @1)E2sE 1y = Xayp(ws, 1)Ezy Eng.
Comparison of the latter with (6.3) yields (6.14).

It follows from (6.14), (6.15) thatensors describing the generation of har-
monics are symmetric with respect to all indices except thedne.

Another general property of susceptibilities follows frahe fact that both
the polarization and the field are real values, which regttinat the amplitudes
should turn into their complex conjugates as the frequanti@ange their signs.
Changing all frequency signs in (6.4) and doing complexegafion, we obtain

PO :X*(_U)l, ey _O.)m)El e Em
Comparing this with (6.4), we find (see (4.5))
X (~w1,...,—wn) = x(wi,...,wm). (6.16)

6.1.4 °Transparent matter

Note that spatio-frequency permutative relations (6.(61)1,5) do not concern the
first index. Usingy® as an example, let us show that its permutation is possible
in the non-resonant case where all frequencies are awaytfremesonances of
the matter. For the sake of symmetry, we introduce the thigdraent into the
notation of the susceptibility,

X(w1, 02) = x(~wo; w1, wy) = Y02 = Y02, (6.17)

where the minus sign by the combination frequengy= w; + w, provides that
the sum of all three arguments of the susceptibility is zBrdhe last equality, we
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took into account relation (6.16). Note that sometimesgotiotation can be used
as well,

X (~wo; w1, w2) = x(wo = w1 + wy).

Let us find the power absorbed in a unit volume of the matter tduthe
guadratic nonlinearity in the case of a three-frequencs fidtcording to (4.13),

N 2
PO =E.P? = (1/2) ) wilmE;- PP = Py + Py + 2o, (6.18)

n=0

Hence, according to definition (6.3), the partial powers are
Po = (1/2)wolmy 3 Eae EsEay,

P1 = (1/2)wilmy 2 E; Eo E;,. (6.19)

P2 = (1/2)wal My 250 Es E;sEoa.
Note that the signs and the values of the pow@rglepend on the field phases.
With the help of (6.16), we find from (6.19) that

PO = (1/2)ImlwiV 5% ~ xjor) + w2(Kope — XoNEGEpEzy.  (6.20)

If all three frequencies are far from resonances, then tkeration is absent and
the matter only redistributes the energy between the thiespiéncy components
of the field. According to (6.19), the share of thti component scales as.

In a transparent matte®, = 0, and since the complex amplitudgs, are arbi-
trary, the expression in the square brackets of (6.20) shtauh to zero. Provided
that the dispersion is weak, the frequencies can be alsddmwed as arbitrary,
so that each of the cfiecients byw; andw, is zero as well. Hence, in addition
to the automatic symmetry relations (6.14), (6.15), whiolmdt concern the first
index, a medium that is transparent at all three frequeriipeses the following
bounds:

Xoby = Xpoy) = Xy (6.21)

In the general case of ambitrary-order non-resonant susceptibilipy™, there
is complete permutative symmetry with respect to all irdlidepossibility to have
the permutation of the first indices leads to the Manley-Rmelagtions (Sec. 6.3):
Po/wo = P1/w1 = P2/w,. Resonance nonlinear susceptibilities have symmetries
more limited than given by (6.21) (Sec. 6.3). For instante Raman susceptibil-
ity satisfies the relation

1212 _ 2112
XXXXX - XXXXX M
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In the dispersion-free approximatiog™ have no frequency dependence at
all, and the susceptibility tensors are therefore symroétriall indices.

As an example of using Eq. (6.21), consider the eage —w;. Then, with
an account for (6.13),

4xapy(0 = w1 — w1) = Xypalw1 = w1 +0). (6.22)

The presence of the factor 4 here can be verified by repedtengédrivation of
(6.13) in the presence of a constant field. The suscepyiloifitthe left-hand side
describesptical rectification while the one on the right-hand side is responsible
for thelinear electrooptic gect(the Pockels gec), i.e., variation of the refractive
indexn(w;) at the frequency; scaling as the static field,. Indeed, polarization

at the frequencw;, with an account for linear and quadratic susceptibiljties

P1e = [Xep(w1) + Xapy (w1 = w1 + 0)Eo,]E1p = (Yap + Axap)Eip. (6.23)

The susceptibility increas&y will manifest itself in an anisotropic variation of
An(w1). Thus, (6.22) sets a quantitative relation between tvfi@dint phenom-
ena, the Pockelsfiect, which has been known for a long time, and the optical
rectification, which has only been discovered after thenbhwd lasers. Another
example of such a pair of related phenomena is givefrdpaday’s direct and
inverse gects (The inverse Faradayfect is the emerging of static magnetization
scaling as the intensity of a circularly polarized light wgv

Thus, according to (6.14), (6.15), and (6.2i9nlinear susceptibility tensors
x™ of a transparent material are invariant to afin + 1)! permutations of their
space-frequency arguments.

The absence of dissipation in the transparency windowslenabe to define
the energy of the polarization of the matter (Sec. 4.1). If dispersios, delay
of the response, is completely neglected, then, by analdtip(4.28),

VO() = —(1/3),5, E« ESE,. (6.24)

whereE = E(t). In the thermodynamic approach, this energy should beddde
to the free energy density of the matterand to other thermodynamic potentials
(Sec. 4.1). TherR, y\9, andy'® are determined, respectively, by the first, second,
and third derivatives of (E) at the pointe = 0, see (4.32), (4.33).

Let the field contain three harmonics,

E(t) = (1/2)2 En expCiwnt), (6.25)

where
n=+0,+1,+2, wg = w1 + wa, W1 # Wy, wn 0,

W-_n = —Wn, E—n = E;,
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then the time-averaged polarization energy is
V2 = vA(t) = —(3!/3- 2)xap, Es, E1sE2, + C.C (6.26)

Dispersion should be taken into account by replagingith y(w, '), which
is possible due to the symmetry (6.16), (6.21). As a result,

VO(EN) = ~(1/4)0C2E), EysEay + X P2 EELE;).  (6.27)

This relation allows one to calculate the nonlinear poktion, as well ag®, in
terms ofv® (see (4.36)),

P = _45V?/9E},,. (6.28)

6.1.5 The role of the material symmetry

In different reference frames, the components of the fielthd polarizationP
vectors, as well as the tensoré? relating them, are of coursefférent. Under
the rotation of a Cartesian frame of reference, the sudiibytiransforms as

N((S?[?;/ Z Baradys . (Yﬂ i (6.29)

with the tilde denoting the components in the new frame afnexice. Herea is

the matrix describing the transformation from the old comgras to the new ones,
and we assume thattation also includes the sign changes in some or all coordi-
nates, i.e.inversionandmirror reflection For instance, in the case of inversion,
Aya = —O¢a: and

)’E(m)aﬁ,,, - (_1)m+ngE)...’ (6.30)

wherem + 1 is the rank of the tensor. Thuss a result of the reference frame in-
version, the components of odd-rank tensors (in particwi@ctors and quadratic
susceptibility tensors) change their sigks, = —E(,,/\/ffﬁ)7 =9,

For tensors describing the physical properties of a matéhiere is a special
frame of reference where the tensor has its simplest forth,twé maximal num-
ber of zero or equal components. In crystals, this ‘naturaine of reference
coincides with the crystallographic one. For instancd,tegesors of rank two are
diagonal in the natural frame of referen;ggﬁ) = XaOap-

Any unbounded medium, either amorphous or crystalline ghasrtain sym-
metry of particles’ positions averaged over their thermation. Formally, this
symmetry of the medium is determined by a spb(p) of a certain number of
symmetry elementén particular, the elements of a pdimroup of symmetry are

®The term ‘point’ is due to the fact that rotations leave oniapthe origin) fixed, unlike translational
transformations of the coordinates.
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all rotationsa of the reference frame, including mirror reflections andeision,
which leave the structure of the medium unchanged. Forrigstamany crys-
tals, as well as optically non-active liquids and gasesiraariant with respect to
inversion. Such media are calledntrally symmetric

Similarly, any macroscopic property of a medium, which iamtterized by a
certain tensor, has its own group of symmetry elements. Yimreetry elements
of a tensor are all rotatiors” that act according to rule (6.29) and do not change
the components of the tensor. For instance, according 89)6all even-rank
tensors are invariant with respect to inversion.

It seems obvious that the symmetry of a macroscopic propériymedium
cannot be lower than the symmetry of its structure (the voarhann principle,
Ref. [Nye (1957)]). In other wordshe symmetry group of a property should in-
clude all symmetry groups of the structuire., the latter is aubgroupof the sym-
metry group of the property. Hence dfis an element of a point symmetry group
of a medium, then the tilde in (6.29) can be omitted. Ther29Bbecomes a rela-
tion between dferent components of thg™ tensor. By substituting into (6.30)
all symmetry elementa®) of the medium one by one, we obtain a homogeneous
system of equations fQ{g"‘Q)y. In isotropic media and in crystals, such equations
greatly reduce the number of susceptibility nonzero corepts) as well as make
many components equal, sometimes up to the sign.

The most bright example follows from (6.30) in the case oftly sym-
metric media. According to the von Neumann principle, atisters describing
the physical properties of such media should be also cgnsyhmetric, i.e., the
tilde in (6.30) can be omitted. Hence, for evenit should bey) = —x1),
which leads tg/™ = 0. Thus,in centrally symmetric media, all even-order sus-
ceptibilities are equal to zero

Note that this conclusion is not valid in the case of susbdjtiés describing
magnetic €ects. This is because the magnetic field and the magnetizat®
pseudovectors (axial vectors, as they do not change tiggis sinder the inversion
of the coordinates). As a result, the corresponding sukiktpes are pseudo-
tensors and do not transform according to (6.30) under simer In particular,
the Faraday féect, described by the relatid?y = (w1 = w1 + 0)E1Hy, is also
possible in centrally symmetric media.

6.2 Models of optical anharmonicity

Depending on the features of the matter, its state, the émcjas of the incident
fields, and other experimental conditions, various meamsican contribute in
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the observableftects. Below we will consider several particular classicabels
of optical anharmonicity and then present the general quauscheme of calcu-
lating nonlinear susceptibilities.

6.2.1 Anharmonicity of a free electron

Let an electron (or any charged particle) be in the field ofemelmonochromatic
waveE polarized linearly along thg axis and propagating along thexis. With
an account for the magnetic part of the Lorentz force, ndetivéstic equations of
motion for the electron have the forma € 0)

}ZHy) = E(l_
C m

1

.. . e .
X+ 2yX = —(E _ —Z)E,
ey m\ % c

. . e .
7 +2yZ = —XE 6.31
+2yZ = —XE (6.31)

wherey is a phenomenological damping constant providing that #ieeperiodic
field is switched &, the motion proceeds with a stationary amplitude, and

E = Ex(Z.t) = ReE; explKZ(t) — iwt] = Hy(Z.1) (6.32)

is the field at the particle location. Damping can be causexbbigions, as well as
by the reaction of the radiation, i.e., radiation lossasli@tion friction). Suppose
that the transverse displacemenof the electron is small, then in (6.32) one can
assume& = 0 (dipole approximation, i.e., zero-order approximatiokZz).

Let us search the stationary solution to (6.31) in the forra Bburier expan-
sion using the method of successive approximations in theediaplitude,

R=RY 4+ R +... = ReRe™ + Rpe 2t + ..), (6.33)
whereR = {X, Y, Z}. In the first approximation, one can neglect tlikeet of the
magnetic field, so that the response of the electron is ljinear

e/m
W2+ 2wy
Hence, the linear polarisability tensor of an electron,ahhilefines the relation
between the amplitudes of the dipole momént eR; and the fieldgy, is

—ez 0,
T mw(w + 2iy)
In our model, there is no neutralizing positive charge, dreddipole moment is
defined with respect to the origiR = 0. After multiplying o by the densityN
of electrons, we find the linear susceptibiliff?) of cold (free of Doppler fect)
plasma, see (4.52).

XM =~ (6.34)

(6.35)

aop(w) =
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Thus, atw > v, the linear polarisability of an electron is

— _ 2
a = _W = —re/T y (636)
wherere = €/mé ~ 3. 10713 cm is the classical radius of the electron. Note that
re is related to other typical length parameters througHitiestructure constant
€ /hc? ~ 1/137,

A0/2 = 137ag = 1371 = 137re, (6.37)

wherely = 271 = 1/R ~ 10°° cm is the wavelength corresponding to the ion-
ization potential of the hydrogen atom .63V, R = me*/4n#3c is the Rydberg
constantag = #%/me® ~ 5-107% is Bohr’s radius and; = i/mc~ 4- 101 cmiis
the Compton wavelength. Lat= 1o, then

—a =433 ~ 6-10%%n?’, (6.38)

i.e.,polarisability of a free electron in the UV range is, on theler of magnitude,
equal to the hydrogen atom volume, i.e., to the polarisghif a bound electron
in the absence of a resonance

In order to find the second approximation, one should repRutsy R® in
the left-hand sides of (6.31) and Rf" in the right-hand sides. Then the Lorentz
force will have components with both zero and double fregyen

FP = (e/0)XWE = (1/2)kim a(|E1* + E2e™2Y). (6.39)

The double-frequency force causes longitudinal osailfetiof the electrons with
the frequency &. Their amplitude, according to (6.31) and (6.39), is

e2E2 1
z? = L = ZBE2. 6.40
2 7 8imlcw(w + iy)(w + 2iy) Pl (6.40)

In the last equation, we have introduced the quadratic galitity tensoiB of a
free particle, which provides the relation between the @onbés of the field and
the dipole momemezéz) atthe double frequency. Thus, the quadratic polarisgbilit
of a free electron ab > y is

Bl ~ €/nfew® = (et/mS)a = a/E\" (6.41)

Here,EyL is a typical parameter equal to the field amplitude at whiehlihear
and quadratic responses are eqdél, = XM, At 1 = A,

E[°° = e/relo ~ 10°G, (6.42)
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Fig. 6.2 Due to a plane monochromatic wave, an electron maleeg a Lissajous pattern.

which corresponds to the intensity 220V//cm?.9 Below, we will show that the
anharmonicity of a bound electron is two orders of magniaglarge as that of a
free electron even in the absence of a resonance,

ERUMYENES ~ wo/137w,
where
ERoUnd x e/2a3 ~ 10G. (6.43)

Multiplying B by the density of the electrons, we get the quadratic suibikpt
of the plasma,

@) = eN/mPewd = [y )/E (6.44)

Thus, one of the fundamental sources of the matter anharmonisitthe
Lorentz force Note that the denominator of (6.44) contains the speedybt,li
which is typical for magneticféects.

According to (6.41), the ratid®/X® has an order oF;/En., while kz®? ~
(E1/EnL)?. This justifies for using the dipole approximation in thectdétion of
B at E; <« EnL.

If the static force of light pressure is not taken into acdptimen, accord-
ing to (6.34) and (6.40), an electron in a magnetic field mowmethe xz plane
along a figure of eight trajectory (Fig. 6.2). Stimulatedilbsttons of the elec-
tron along the fieldX(t), are accompanied by dipole emission in all directions,
except the exact one. This is what is calle@homson scatteringr, taking into
account recoilCompton scatteringAt the same time, longitudinal oscillations of

dIn the Gaussian system of unitsandH have the same dimensionality; therefds;an be measured
in Gausses (1G 300 V/cm).
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the electronZ@(t), lead to dipole emission at the frequency of the incidend fie
second harmonic, i.e., thefect of frequency doubling The second-harmonic
emission is maximal in the transverse plamg, and absent along the primary
field propagation direction. This structure of the freestrlen quadratic polaris-
ability tensor prevents the second-harmonic amplitud@snracroscopic sample,
such as plasma or a semiconductor, from adding up coherently

Thus, electrons in a plasma, metal, or semiconductor pegwdaddition to
Thomson scattering, also non-coherent scattering witldthable frequency and
the intensity scaling ag?N. Bound electrons in atoms or molecules also have
quadratic polarizability, which leads to a non-cohereattgeing at the double fre-
quency, termedhyper-Rayleigh scattering-=rom the quantum-mechanical view-
point, it is interpreted as the absorption of two incidendjoims and the emission
of a double-energy photon (Fig. 6.1(a)). If the phase vékxiof the incident
wave and its second harmonic are eqo@b) = n(2w) (the so-called phase match-
ing condition), then, provided that the structure of {48 tensor is appropriate,
weak nearly isotropic hyper-Rayleigh scattering is accanimgd by a much more
intense longitudinal emission, scaling@N? = y?? (Sec. 6.5).

6.2.2 °Light pressure

The constant component of the Lorentz force (6.39) detemthe static light
pressure forc&q acting on the electron due to the traveling wave. According t
(6.39),F( scales as the imaginary part of the electron linear pobitisa o, i.e.,
the power of the scattered ligh®, = wa”’|E1|?/2 (see (4.15)), or the interaction
cross-section,

o =P/l = 4rka”, (6.45)

wherel = c|E1|?/8r is the intensity of the plane wave. Therefore, the force of
light pressure can be represented in the form

Fo = ke’ |E1)?/2 = P/c = ol /c. (6.46)

This force accelerates the electron; however, collisionplasma will lead
to a constant speed of electron drifiy = Fo/my, wherey = 1/t andr is the
time between collisions. (Recall thais the oscillation damping rate, which can
exceedy). The constant current emerging along the beam, scalit;gscan be
interpreted in terms of optical rectification. (In dielécs; the term ‘rectification’,
or ‘dc-gfect, means the appearance of a static figlg~ |E|%.)

Let w > v, then, according to (6.35)" = 2ye?/mw>. Let us estimaté, in
the case where the damping of electron oscillations is onéytd radiation losses
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(radiation friction). According to (6.31), the friction force, in the first or¢dés
—2ymX®. Multiplying it by the velocityX®) and averaging over a single period,
we find the power of losses®? = ymw?X\V)2. Setting equality between this
expression and the power of dipole emission (5.19), we obtai

2yv/w=a"]a = 2re/31. (6.47)

The same result follows from (5.24) with a unity oscillattresigth (4.62). Now,
(6.46) takes the form

Fo = rg|Eq?/3. (6.48)

Comparing (6.46) and (6.48), we find the Thomson crossedfi scattering by
a free electron,

or = 8nr2/3. (6.49)

From the photon viewpoint, light pressure is due to the faat an electron ac-
guires the momenta of absorbed photons, which are then syioatly re-emitted
in all directions via Thomson'’s (or Compton’s) scatteririget us stress that we
have only considered the average value of the force, whislgbhantum fluctua-
tions [Minogin (1986)].

We have found the force of light pressure acting on a fredm@edn the case
of a traveling wave. Similar analysis can be carried out fanae complicated
spatial configuration of light. For instance, an electrofi & displaced in the
field of a standing wave, which is th€apitsa-Dirac gfect It is important that
in a non-homogeneous field, the Lorentz force has a nonzére aseraged over
the period even at” = 0. In this casef is determined byy’, which is much
greater tham”, so that the latter can be assumed to be zero. This force $&dau
by the exchange betweenfiirent plane waves and is called tteanulatedone
(in contrast to thespontaneouforce (6.46)).

Displacement of an electrodR(t) due to a monochromatic field is
a@E(Ro, t)/€, wherea = —mé/w? is the polarisability andR, is the non-perturbed
coordinate of the electron. Hence, we find the averaged tnferce,

Fo=aExH/c=kimaE, x H! /2, (6.50)

where the last equality is also valid for the case of a comptdarisability. Note
that in a plane traveling wav&H ~ sinwtcoswt — 0, and that in the general
case the forc&o does not scale as the averaged Poynting vegtos, cReE,, x
H;, /8.
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Consider first the case of two plane waves,

=

2
D Enexplkn- Ro+ign),
n=1

Hn = kn X En, kn = knw/c.
At o = 0, (6.50) contains only ‘cross’ components,
Fo = (1/2)akim (Ey x H3 — Ej x Hy)é?
= (1/2)aim[-AK(E1 - E3) + E1(Ej - k1) — E3(E1 - ko)]€¥,  (6.51)
wherey = Ak X Rg + ¢, Ak = K1 — Ko, ¢ = ¢1 — 2.
It is easy to see that the part B scaling asAk can be represented in the

‘gradient’ form with the éective potential—a@/z (from (4.28) it is clear why
the factor ¥2 appears),

Fu = aV|E,?/4. (6.52)

Note that this part of(, called theMiller force, disappears, according to (6.51),
in the case where the waves are orthogonally polarized. dianter-propagating
waves Kz = —k3) with the same linear polarizatioRg = Fy:

Fo = —(Yk]_E]_Ez sin(2k1 -Rg + (,0). (653)

Due to this force, charged particles tend to bunch in the sarfe standing wave

Inthe general case, a field consists of a continuum of planesyand the light
pressure force can be found by integrating (6.5l irandk,. Note that in this
case, the gradient part (6.52) maintains its form. It shiwaldtressed that in the
presence of the electron recoil, the interacting waves d#terent frequencies.
The corresponding phenomenon is calledstimulated Comptonygct

Consider further the pressure of light acting on bound ebastin an atom or
a molecule, i.e., on neutral polarisable particles. As thgiag point we take the
effective potentiafy’ = —d - E(r), whered is the induced dipole moment amds
the coordinate of the particle center of mass. Hence (S2®{4.

F = vd(t) - E(r, 1), (6.54)
or Fo, = dgdEg/dx%,. Assuming

Ey = (1/2)E1® Y 4 c.c.= EM + EO),

dy = A(w)EM +c.c.

and selecting the constant component, we find (6.46) onda.aga
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Consider first resonance pressure. Let, as before, the dgrhpionly due to
the emission by the particle, i.e., the resonance fluorescéec. 5.2), then the
width of the resonance is minimal (the natural width),.d = A. Then, according
to (2.55),0 = 2742, and it follows from (6.45), (6.46) that” = 13/2 and

Fo = P|E4l?/4. (6.55)

Thus,the resonance light pressure on a bound electroi?js2 = 137 times
as great as on a free onerovided that the damping is only caused by radiation.
This huge diference is due to the high ratio of the resonance and Thomsass
sections.

Estimate (6.55) relates to the case where only the lowel iey®pulated. In
the general case,

o’ = (1/2)23A = B2AO/2(1+ 2WoT)), (6.56)

whereA andA®© are relative population ffierences with an account for saturation
and without it, respectively (Sec. 4.3) is the transition probability and; is
the time of longitudinal relaxation. In the case of radiatielaxation,T; = 1/A.
According to (6.56)in the presence of population inversion the light pressure
force is directed oppositely to the light beawhich in the photon language can
be explained in terms of the recoil of photons emitted vimstated transitions
forward.

At strong saturation, the pow#rabsorbed by the atom, according to (4.102),
is hwA@/2T4, so that (6.46) leads to

Fo = hkA@/2T,, (6.57)

the force scales as the momentum of the incident photon tineesumber of
photons scattered per unit timeetA = 1y andA = 10° s%, thenFo = 3- 1077
dyn, and atm = 3- 1023 g the acceleration is as high as’Xfys’. The intensity
of saturating light is in this case much greater tharfM/cn?.

Resonance pressure of laser light provides quite unuspétapons. With its
help, one can accelerate, displace, and focus beams o&hegtiecules, separate
isotopes, ‘trap’ molecules within a small space domain, r@aldice their thermal
velocities [Minogin (1986)].

6.2.3 Striction anharmonicity

Now, let all frequencies of the field be in the transparencygeaof the matter.
Then the dispersion can be neglected and the polarisabflityparticle can be
considered as a real constant. In this case, the force tagdarm

F = aVE?/2 = oVE® . EO), (6.58)
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Here, the bar denotes averaging over high-frequency coemasnindeed, we are
only interested in the static part of the force acting on agogle as a whole, or at
least in the part that is varying slowly compared with theyérencies of the field
and the molecule. For notatid#*), see Sec. 7.2.

The gradient force (6.58) corresponds to tiie&ive potential of the molecule
V= —a@/Z.

The additional energy density of the matter and the forceitieim an optical
field will be N times as high (see (4.35)),

v=—xE2/2 = —(n* - 1)E?/8r, (6.59)

f = yVE2/2, (6.60)

wherey = y® ~ aN, N is the density of molecules, which is assumed to be
uniform, andn = +/e is the refractive index.

Here, we have neglected the interaction between molecwleish is only
possible for a sfiiciently smallN. One can show that in the general case (see
Ref. [Landau (1982)]), one should make a substitution i6t6@),

o) b5 em
wherep is the density of the matter. For instance, from the ClauMossotti
relation, which can be easily obtained from (4.48),
e—1 A4dna
c+2  3m’

1(dp\ _(dInp) _ 3

;(E)T‘( de )T‘ (e-De+2)
so that in the case of a dense medium, (6.60) should be niedtiby the Lorentz
correction € + 2)/3. .

In a traveling plane waveYEZ2 has no constant component, heree= 0.
(Note that we are considering a range whete= 0 and thespontaneou$orce
(6.46) related to the dissipation is absent.) However, itaading plane wave,
E = 2E; cosk?) coswt), and from (6.58), it follows that (compare with (6.53))

F, = —akEZsin(2k2). (6.63)

(6.62)

it follows that

Thus,at @ > 0 particles gather in the anti-nodes of a wav&he force (6.63),
scaling as the polarisability, is called tegmulatedforce.

In limited beams of light, there is a static transverse gmatbf the field
square, and at > 0 the particles tend to move towards the beam axis. Under
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stationary conditions, the force density (6.60) should d®gensated for due to
the increase in the pressurep, and the density of particledN, in the central
part of the beam,

Ap = -v = yE?/2, (6.64)
AN/N = Ap/p = BrAp, (6.65)

wheregr is the isothermic compressability of the medium. These topsde-
scribeelectrostriction in a light field

The increased density of particles in the light beam willssaa change in the
susceptibility of matter,

Ax = aAN = Brx?|E1|?/4. (6.66)
At the same time, by definition,
P(13) = ¥w = w - w + W)|E1PE; = AYE1,

so that the electrostriction contribution to the cubic sysibility is

X =pr /4. (6.67)
Hence, we find the typical nonlinear parameter
EaL = XD /® = 4/pry ™. (6.68)

In liquids,n ~ 1.5 (y ~ 0.1), andBt ~ 1019 dyn. (Recall thaB ~ 1/pVv?, wherev
is the speed of sound.) Hengé® ~ 10°3 cm/erg,En. ~ 10° G.

The gradient force (6.58) and the corresponding pressére &e very im-
portant for applications: they enable one to generate gtrdima-sound waves
using bi-harmonic laser fields. The same force castigsilated Mandelshtam-
Brillouin scattering(see below). Striction nonlinearity (6.67) is one of thesazs
for the self-focusing of light Another important mechanisrnhe optical Kerr ef-
fect i.e., orientation of anisotropic molecules of a liquid itireearly polarized
light beam, will be considered furthér.

6.2.4 Anharmonic oscillator

In classical Lorentz’s dispersion theory (Sec. 4.2), etatd in atoms are assumed
to be harmonic oscillators. It is natural to consider theagphonlinearity of mat-
ter in terms of the anharmonic oscillator model. Let a plti@ in the potential

V(X) = mwdx?/2 - myxd/3 - eEx (6.69)

eEditors’ note: The same mechanism is used in the atom optarsely, in making atomic beams
scattered by an optical lattice.
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wheree is the particle charge anglis a small parameter defining how much the
shape of the potential well fllers from a parabolic one. (For simplicity, we con-
sider a one-dimensional model.) From (6.69), we find the goguaf motion

DX = X+ 2yX + wix = eE/m+ 3. (6.70)
Let the external fiel& be a bi-harmonic one. We search the stationary solution
as a perturbative series,

X(®) = > XM (R), XM ~ ™, (6.71)
m

wherem = 1,2,4,8,.... Substituting (6.71) into (6.70) and setting equalities
between terms of the same order of magnitude, we find theaolintthe form of
iterations,

Dx® = eE/m, Dx@M = ;xMm?2, (6.72)
In the first order,
XY = Re( et + xpee2t),

Xn = a(wn)En/e, a(w) = €/mD(w), (6.73)

where
D(w) = wg - w? = 2iyw = D*(~w).

In the second order, according to (6.72), there are compsrodrx(t) with
frequencies Rw;, 2wy, w1 = w,. Consider the responseg at the frequencys =
w1 + wy. It follows from (6.72) atm = 1 that

X3 = nX1%2/D(ws3) = B(wz = w2 + w1)EzE1 /€,
where
Blws = wy + w1) = n€®/MPD(w3)D(w2) D(w1). (6.74)

At w1 = +wp, B contains an additional factor of/2 (see (6.13)). According to
(6.14), (6.15), (6.16), polarisabiligyis invariant to the permutation of the last two
arguments, as well as to a simultaneous change in the sigiglofee frequencies
and the imaginary unity. However, according to (6.74), thet irgument can be
interchanged with the second or the third ones only in themtesof a resonance
at one of the frequencies, witly, — wo| > y (compare with (6.21)). From the
polarisability of a single oscillator one can pass to the susceptibif@y/of the
medium by multiplying the polarisability by the densNyof the particles.

Thus, the model of an anharmonic oscillator predicts a dramaticréase
in the quadratic polarisability3 (by a factor of Q= wg/2y) in the vicinity of
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resonances, where one of its three arguments is close togkeafeequencyuo.
In this case8 becomes a complex value. From the comparison of (6.72) and
(6.73), it follows thatB scales as the product of the linear susceptibilities at the
corresponding frequencies,
Blws = w2 + w1) ~ na(ws)a(wz2)a(ws). (6.75)
Note that the quadratic susceptibilities of many dieleatrystals in the trans-
parency range (between the lattice and electron eigerdrenes) satisfy the rela-
tion
X&) ~ n(wa)n(wz)n(ws), (6.76)
with the same scaling factor forférent crystalsNliller's empirical rule).
Our model does not take into account thé&atience between trectual (lo-
cal) field E;oc and themacroscopidield E, which is averaged over the atomic
inhomogeneities. According to Lorentz, in a cubic cry$Epl/E = (e + 2)/3.
(This correction is only valid for dielectrics, while in na$ and semiconductors,
Eioc = E.) PolarizationP of the medium, caused by a given external polarization
Pext is also €+ 2)/3 times as large a3« As a result, the quadratic susceptibility
@, defined with respect to macroscopic parameters, is
@ _ €(ws) +2€(wp) +2€e(w1) +2 ()
X = 3 3 3 Xioc’
where)(lfg is defined for local parameters. In non-cubic crystals,¢bisection is
atensor. Equations (6.75)—(6.77) indicate thate is a close connection between
the linear and nonlinear properties of a medium
Let a displacememnt = ag correspond to the case where the linear part of the
force in (6.70) ek = mwgao, is equal to the nonlinear onemeﬁ. (Here,Epis a
typical field keeping the charge near the equilibrium posili Theny = wg/ao,
and fory, wn, < wo we have an estimate

(6.77)

EnL = /B ~ Mwg/ne ~ mwiao/e = Eo. (6.78)
Thus, the ratio of the quadratic polarization and the lirgza is on the order of
E1/Ep (compare with (6.42)). For a hydrogen atoag,should be understood as
Bohr's radius/?/me*, andwy, as the ionization edge frequeney/2hag. Then,
Eo = e/2a3~ 10’ G.

The cubic potential (6.69), according to (6.72), creatdg emen harmonics,
2w, 4w, 8w, . ... For the formation of odd harmonics, it is necessary thaptien-
tial has a term- x*. Note that even & = 0, the potential (6.69) is not centrally
symmetric: it changes its sign under the coordinate ingersi — —x. Itis useful
to consider a three-dimensional model using the poterighinanov (1964)]

Vr) = MW, Xe Xa /2 = Ty M¥ XgXy . (6.79)
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6.2.5 Raman anharmonicity

Spontaneous Ramaiffect or spontaneous Raman scatteri(@pRS) was dis-
covered by Raman and, independently, by Mandelshtam andsbaing, in 1928,
much ahead of the advent of lasers. The corresponding stietléfect (StRS)
was first observed only in 1962.

In SpRS, monochromatic lighthe pump incident on the matter polarizes
molecules with an optical frequeney;. As a result, the molecules acquire the
dipole moment

d(t) = a1E1 coswat, (680)

where, for simplicity, we assume the linear polarisabitifya moleculea; =
a(w1) to be a real scalar. Emission of molecular dipoles (6.8a¥deto the
Rayleigh scattering

Let us now take into account the intra-molecular oscillaiof the nuclei with
the eigenfrequenc®y, < w;, which are excited due to collisions. Oscillations
of the nuclei near the equilibrium position®(t), slowly modulate the electron
‘cloud’ surrounding them. In this case, all electronic paeters of the molecule
are modulated as well, including its optical polarisapjlit(t) = (da/dQ)Q(t).
This picture is based on the so-callsdiabatic approximatiopwhich implies that
the electron eigenfrequencies much exceedo (usually,wp/2rc ~ 10° cm 2,
Qo/2rc < 10° cmi™1). With the oscillations of the nuclei taken into account8(®
takes the form of an amplitude-modulated oscillation,

d(t) =|a1+ g—ng COSQot) E; coswat, (681)
whereQq is the amplitude of the nuclei oscillations.

As a result, the radiation scattered by the dipoles contairaddition to the
‘carrier’ (Rayleigh’s) frequencyw;, two sidebands: th8tokesone,w; — Qo, and
the anti-Stoke®ne,w; + Qp. In the case of a multi-atom molecule, the Raman
spectrum contains its normal oscillations (some osdailtetido not influencer
due to symmetry). With an account for the anisotropyraind the rotations of
molecules, the induced dipole momei(t) will be also modulated by the typical
rotational frequencies.

This modulation approach is based on a single nonlineampatex,da/9Q,
introduced by Placzek, and provides an explicit descniptid the sponta-
neous fect. (Here, the term ‘spontaneous’ relates to the field carapts with

fEditors’ note: in the original text, the Russian term is ysetlich is ‘spontaneous combination
scattering.
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the frequenciesv; + Qp, which are absent in the incident field and appear
‘spontaneously’.)

In order to describstimulatednonlinear éects caused by the parametric cou-
pling between nuclei and electrons, it is useful to considermodel of two cou-
pled oscillators, with the potential

V(% Q) = mwix?/2 + MQZQ%/2 — nx*Q — eEx (6.82)

Here,x andwq are the coordinate and the eigenfrequency of the elec®and
Qo are the corresponding values for the nucjas the coupling parameter scaling
asda/0Q. It follows from (6.82) that

X+ 2yX + wix = eE/m+ 2nQx/m, (6.83)
Q +2rQ+ Q2Q = /M. (6.84)

This model was proposed for the description of StRS by P&ika and Khokhlov
in 1964. According to (6.84), the force acting on the the aisttales as the square
of the electron displacement; therefaitee nuclei oscillations will be enhanced in
the case where theitrence between the two field frequencies is clog&td et
the incident field be a biharmonic one, and— w, = Q ~ Qq.

In the linear approximation in the fiel@® = 0, and

XY = eE,/mDy, D = wi - w2 - 2iywn, N=1,2. (6.85)

In the expression for the forcex?, we only leave the resonance terms with
the frequency scaling as{”x{™”, then the amplitude of stimulated molecular
oscillations with the frequen is

(1) (1)* 2
nXy %3 (n/M)(e/m) .
- - = 6.86
Qo 2M(QZ-Q?-2rQ)  2DgDiD; - 2 (6.86)

Thus,an optical biharmonic field with a proper frequencyfdience ‘excites’
the intra-molecular nuclei oscillations through the elect shell These oscil-
lations, coherent with the incident light, add to the edpitim thermal ones and
cause additional incoherent scattering at the anti-Stiskgsencyws = w1+Q =
2w1 — wy, and at the second Stokes frequenay= w; — Q = 2wy — w;. In ad-
dition, cubic polarization is induced at the initial fiel&fluencies, leading to the
amplification of the fieldg, with the lower frequency and attenuation of the field
E; with the higher frequency. It is namely th&ect of Raman amplificatiothat
causes stimulated Raman scattering.
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By substituting (6.85) and (6.86) into (6.83), (6.84), walfin

(@ _ 1% Q0 _ r?e/2Mm

= E2°Ey,
1T mD DOD§DZD;' 2

@) _ nX(ll)Qg B 77263/2|\/|I’T‘|4

= Ei|°Es, 6.87
%2 mD;, Doolo;Dgl 1"E2 (6.87)

@) _ Ux(ll)QQ _ n’e¥/2Mntt

= EZE;.
mDs DoD?D;D; * °

After multiplying xff‘) by eN, we find the cubic polarisability. As a rule, in
experiment the frequencies of the field (n = 1, 2, 3) are much less than the elec-
tron transition frequenciesy; therefore D, ~ w,? (non-resonanc®S). Within
this approximation, (6.87) leads to

X w1 = w1 - wp + W) = ¥ w2 = w2 — W1 + Wy)*
= ¥¥(ws = 2w1 - wy)
= C/[Qf — (w1 — wp)® = 2iT(w1 — wp)],  (6.88)

whereC = n?&*N/Mnt'w8

These nonlinear susceptibilities describe, respectiv@yman absorption
(since y®(w1)” > 0 atw; > wy), Raman amplification(y®(w.)” < 0)
andcoherent anti-stokes Raman scatter(@ARS) with the intensity scaling as
le®(w3)[?l11,. Besides, it follows from (6.88) that in the presence of a oubmo-
matic wave with a fixed frequenay, within the transparency range, another
monochromatic wave, with a variable frequengywill have resonance disper-
sion in two regionsw, + Qo (Fig. 6.3). The width 2 of these resonances is
determined by the decay rate of molecular oscillations,thisdRaman (induced)
dispersionis anomalous in the Stokes range.

Let us find the relation between the nonlinear parametensdda/0Q. We
substituteQ = QpcosQot into Eq. (6.83). In the first order in, it leads to the
relationx, = neE,Qo/mPD1D,. Comparing it with (6.81), we get

fo 22 2 (6.89)
6Q szlDZ mza)g

By means of the two-oscillator model, one can also deschibespontaneous
Raman scattering. To this end, the right-hand side of (&Bdjld be replaced by
the stochastic Langevin force(t) causing thermal (and quantum) fluctuations of
Q(t). This force is delta-correlated, and one can find its spedansity by setting
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Fig. 6.3 Raman susceptibility. Due to th&eet of the pump with the frequeney, the susceptibility
of matter acquires additional resonances at frequengiesQg, whereQg are the eigenfrequencies of
the molecules. It is important that the Stokes resonanceégstive losses (bottom left) and anoma-
lous dispersion of the refractive index (top left).

equality between the fluctuation ener@yand the equilibrium energy of the os-
cillator. Another method of describing SpRS is based on the&h analogue of
the FDT (Sec. 7.7), stating that the polarization fluctustiof matter at frequency
w are determined by the imaginary part of the cubic suscdipfilfFain (1972);
Klyshko (1980)],

(P()PW")) = (1/n)8(w - 0 IN(-QP(w = w — wi + w)"|ELPR,  (6.90)
where

N(Q) = [exp(iQ/«T) = 1] = -N(-Q) - 1, Q = v - w. (6.91)

Here, atQ < 0 (the anti-Stokes range) has the meaning of the equilibrium
number of phonongd/p, while atQ > 0 (the Stokes rangely = —(No + 1). In
the last expression, the unity describes the quantum fltiohsaof the nucleus
coordinateQ, which cause the Stokes scattering evefl at 0, when the anti-
Stokes scattering is absent. The elementary process pon@isig to the Stokes
scattering is a two-photon one. It includes the annihifatiba pump photon and
the creation of a Stokes photon and a phonon (Fig. 6.1(g)).

Certainly, the two-oscillator model, similarly to the ammenic-oscillator one,
is only qualitative. A quantitative calculation of the septbility, even the linear
one, is very complicated and requires the knowledge of theevilanctions and
eigenfrequencies of the system (see below).



Nonlinear Optics 161

Inelastic scattering can be also due to the excitation céraflegrees of free-
dom of the medium, for instance, electronic ones. In thiecdse radiation fre-
guency changes by a quantity equal to the frequency of soeatreh transition
in an atom or a moleculey; — w2 = wmn = (Em — &n)/%. If the incident field
contains two frequencies such that + w; = wmn > 0 and the molecule is at the
ground leveln, then two photons can be absorbed simultaneously. In tledav
process, the excited molecule emits two photons, spontaheor via stimulated
emission.

In macroscopic matter, light interacts not only with loaateirnal oscillations
of the particles, but also with theollective excitationsfor instance, with acous-
tic, temperature, spin, plasma waves, and with the odoiflatof the molecules’
orientations.

The equilibrium chaotic part of these waves modulate thactif/e index (see
(6.66)), and the corresponding sidebands= w; + Q appear in the spectrum of
the scattered light. The scattering can be viewed as regdtibm the difraction
of the incident light by a traveling grating formed by wavépressure, tempera-
ture, and so on. From the quantum viewpoint, a phdionof the incident light
(the pump) gets scattered with a simultaneous birth or dlatitn of a matter
excitation quantuniQ (a phonon, a magnon, a plasmon, an exciton, a polariton
etc.). For the scattering by propagating excitations titpécal that the modulation
frequency depends on the observation direction, i.e., eratigle of scattering,
Q = Q(¥). This dependence follows from thefidlaction Bragg’s condition or,
in other words, thgphase-matchingondition (the momentum conservation law),
ki — k2 £ g = 0, and the dispersion dependence for the scattering wavey(Q2),
whereq is the wavevector of the matter excitation. THeeet of phase matching
on the Raman anharmonicity can be formally taken into acclhyassuming the
cubic susceptibility to depend not only on the frequencigsabso on the wave
vectors §patial dispersioh

For describing stimulated scattering by acoustic waves $M&andelshtam-
Brillouin scattering and other collective excitations, one should take int@aaot
the non-equilibrium coherent part of these excitationsedwby the biharmonic
pump. It is clear from (6.64) how sound can be excited by lighie to elec-
trostriction, there appears a source of alternating presasuthe matter, with the
difference frequenc,

2
Ap(r,t) = (/2@ Z(En/Z) expliwnt) + C.C.

= (1/8)WELE; exp(-iQt) + ... (6.92)
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This source creates density wavgs, propagating with the speed of sound
v. If the pump waves are plane ones, thgm ~ expfi(k; — k) - r], and the
stimulated sound wave will have the maximal intensitykat— ko] = q = Q/v.
This phase-matching condition ‘chooses’ from the contususpectrum of acous-
tic excitations, spanning a range from zero to approxiryatét Hz, one (or
two, considering the dlierence between for transverse and longitudinal waves
in amorphous solids) discrete component, with the frequenc

Q = vik; — ka| ~ 2vksin(9/2). (6.93)

The width of this spectral component is determined by thed@lbsorption coef-
ficient.

6.2.6 Temperature anharmonicity

It follows from (6.93) that at} # 0, light scattering by acoustic waves, i.e., waves
of pressureAp, and densityAp, is inelasticQ ~ v # 0. (To be precise, the maxi-
mum of the scattering correspond<?o 0.) According to (6.93), the scattering
can be centered arougti= 0 only if it is due to non-propagating excitations, for
whichv = 0 or which decay dficiently fast. Such scattering can be caused by
temperature fluctuationaT, or entropy fluctuation®yS ~ AT, as well as by con-
centration fluctuationg\C, in mixtures and solutions. The values p, T,C, ...
(orp,S,...) are thermodynamic parameters describing the macrosstaieof a
medium, and their oscillations, both thermal (‘spontars&oand stimulated (co-
herent) ones, break the optical homogeneity of the meditum={ (9n/9x)AX)
and lead to the scattering of light, spontaneous or stiradlatAll these types
of scattering occur with a frequency shift that is small cansgl with the case
of scattering by molecular oscillations and are calledRlagleigh, or molecular,
scatteringFabelinsky (1965)]. The last term emphasizes tikedénce from scat-
tering by macroscopic inhomogeneities, such as dust pgtand other objects.
The integral intensity of spontaneous scattering by tharmpaterx scales as
the mean squarax?, and it can be calculated thermodynamically. At the same
time, the spectral distribution od the intensity is deteredi by the kinetic equa-
tions describing the evolution of the fiek{r,t). For instance, fox = T the
kinetics is given by the diusion equation,

T — avV2T = P/cyp, (6.94)

wherea is the temperature conductanéis the power of external heat sources
per unit volume,c, is the specific heat capacity at constant pressure. ($trictl
speaking, one should take into account not oAy but also the simultaneous
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variation of pressure\p, due to heating; here, for simplicity, we ignore the rela-
tion between temperature and pressure waves.)

At P =0, (6.94) describes spontaneous temperature scattenidgsaolution
can be represented as a sum of plane waves exponentiallyingaatime,

AT(r,t) = Z T4, (6.95)
q

with y = ac?. Similarly to the case of scattering by acoustic waves, tiagtering

of light with the wavevectok; in the directionk; is caused by the ‘temperature
grating’ with g = +(k; — k). However, according to (6.95), this grating is not
moving, and diraction by it results in aelastic(unshifted) line in the spectrum
of the scattered light, with the bandwidth

Aw = 2y = 8alé sirf(9/2). (6.96)

In liquids, Aw ~ 10° st at® = 90°. The inverse linewidth of the temperature
(entropy) scatteringrr = 1/y = A?/a, has the meaning of the typical time of
temperature diusion by a distance of one wavelengthe |k; — ko™, i.e., the
relaxation time of the temperature grating.

The mechanism of the stimulated temperature scatteriffdR)Stnd the corre-
sponding anharmonicity is evident in the presence of sorsergltion (StTR-2).
Indeed, in the case of a biharmonic field, the external far¢6.94) has a variable
component,

P(r,1) = wy E2(r, 1) = wy” ReE; - Exd @~ (6.97)
which creates a temperature wave,
AT = ReToe (@, (6.98)
Its amplitude can be found by substituting (6.97) and (6i8®) (6.94),

_wx”/Cpp

T .
e y—iQ

E:-E5 (6.99)
Here,w ~ w1 ~ wy > |Q| andy” = y”(w).

The traveling coherent wave of temperature (6.98) modsithesusceptibility
x (mainly due to the density decrease caused by temperatpa@sion)!

oy AT

9In an ideal gasN = p/«T, therefore,y = ap/«T and, if the dependence afon T is neglected,
(Ox/0T)p = —x/T.



164 Physical Foundations of Quantum Electronics

therefore, the wave of the susceptibility has the amplitude

wx”/Cpp ( ox

=21 E;-Ej 101
Xo=——=g 8T)p = (6.101)

As a result, cubic polarization emerges, with the frequesoh, w,, ws =
201 — w2, w4 = 2w — Wy,
P(t) = Ax(HE(t)
= Reya(E2e7! + E;? + Eje ! + E3€@)/2.  (6.102)

Let E1, E; be parallel to thex axis, then, from the definition of the cubic suscep-
tibility we find that

X =X =X =X = : aT
XXXX XXXX XXXX XXXX 2pcp[aq2 Fiwz —w)] \OT

Note that StRS-2 has an interesting feature: h#re,anti-Stokes components
are amplified(compare with (6.88)), i.e., the energy of the field is transfd,
in the course of propagation, from the low-frequency congmts into the high-
frequency ones, sincé{()p < 0.
In order to estimate the temperature anharmonicity, asshate
%
(5

whererg = n/acis the relaxation time of the field. Then,|a — wo|rT < 1,

5 P _ 40nU7e

NC= @ Tanee
whereU = 3«TN/2 is the internal energy density. Thus,7if = 7g, which
atte = 1078 s corresponds ta = 0.003 cnt?, then the nonlinear polarization
becomes equal to the linear one when the field enle%agl/&r equals the thermal
energy of the matter. Note that if one passes from the terhypereonductance
to the heat conductande= apcp, thenE,%lL can be represented as BT 7.

DB _ o1 _ 3B _ 43 _ wy” (a)( ) (6.103)
p

X E 17 —_
=-=, C = — N, =— afd = —, 6.104

(6.105)

6.2.7 Electrocaloric anharmonicity

Temperature anharmonicity can take place even in a conhpledmsparent ma-
terial, due to theptical electrocaloriceffect. The corresponding stimulated scat-
tering is called StTS-1.

Consider the simplest model describing tltkeet of the electric field on the
temperature of a non-absorbing material. After the fieldhticwous or alternat-
ing) is switched on, the energy levels of the molecules géteshdue to the Stark
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effect, and their populations do not correspond any more toeimpérature of
the thermostat. (The role of the thermostat is usually mlayethe translational
and rotational degrees of freedom of the molecules, or tidna of the crystal
lattice.) During the relaxation timé&;, populations are re-distributed, which is
accompanied by the change of the thermostat ereAgya result, the thermostat
temperature is changed. Note that an analogoagnetocalorical gectis used
for obtaining ultra-low temperatureadiabatic demagnetization A more rigid
explanation follows from the definition of the temperatuoe & closed system
(microcanonical ensemble),

1/T = 8S/AU = kd(Ing)/dU, (6.106)

whereS is the entropyJ the internal energy arg{U) the density of energy states.
The latter depends on the configuration of the levels andénehanges after the
field is turned on.

Let us estimate the contribution of the electrocaloffeet in the temperature
anharmonicity. According to (4.35), when a dielectric idgpized, its thermody-
namic potentials get an increase: —y|E1|2/4 per unit volume. Let us choode
andp as independent parameters, then the entropy is determirtedms of the
temperature derivative of the Gibbs’ potend&(T, p); therefore, the variation of
S due to the polarization is

_(08®\ 1oy )
AS = (aT )p_ 4(6T)p|E1|. (6.107)

After multiplying AS by T, we obtain the increase of the hed®, and after mul-
tiplying it by —T/cyp, we find the temperature increase,

To_ 1 (‘9—*) |E1f2. (6.108)
p

Comparing this with (6.94), we see that the role of the ab=dower in a
transparent material is played by

- dAQ T (ox d|E4?
Pequiv= TR (6T)p TR (6.109)
In the case of a biharmonic field, we obtain
QT .
Pequidls t) = ——- a_X ImE; - E; @, (6.110)
2 \oT b

hHere, the finite heat capacity of the external degrees ofifneeis taken into account.
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Comparing (6.110) and (6.97), we find the ratio of the elextlaric anharmonic-
ity and the anharmonicity (6.103) due to the dissipation,

@N QT (a_X) :27rQT(6_X)
XS)) 2wy’ o acn \aT/,

T (6.111)

Hence, it follows that the absorption dfieient equivalent to the electrocaloric
effect is not high,

2nQT | oy

- ~10%cem? 112
cn [0Tp 0~ em, (6 )

Qequiv =

where we assumed = 108 s, T = 300 K, @y/dT)p, = 104 KL,

Finally, note that due to the relation between the density sempera-
ture waves, electrostriction also contributes into theperature anharmonicity
(see [Apanasevich (1977)]).

6.2.8 Orientation anharmonicity

As we have already mentioned, rotation of anisotropic mdéscin a gas also
modulates the scattered light, which leads, due to the taion of the rota-
tional motion, to the appearance of discrete sidebandstheaRayleigh (non-
shifted) and Raman lines in the spectrum of spontaneoutescat However, if
the density of the particles is high, a molecule cannot maks eotation during
the orientation relaxation time therefore, in liquids the rotational lines overlap
and the Rayleigh line acquires a broad ‘pedestal’ spaneimgaf inverse centime-
ters, the so-calle®Rayleigh wing Light scattering by orientation fluctuations of
molecules is also calleghisotropic (depolarized) scatteringn the framework of
the macroscopic description, one can assume that anigotcgdtering is caused
by the symmetry breaking of the medium (which is otherwisgrapic), i.e., the
scattering is due to the symmetry fluctuations. A schemhatps of the scattered
spectrum, with an account for the matter excitations careid above, is shown
in Fig. 6.4.

Interaction of light with the orientation motion of moleeslis another source
of optical anharmonicity. This type of anharmonicity massifs itself in thekerr
gffect, discovered as early as in the 19th century, in which~ ES, the optical
Kerr effectandself-focusingwith An ~ |E;[2, and instimulated Rayleigh-wing
scattering

Let us estimate the contribution of the orientation anhanigity in the cubic
susceptibility. Consider first a non-polar molecule. In adfig(t) it acquires
induced dipole momend(t) ~ a(w) - E(t) (we neglect the absorption) and the
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4 ﬂ:wfw,

Fig. 6.4 Main types of scattering, the corresponding nesliities and typical frequencies: 1, tem-
perature (entropy) scattering by temperature fluctuati®nslated to the electrocaloric anharmonicity
(AQ ~ 108 s1); 2, Mandelshtam-Brillouin scatteringA\Q ~ 10'° s71) by pressure fluctuations is
related to striction anharmonicity; 3, the Rayleigh wingésised by anisotropy fluctuations and is re-
lated to the orientation anharmonicity®@ ~ 10 s71); 4, Raman scattering by the internal vibrations
of molecules 4Q ~ 10'* s71). The first three types are calledoleculat or Rayleigh, scattering

time-averaged energy (see (4.35))
V =-ReED .- EW, (6.113)

Hence,an anisotropic molecule tends to turn with respect to thel fielmax-
imize its polarisability However, in equilibrium matter, rotation of molecules by
the field is hindered by their interaction with the neighbaedaxation processes
restore the equilibrium state with chaotic orientationthefmolecules, which the
field tends to order. Competition between the field and thentaemotion results
in a dynamic equilibrium, with the degree of orientationrgebn the order of
V/«T. In this case, the liquid becomes birefringent, similadyatuniaxial crystal
with the axis parallel td (if the field is linearly polarized). This phenomenon is
called theoptical Kerr gfect

Let the polarisability anisotropy b (w). For instance, for a linear molecule,
Aa = o —a, . Then the susceptibility variatiofy(w;) at a frequency, induced
by the field at a frequeney; will be equal, on the order of magnitude Aa(w2)N
times the degree of orientation,

Ax ~ Aa(w1)Aa(w2)N|E1?/«T. (6.114)
Thus, the cubic susceptibility for non-polar molecules barestimated as
© ~ Aa(wr)Aa(wr)N/KT. (6.115)
Assuming that the anisotropy is highy ~ a = yY/N, we get
E2. = xY/x® = «T/a. (6.116)

Leta ~ a3 ~ 102*cm® andT = 300 K, thenEy, = 2- 10° G, and ify® = 0.1,
theny® = 10712 cm®/erg (compare with (6.42), (6.43), (6.68)).
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If a molecule has a constant dipole momeégand the orienting field is a static
one or it varies slowly compared with the orientation retetime @ ~ 10712 ),
then the &ective energy isV = —dp - E. (The induced moment can be neglected
in this case.) The degree of orientation will then scale’Hg{)? since linear
electrooptic &ect is forbidden in liquids (Sec. 6.1). As a result,

1w, -0,0) ~ Aa(w)N(do/kT)? ~ 10 %m?/erg (6.117)
En = «T/do ~ 10°G. (6.118)

(Here, we assumedy = 1 D.) Thus, the Kerr #ect in polar liquids is much
stronger than in non-polar ones.

Suppose now that the orienting field is an optical biharmare, with
Q = w; — w2 < 1/7, thenV and, correspondingly, the degree of orientation
V/«T will contain an alternating component with the frequegtyAs a result,
the polarization at the probe field frequenoy (which, in principle, can coin-
cide with w1 or wy) will be modulated, i.e., the matter will emit coherent field
with the frequenciews + Q. Thus, orientation anharmonicity provides a reso-
nance contribution with the width/2 to the cubic susceptibility® (w3, —w2, w1)
at (w1 — w2) < 1/7. If the orientation relaxation is taken into account, this¢
tribution becomes complex. Its imaginary part correspdondfie amplification
of the w, field, with the maximum at, = w; — 1/7, and leads to the stimulated
Rayleigh-wing scattering.

Orientation anharmonicity can be quantitatively desdfilie terms of the
molecular orientation distribution function, which istitaary atQr < 1:

2
P6) = CeV/T = C[l— % + %(%) - } (6.119)

whereC is a normalization factor (depending, of course, on the taipre and
the field), the energ@/(6) is defined in (6.113) and is a set of three angles
determining the orientation of the molecule in a laborafoayne of reference (the
Euler angles).

In the case of non-polar molecules, it isfstient to do the expansion up to
the linear in ¥«T term,

C = PO(L+(VO/kT), P(O) = PO [1- (V- (V)O)/kT|, (6.120)
where

(WO = f d®POy, PO =1/ f d30 = 1/82 (6.121)
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The angle-averaged induced dipole moment has the form
(dy =<a(@))-E+(B@O): EE+... (6.122)

The angular brackets denote averaging with the perturlsddhdition function
P(6). If we neglect the intra-molecular anharmonicigy£ 0), then(d) = « - E,
where

@ = (af) = f d®oP(6)a(6)

= 2 — (@(0)V(0))© — OV O) /4T, (6.123)

agoﬁ) = fd?’GP(O)a'aﬁ(O) = Sop(axx + ayy + az7) /3. (6.124)

Here, @@ is the linear polarisability averaged over the equilibridistribution
function. Hence, we find the correction to polarisability,

a-a = f d*0[a(6) - «©1ReEC) - a(8) - E®)/87%T. (6.125)

Here,«(0) is the linear polarisability tensor in the laboratory frawf reference
for a molecule with a given orientatiagh

At Qr > 1itis necessary to take into account the variation of theiligion
functionin time,P = P(6,t), which is described by the kinetic equation [Apanase-
vich (1977)] or a Focker-Planck-type equation. Within tkp@nential-relaxation
approximation, these equations yield a usual dispersipamttence with a pole at
w1 = W2,

YN w2 = wp — w1 + w1) ~ 1/[L +i(w — wo)7]. (6.126)

Hence, the low-frequency (Stokes) component of the fieldngldied, y®” < 0,
and this amplification is maximal #2| = 1/7.

6.2.9 °Quantum theory of nonlinear polarization

Nonlinear polarisabilitie, v, ... of molecules and the susceptibility of matter
x? ~ N, x® ~ Ny,... can be calculated similarly to the linear polarisability
(Sec. 4.2), using the density-matrix equation with the jpime@nological damping
constants. However, it is easier to use the general forn3uld] for the response
(f(t)) of a quantum system to an external perturbation with theggn@\(t); the
damping should be added from general considerations atrihediage of the
calculation.

We are interested in the stationary response of the systarpéoiodic pertur-
bation; therefore, the lower integration limits in (3.7Bpsild be chosen asco.
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The upper limits can be chosen as provided that the causality is taken into
account by introducing the step functiof($ — t1),. .., 0(tc-1 — tx) into the inte-
grand. Let us introduce the damping, which is necessarycfuesing a stationary
regime and practically inevitable in any system (see Fig),6.

o) = e (t>0), (t) =0 (t < 0), (6.127)

wheree is some positive constant, which will be further replaced/gy
Assumingin (3.75¥ = d, andV = —d- E, for the induced dipole moment of
orderk we obtain (see also Ref. [Fain (1972)])

(Ao (tH® = (i/n)* f d, ... f dt O(t — t1) ... O(te1 — t)
X Trip[...[dy (1), dy, ()], ..., G, (b)]}Eay (ta) - - - By (t)- (6.128)

Here,p is the equilibrium density operator and the operattj($) are considered
in the interaction picture. The integrand in (6.128) depeonlk + 1 time argu-
ments, onlyk of them being independent, as one can easily verify. Thisaien
function is called theesponse functioof the system or it&reen’s functionOne
also says that it is @ausalGreen'’s function and, & > 1, amulti-timeone.

Let the field have a discrete spectrum,

E(t) = Z Epexpliwpt)/2, p=+1,22,..., (6.129)
P
then the integration in (6.128) is elementary. For instafarek = 1 we find

H t
(Ao ()W = % f dty Eps expl-iwpts + €(ty — 1)]

X prn [ A0 A% explwnnt + iwmnts) — A5 explwnmty + iwmd)]

- P_[ dipd®:  dDd&)

o ie) Eps expliwpt). (6.130)

Wmn— Wp — € Wnm— wp —
Here, summation over the state indicesh and over the Cartesian indices3 =
XY, Z (which are sometimes written as superscripts, to make thegtion more
compact), as well as over the frequency ingexs implied. If the damping is
taken into account by changiregto the damping ratem, of the density matrix
non-diagonal element, then the linear susceptibﬂ@ defined by (6.130) will
coincide with (4.57).
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Similarly, atk = 2, (6.128) yields
1

t ty
()@= -2 [ du f Aty Eqy expl-i(wpta + wota) + etz — O]

x pon | A2 d") explwnnt + iwmity + iwnt)] + ... |

pandind iy

. " +...
4% (wmn — wWp — Wq — i€)(WIn — Wq — I€)

X EpsEqy expl-i(wp + wgt]. (6.131)
This expression contains only the contribution of the fiestrt of the double com-
mutator [[d(t), d(t1)], d(t2)], since the other three fiier only in signs and in the
permutations of the state indicksn, n.

Consider sum-frequency generation, + w2 = wg. At w1 # wy, the double
sum over frequencies contains two terms oscillating with flequencywg: the
one withq = 1, p = 2 and the one witlq = 2, p = 1. Therefore, they, component
of the dipole moment can be represented as a sum of two tefffiesinty by a
permutation of indices, and 2,

21 d@g® g
(2) _ Pnn | ¥“nmYm| Hin
doa EZ,BEly lﬁ:[ 212 ( DS]??,D&) J,

(6.132)

where
DI('T‘l)IzI = Wmn— (,l)p - iymn,

[T is the operator of summing over various permutations,simaks been replaced
by ymn- Note that the dispersion functiori is the Fourier transform of the step
functioné(t) (Fig. 6.5).

Ab(c

Fig. 6.5 The Heaviside step function multiplied &y and its Fourier transform are used for taking
into account the fects of causality and damping on the response of a system.
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Thus, the quadratic susceptibility of matter consistingNadimilarly oriented
non-interacting molecules can be written in terms of theautysbed level popu-
lationsN, = pnnN, frequenciesumnn, and the transition momentk,, as

21 (@) 4B) 4 4B g@

X612 _ i l—lz N [dnmdml dlr? + dnymdm| dp
afy — n
T ooy bYof

By Imn

dOdOd e

 pOp®  pOp® ] (6.133)
Im ~In Im ='nm

where the superscripts 0 afdelate to the frequenciasug.

Itis easy to see that expression (6.133) has all symmettyri=adescribed in
Sec. 6.1. Thg] operator provides the spatio-frequency symmetry withees
the last two indices (6.14), (6.15). The property (6.16loiwk from the relations
Dfﬁ% = —Dfﬂ)ﬁ* anddp,, = dnm, SO that changing the signs of all frequencies and the
imaginary units only interchanges the terms in (6.133):fitts¢ one is swapped
with the second one and the third one, with the fourth one.

The fact that in centrally symmetric medi& = 0 also follows from (6.133).
The eigenstates of a system with a center of symmetry possesdain parity:
on(=r) = xn(r); therefore dmn = 0 if ¢ andg, have the same parity. Hence, at
least one of the three moments relating the statesn is equal to zero.

The symmetry property in the case of transparent mattet1j6also follows
from (6.133) atymn, = 0. In this case, the last terms in (6.133) can be combined in
pairs,

1 N 11
of7ofy " Do Do

As a result, out of 8 terms only 6 3! are left, which difer by permutations
of index pairs &, 0), (3, 2), (7, 1),

4y

5 1
021
= — N .
Xaopy 252 %;1 n l(;y[ (wmn— wo)(win — w1)

(6.134)

Susceptibility of the next order is calculated similaripn dach new order of
the perturbation theory, factors of the fodm/th(,f) are added. Hence, we get an
estimate for the optical anharmonicity in the transpareaoge,

Y9 g

ENL = W ~ a = Eo, (6135)

whereay, wo, Ep are the typical size, frequency, and internal field of theeuoole.
For the hydrogen atony = 13.6V/ag ~ 10’ G. Assumingy¥ = 0.1, we obtain
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Y@ =108G™1, @ = 1071 G2, Even this crude estimate gives a correct idea
about the orders of magnitude of the susceptibilities. Abrancey™® increases.

6.2.10 °Probability of multi-photon transitions

If we are only interested in energies, then the nonlinearaution between ra-
diation and matter can be described in terms of probatsildiecross sections of
multi-photon transitions, as it was done in Chapter 2 fordage of linear single-
photon interaction. Then, as arule, the field does not have tuantized, i.e., one
can use the semi-classical theory, but the results of clonk can be interpreted
in the photon language.

As an example, let us find the probability of a two-photon edatary process
describing Raman scattering and two-photon (induced)rakbisa or emission.
Substituting the transition amplitude in the first-ordepiagximation (2.24) into
(2.21), for the amplitude of the two-photon transition fréewel a to levelb we
obtain

(1) = (in)~2 f diV; (t2) f Aty Va(ta)- (6.136)

Here, thenindex, in which summation is implied, numerates all intedmnaée {ir-
tual) non-perturbed states through which the transition canroddis expression
reflects an important feature of quantum dynamics: all idessirtual states par-
ticipate in a transition, even those seemingly violatirg¢bnservation laws, with
the only restriction, following from the causality printgpt > t; > t; > to.

Let us substitute into (6.136) the dipole perturbativh = —d’ - E and the
biharmonic field (6.129), assuming thgtt = +oo,

CE)Za) = —(2h)_22 dbn . Eqdna' Ep
ngqp

o 2
X f dtz dtl expﬂ (wbn - a)q)tz + i(wna - a)p)tl]

o

Obn - EqUna- E °°
Z bn* EqUlna* Ep f dt2 eXpﬂ(wba - wq— wp)tz]. (6137)
4 A% (wna — wp) Joo

The lower integration limit in the integral overmakes no contribution due to the
adiabatic start of the perturbation or due to the damping (6€L27) ak — +0).

The integral leftin (6.137) is one of the delta-functionne}rentationsf dtp--- =
2n6(wpa — wq — wp). Thus, in the second order of the perturbation theory, the
field excites a molecule only provided that the algebraic ®ifrthe two field
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frequencies coincides with the frequency of the transiien b. This condition
generalizes Bohr’s postulate for a single-photon resomanc

Let two field frequencies; andw, satisfy the condition of the ‘combination
resonanceay; + wz ~ wpa, then (6.137) yields

@ = i(21/h)(E1 - M2 E5)6(wha — w1 — ws),

(@) 4(B) ) (@)
M12 — le = i db{; dna + dbn dnaé
of o= 4n e \Wna— W2  Wna— W1

(6.138)

If wpa > O, i.e., the initial state of the molecule is the lower onegrth
(6.138) gives the probability amplitude for the moleculeattsorb two photons
(at w1, w2 > 0) or to absorb one photow{ > 0) and emit another photon, the
Stokes oned), < 0). In the last case, (6.138) is the amplitude of a Stokes Rama
process. Similarly, atvpy < 0, (6.138) describes two-photon emission or anti-
Stokes scattering. One can say that the two terms in (6.188) dh the sequence
thew; andw, photons are absorbed (or emitted).

Note that there are four types of two-photon emission: stimu
lated, spontaneous-stimulated, stimulated-spontanandspurely spontaneous
(Fig. 6.1(f)). They correspond to the four terms in the espi@n (N1 +1)(N2+1) =
N1N2 + N1+ N2 +1, which follows from (6.138) after replacirtgy, with operators.
(Here,Np are the initial photon numbers.)

It follows from (6.138) that the maximal contribution to ttransition ampli-
tude is provided by virtual states with the minimal energfiaies(wna — wp).
Note that the various transition ‘paths’ (contributionsvafious virtual states)
may difer in signs and cancel each othguéntum interference of stades

In order to find the transition probability from (6.138),striecessary to define
the square of the delta function:

T/2 .
I6(w)I? = 6(w) Jim f dte“t/2r = §(w)T/2n. (6.139)
o J-T/2

From (6.138), (6.139), we obtain the probability of a twasfn transition per
unit time, i.e., the transition rate (compare with the datitmn of (2.36)),

W) = 271K D26 (wha — wa — wi) /12, (6.140)

K& = E;- M2 Ey. (6.141)

According to (6.140), the two-photon transitian~ b is possible if the virtual
transitionsa — nandn — b are allowed. In a centrally symmetric medium, the
andb levels should have the same parity; in this case, the sipigt¢on transition
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between them will be forbidden (treternative prohibition. Thus,two-photon
spectroscopy and, in particular, Raman spectroscopy enttd study of levels
that are not accessible for linear spectroscopy

For taking into account the finite width of the resonance, sheuld re-
placed(w) by the normalized form factog(w) (see (2.37)). The resulting ex-
pression coincides with the probability of a single-phat@msition (2.37), with
the only exception that the Rabi frequenicl, - Eil/h = Q is replaced by
2K, Probabilities ofk-photon transitions have a similar structure: each addi-
tlonal photorw,, participating in the transition adds tq()k) a factor of the form
dmn - Ep/fi(wna— wp — -+ — w1) ~ Q/wo ~ Ep/En (compare with (6.135)).

As in the case of single-photon transitions (Sec. 2.3), iduesition rateV®
determines the cross-sectiof® and the absorption (amplification) dieient
@, as well as the imaginary part of the cubic susceptibj}if(ws, —w1, w1).
The cross section of a stimulated two-photon transition bal defined as the
transition rate in the case of unity densities of the photoxe,

) ==, Fp= -2 = 2 6.142
Tsim = EF, TP g 8ﬂha)p| Pl (6.142)

For taking into account the finite transition linewidth, weplace the delta
function in (6.140) by the normalized form factp(Sec. 2.2),

@ =128k koler - M*2 - eyPg(wha — w2 — w1), (6.143)

st|m

wherek, = wn/C.
The two-photon absorption cfigient for the field with the frequenay, in
the presence of the second field, with the frequengyis (compare with (1.4))

aP(wy) = +7@ ANFy, (6.144)

stim
whereAN = N, — Ny, is the population dference per unit volume.
The power absorbed from the fiaelg by a unit volume of matter is
P2 = wAmPS) - Ep/2 = wplmy?52AE;, Ef,Es) Eus/2. (6.145)
On the other hand?, = o@1,. Comparing (6.145) and (6.144), for the case of a
real transition dipole momeidk,,, we find that
My 222 = +4rh AN MZAMZAg(wpa — w1 — w)). (6.146)

Finally, the complete expression for the cubic nonlingaidtlows from (6.146)
after replacingy by 1/n(wpa — w1 — w2 — iy). It is not difficult to verify that a
straightforward calculation gf® from (6.128) in a single-resonance approxima-
tion yields the same result.
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Equations (6.140)—(6.143) describe purely stimulatedvoton transitions.
In the case of spontaneous-stimulated transitions (Igadithe spontaneous Ra-
man scattering), the role dE,|? is played by the quantum fluctuations of the
field, which provide an equivalent photon flux densityFafac = ¢/L® in each
field mode in the vicinity of the frequeney,, with L2 being the quantization vol-
ume (Sec. 7.3). After summing over all modes in the vicinityttee frequency
wpa — w1, We find

o @ = WE/F1 = (c/L) Z o = f dw, f4 dQok3 Z @ j(2n)
ko ¢ V2

= | dQ ) (do?/dQ)spst (6.147)
4 V2

whereyv; is the polarization index. After substituting here (6.1,48¢ obtain the
differential cross-section per unit solid angle and a singlarjmaltion type of the
field w,,

(doP/dQ)spst = 16kikSler - M2+ 2. (6.148)

Further, substituting; by ¢/L3 and summing over all modes; of the field,
from O up to the transition frequenayy,, we find the rate of a purely spontaneous
transition,

Wha
ng):(c/Ls)Za(Sngtz(Z/n3) fo dwr f dQldQZZ I, - M12. g2,
kl A

viva

(6.149)
For a rough estimate of the two-photon decay probabilithedptical range,
assume that all frequencies in (6.149) are equalde= €/2hay = ac/2ag, and
the polarisabilityM of the transition is equal tag, with @ = 1/137. Neglecting
all other numerical factors, we obtain

W ~ wo(a/2)? ~ 50s™.

An accurate calculation for thes2» 1sin a hydrogen atom yields 8%

Thus,W&) is 137 ~ 10° times as small a8/ Despite the small probability,
two-photon decay can be easily observed using two PMTs anthaidence cir-
cuit. Note thaspontaneous (as well as thermal) two-photon emission, ritrast
to the single-photon one, has a continuous spectmiich has no relation to the
discrete spectrum of an unperturbed atom. For the emisgiom & heated body,
the statistics of two-photon radiation alsdtdis from the one of single-photon
radiation, which is caused by the fact that photons are editt pairs. Thus,
the anharmonicity of matter leads, in principle, to the d#&gn of the thermal
radiation statistics from a Gaussian one [Klyshko (1980)].
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6.2.11 Conclusions

Thus, a large number of mechanisms contributes to the dptitearmonicity of
macroscopic matter. Quadratic susceptibilify, as a rule, is related to the non-
linearity of bonded electrons. Itfiérs from zero only in piezoelectric crystals
and is on the order of 10— 10"° G™* provided that all frequencies belong to the
optical transparency window. The cubic susceptibjiff) in condensed transpar-
ent matter is also caused by the electronic nonlineayify) ¢ 107> G?) if all
frequencies belong to the optical range. However, if thitedince of two fre-
quencies coincides with the frequency of a molecular vibratheny® becomes

as high as 102 — 10713 due to the combined electron-nuclear (Placzek or Raman)
nonlinearity. AtQ ~ 0, the main contribution in the case of solids is that of elec-
trostriction ¢ ~ 10713); in liquids, the orientation (Kerr's) nonlinearity is agid
(x® ~ 1071?). Electrocaloric anharmonicity, usually, resultsd® < 10723, Ex-
tremely strong nonlinear opticaffects can be observed in liquid crystals and in
plasma. Note that the nonlinear electrodynamics of plasmeell described by
the Landau-Vlasov kinetic equations (see [Silin (1961)]).

6.3 Macroscopic nonlinear optics

Thus, using classical or quantum macroscopic models, wefoawd polarization

P of matter in a given field, i.e., we have excluded the variables of the medium.
By substitutingD = E + 47 P into macroscopic Maxwell's equations, we obtain
a closed system of equations 8y H describing the emission and propagation of
electromagnetic field in matter with an account for the nmattlinearity. Mani-
festations of nonlinearity in the optical range are extrigrd&verse and depend on
the properties of both the medium and the initial field, suskth& amplitude, the
spatial and temporal spectra. The most important paransetéicourse the ratio
E/EnL, which, as a rule, is much less than the unity.

6.3.1 Initial relations

Below, we consider the main types of stationaffeets. The field can be repre-
sented as a sum of independent spectral components,

E(r, 1) = (1/2) ) En(r) exptiwnt),
n (6.150)
E_n = E;Y-l, w_n = —Wn, n= il, 12, cee e
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The amplitudes of monochromatic wavds,(r) satisfy the system of
Helmholtz wave equations that are related to each otheraitetanharmonicity
of the medium, which is considered to be non-magnetic,

2V x V x Ej — w26 - En = 4nwZPNY(D). (6.151)

These relations can be easily obtained from Maxwell’s éqonat(4.9)—(4.12).
Here, the linear part of the polarization is included iajo The amplitude of the
nonlinear polarization at the frequenew,, which is the source of the macro-
scopic fieldE;, , is defined through the nonlinear polarisability (Sec. 6.1)

PNL() = D ™ wn; s 0, Eny (1) - Eng (1), (6.152)
m=3
where
m
Z wp, = 0. (6.153)
i=1

For describing non-coherent (noise) fields, such as theomBlaman radiation,
one should add Langevin random sources in the right-hamdcfig6.151). Ac-
cording to the fluctuation-dissipation theorem (FDT), ttsgiectral density scales
asy” or @ respectively (see (6.90)). Another method of calculatiregnoise
radiation from a nonlinear medium is based on Kircfittgpe equations, which
directly express the noise intensity in terms of the mediemderature and the so-
lutions to the dynamic equations (6.150) (consider, fotainse, (6.225), (6.307),

(7.6)).

6.3.2 Classification of nonlinear gfects

It follows from Maxwell’'s equations (see (4.13)) that thessific power of radia-
tion absorbed from the field by the matter at paintue to anharmonicity within
a single period is

PNL) = (1/4) Y wnEn Pn= (/4D Y wnx™VEn, ... En,. (6.154)
n m=3 n

Each term®™(r) in the last sum describes-frequency interactianif the field
amplitudes are represented in the form

En(r) = " KalEna (1)l €Xpligna(n)], (6.155)

wherea = x,y, z, then both the sign and the absolute valug?8? will depend
on e™(r) = @nay, + -+ + Gnyans 1-€, ON the relation between the field spectral
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components. Such interactions are capdametric It is clear from (6.154) that

the parametric interaction @i harmonics provides arffect that is accumulated
in space only under the conditias™(r) = const, which is possible only for
plane waves, such that,(r) = kn - r, k. = —k,. Then, the wave vectors of the
interacting waves should form a closed polygon,

m
AK™ = Z ke, = 0. (6.156)

i=1

This condition, with an account for (6.153), is called thgatial phase-
matching condition

Often, it is only a single low-order term in (6.154) that isportant n = 3
or 4, i.e., three- or four-frequency interaction), with ata& combination of fre-
guency signs,. This combination can be put into correspondence to an gleme
tary multi-photon process involvingy photons; then (6.153) and (6.156) can be
interpreted as the conservation laws of the field enexghw,, and momentum,
> hik,. In a parametric process, the energy of matter does not ehaeg, the
initial level &, and the final leveE;, coincide,wpa = 0 (Fig. 6.1(a)).

Further, one can considezsonanceparametric processes, for which one or
more virtual levels coincides with the real ones. Then, paremetric &ects
become also important (see below), i.e., there appeasr l{oemulti-photon) ab-
sorption (or emission)y # 0, and the energy of the field is not conserved. How-
ever, provided that the absorption is low, the phase-magcbondition (6.156)
is still valid. Note that, for instance, abh = 4, single, double, and triple reso-
nances are possible. Thiieiency of resonance interactions strongly depends on
the frequenciew, (even without taking phase matching into account), and the
corresponding susceptibilities take complex values.

Outside of resonances, ~ 0, susceptibilities are real, and their dispersion
is weak; therefore, thefigciency of non-resonance parametric processes has only
indirect frequency dependence, through the phase-matcaindition, which at
fixed directions ofk, is satisfied only for a particular set of frequencies and at
fixed frequencies, only for a certain set of directions. Efigre, the &iciency of
parametric interactions manifegtént frequency-angular dispersion

Let us return to the sum (6.154). Among the terms of even snaethere
are degenerate ones, containing subscript paies—n;, for which¢™ = 0. The
corresponding interactions, depending only onitttensitiesof the field harmon-
ics, |Eql?, are callednon-parametric The phase-matching condition is satisfied
for them automatically. The power absorbed at the frequenayue to the non-
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parametric interaction with dnfrequency field, according to (6.154), is

Pi(r) = (1/2)wrlmy® D (~wi; w1 - - — wy, w):EE; ... E[E). (6.157)

It has a constant sign for a given set of frequencies and gleimpared ta&k")
varies in space for any configuration of the field, since theesplk of the harmonics
do not influence Eq. (6.157).

In non-parametric elementary processes, such as, fonicestawo-photon ab-
sorption or a Raman transition, the final energy of the matiffers from the
initial one (Fig. 6.1), and therefore, the field energy is pi@served. For a non-
parametric process, in addition to the trivial (in this gasendition (6.153) there
is a resonance at

|
Z Wn = Woa- (6.158)
n=1

In the presence of additional intermediate resonancesngaametric pro-
cess is called @ascadedor resonanceone. Such processes have complicated
dispersion dependence on each field frequencgeparately. Examples are reso-
nance Raman scattering and cascaded two-photon absadrptidhree-level sys-
tem (Fig. 6.1(e)).

In the case of non-resonance (non-cascaded) proces8es, 0, and the ef-
ficiency of non-parametric interaction depends, accorthn@.158), only on the
sum of all field frequencie, wn. This case can be called a single-resonance one.

Note that in non-parametric processes, new spectral coemgeappear only
due to spontaneous or spontaneous-stimulated transitosin the absence of
a feedback the radiation is noisypn-coherenteven if the pump is coherent and
has a fixed phase. An example is inelastic scattering of.lighthe same time,
parametric processes can lead to the generati@oloérentfields with new fre-
quencies (generation of harmonics).

The dfects of nonlinear optics can be additionally classified ediog to the
number of essential spectral components or according totieber of plane
waves (modes). For instance, single-frequency non-pdrantdegenerate) ef-
fects includenonlinear absorption and dispersiafiw; = wps) and saturation
(w1 — w1+ -+ + w1 = wpy). Examples of two-frequency non-parametriteets
areinduced absorption and dispersigw; + w2 = wpy) andRaman interaction
(w1—w2 = wpa), leading to thetimulated Raman scatterir{§tRs) and thaverse
Raman gect i.e., induced absorption at the anti-Stokes frequency.

Note, however, thainduced dispersianaccompanying multi-photon absorption, similarly to ine
dispersion, corresponds to a virtual process wigh = 0.
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The second harmonic generatiois a degenerate case of three-frequency
parametric interactionu(; + w2 = w3 = 0). Four-frequency parametridfects
include third-harmonic generation armbherent anti-Stokes Raman scattering
(CARS), which forms the basis dactive spectroscopy CARS is determined
by the resonance part of the cubic susceptibiff(ws = ws — wy + w1) at
w1 — w2 = wg — w3 ~ wpa. An example of a parametric single-frequency four-
wave interaction ioptical phase conjugatiodue toy®(w = w — w + w) at
ko = —ki, kg = —ka.

All these dtects will be considered in more detail below. Sometimesisdy
effects can be manifested simultaneously; for instance, StR®e accompanied
by self-focusing and CARS. However, often, by choosing tteeimental condi-
tions one can select a singlfext. In our analysis, for simplicity we will assume
that this is the case.

Itis also convenient to distinguish between tlffeets according to other pair-
wise features: spontaneous — stimulated, stationary -stationary (Chapter 5).

It should be stressed that the terms ‘spontaneous’ anduktted’ have no
rigid definitions in quantum electronics. In linear optispontaneous and stim-
ulated emission is considered to be a non-stationary psdagslving a single
molecule, while the joint stationary radiation from heategkter is called thermal
radiation. At the same time, the term ‘spontaneous scagjeis understood as
scattering by thermal (or, &02/«T > 1, quantum) fluctuations of various param-
eters of the matter (Sec. 6.2) at small pump intenigit@lthough this process is
explained in terms of spontaneous-stimulated two-phatorsitions (Sec. 6.2). If
I, is increased, the intensity of the scattered light growslfitearly and then, at
la®@|l > 1, exponentially (for the Stokes component). As a resut,eficiency
of frequency conversion can be as high as tens of per centt &rd this sponta-
neously emitted and amplified radiation that the term StRSuslly applied. The
same term is sometimes used for tifeet of external Stokes field amplification.

The termcoherentis even more ambiguous, even if we restrict ourselves to
nonlinear optics. It is used, on the one hand, for tfeats of non-stationary
resonance interaction, like SIP (Sec. 5.1), and on the dtéed, for parametric
stationary éects like second harmonic generation. In the first case, dnméhat
the field and the matter have the same phase and in the secmdi diferent
components of the field have the same phase.

6.3.3 The role of linear and nonlinear dispersion

The nonlinearity of the wave equations of hydrodynamics gasl dynamics is
most apparent in the appearance of shock waves, i.e., imathgfdérmation of sine
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acoustic waves into sawtooth ones. (A well-known examplgage breaking in
shallow water.) In spectral language, thigeet is explained by higher-harmonic
generation, which enriches the spectrum of an excitatidhercourse of its prop-
agation.

However, due to the refractive-index dispersit), light shock waves do
not emerge: harmonics with the frequendigs2w;, ... propagate with dfer-
ent phase velocities/n(pw;), so that the sign of the interaction energy and,
correspondingly, the amplitudes of the harmonics have dpatial oscillations
(see (6.154)). As a result, the amplitudes of higher harosodio not in-
crease in the course of propagation (‘non-accumulatingraction’), and an-
other small parameter appears in the theory, the ratio ottierence length
lcoh = m/Ak to the length of the mediurh Here, Ak is the wave mismatch
(6.156), which is equal, in the case of collingath-harmonic generation, to
kp — pki = [N(pw1) — N(w1)] pw1/c.

Itis only under special conditions that the phase velcgiigtwo or three har-
monics can be matched, using birefringence or anomalopsdi®n. Thusthe
phase matching condition (6.156) restricts the numberfigiently interacting
spectral components of the field in parametric interactioRer non-parametric
processes, the restriction is due to the resonance comd@i@58), i.e., the dis-
persion ofy®, y©®), .

The dficiency of nonlinear processes is usually increased by usinsed
pumping with Q-switchedr(~ 10 ns) or mode locked-(~ 10 ps) lasers. Clearly,
for the interaction of several light pulses withférent central frequencies to ac-
cumulate in space, it is also necessary that their grougitigle coincide,

Up = dw/dK, = ¢(Np + wpdny/dw) ™

(thegroup matchingcondition); otherwise, the pulses will separate in the seur
of propagation.

6.3.4 °One-dimensional approximation

Further, as a rule, we will apply thene-dimensional approximatipavhich is
most useful in nonlinear (as well as linear) optics. Alsownas plane-waves
approximation, it allows one to pass from partial-derivasi equations (6.151) to
usual equations. It reflects correctly the main features arfiyrefects involving
pump beams not too much convergent or divergent and sampteshe length
not too large. The divergence can be often taken into acdotimé final formulas,

IEditors’ note: At present, mode locking provides pulse tions as small as tens of femtoseconds.
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at least qualitatively, by summing up the contributionsnirall essential plane
waves. We will go beyond this approximation only in the dgdon of self-
focusing in the end of Sec. 6.4.

An arbitrary field can be represented as a four-dimensiomati€r integral,

E(r,t) = (L/27r)3fd3kdwE(k,w)expﬁ(k~r—wt)], (6.159)

and similarly forH. The factor [/2x)? is added from dimensionality considera-
tions, see (7.100). This is the so-calledv-representationHere,k andw are in-
dependentreal variables. In the case of a homogeneoupdrams linear medium
without internal sourcek andw are not independent any more (Sec. 4.2). Then,

E(kw) = (1/2) " " e (KED(sK)o(w - sw,(K)), (6.160)
y=1,2 S==+
EM(K) = EQ(K)". (6.161)

We assume the medium to be non-gyrotropic; theretoamde, are real. Substi-
tuting (6.160) into (6.159), we find

3
£ =5 () [ d% ] eELH) explus(] (6.162)

where

ws(k) = gk-r—wKt], s=+,v=12
For instance, in the case of a plane monochromatic polavized,

EO(K) = (E1ds + Ef65 )8, (k — k).
Unit polarization vectors, (k) and the dispersion law, (k) are determined by the
€(w) tensor,

Zkx [kx e] + wle(w,) - € = 0. (6.163)

Hence, ife is real,

wy(=K) = w,(k), &,(k) = e, (-k) = (k).

The wave vectok and the type of polarizationdefine a plane monochromatic
wave, or amode It is convenient to make the set of modes countable usingpa cu
with periodicityL® (Sec. 7.3); then the Fourier integral turns into a serieshiich
a mode is labeled by a single subsckipt {k, v, s} (which also includes the sign
sof the frequency),

E(r,0) = (1/2) ) eExexp(yn), Ex = E9(K). (6.164)
k
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In a transparent linear medium without sources, the modditudesEy are inde-
pendent complex numbers defined by the boundary conditions.

Consider now a nonlinear absorbing plane layek(@ < 1) in the medium,
which has the samé&, and a stationary field incident on it from both sides. Then,
since the model has no dependencexpynt, the amplitude€y are only func-
tions of z. They are called thslowly varying amplitude§SVA). Actually, the
transition from the real fiel&(r, t) to thez-dependent mode amplitudgég(z) is a
three-dimensional Fourier transform in the variablgg t (a non-complete trans-
formation, unlike (6.159)) or the transition to thek, , z-representation

Note that a mode can be defined by fixing, insteadkpfthe frequency,
w = wy(K), k., and the sigmry of the longitudinal componekt. Thenk; is deter-
mined by the dispersion law (for an isotropic medidgs oy (€' w?/c? — k2)V/?).
In experiment, mode expansion is achieved by placing a sgelgvice into the
far-field zone of the emitter; in this case, the sphericales, ¢« of k are also
fixed (taking into account refraction). Thus, the subsdkiptands for one of the
following sets of values:

k={k,v,s ={w, k., o, v, s} = {w,3,¢,v, S} (6.165)

As we will show in what follows, in the case offigiently small nonlinearity and
absorption, Fourier transformation of the Helmholtz eopret (6.151) w.r.t.x,y
leads to a system of ordinary equations for SVA ¢qr> 0),

( d o 2riw

FE ?) Ex(2) = e

Here, the following notation was introduced:

“PNL(2) exp(-ik2). (6.166)

ak = W€ - € - &/CN, Mg = Nk COSH COSpy ~ Chy/wy, (6.167)

whered is the angle between the ray (Poynting) vecpof the mode and the
axis, px is the anisotropy angle, i.e., the angle betw&emnd s, and PL“L is the
Fourier component of the nonlinear polarization with thegfrencywy > 0 and
the transverse wave vectky = {ky, ky}, which is parallel to they vector. It can
be written as

PR = (4nluid/L)P" (wx, 0,2)
= (2ud/L3) fdx dy dtex - PNM(r, t) expli(wkt — kex — kyy)],  (6.168)

g ={ke kyb, T ={XY,2Z}, Uk = dwy(K)/Oks (6.169)

According to (6.166), linear absorbtion results in an exgial dependence
of the mode amplitude om while nonlinearity leads to a coupling (mixing) of
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modes. Let us stress that in a one-dimensional model, a tkade be only ex-
cited by a component of the source field having the same frexyuend transverse
wavevector. The source field can have any dependenzéwoithe most fiicient
component is the one that has the propagation conktatgibse tok,, due to the
phase matching condition (compare with (4.23)).

The boundary conditions for system (6.166) are given by thyelitudesE, (z)
of the plane waves incident from the left and from the right= O for o = + and
7y = | for o = —. The solution to (6.166) yields the rule of mode transfoiorat
by the nonlinear layer, i.e., thecattering matrixof the layer. Certainly, for de-
scribing real experiments the model should include reffectind refraction at the
boundaries (with an account for the nonlinearity, see FBddgmbergen (1965)]),
as well as consider the limited interaction cross-sectiox andy. In this case,
even in the linear approximation one gets thettdiction’ coupling between the
modes having close directions. Thi$ext is more conveniently described in the
w, I representation (6.151) (see the self-focusing sectior3j 6

Let us find, with the help of (6.166), the variation rate of émergy flux lon-
gitudinal component carried by the mokign zwy units:

Fkz = Ik coSOk/hiwy = C[Ex X H;] - Z/16nhiwy + C.C.
= CN|Ex(2)|?/ 8w, (6.170)

whereZis a unit vector along theaxis. For calculatindry,, we multiply (6.166)
by E; and sum with the complex conjugated expression,

(d/dz+ ax)Fy, = —IMPY-E;, exp(-ik.2)/2h. (6.171)

The right-hand side has, according to (6.154), a simple mgathis is the energy
(in hwk units) absorbed by a unit volume of the matter per unit time tuthe
nonlinear polarization, i.e., this is the rate of the phadensity decrease;Ny, in
modek. In other words, (6.171) is thieansfer equatior{or continuity equation)
for the photons of the macroscopic field,

VF+ Ng =0, Fy = ugN. (6.172)

The nonlinear poIarizatioF?E'— in the right-hand side of (6.166) or (6.171) is
given by equations (6.152) and (6.158) through the hiesaoflsusceptibilities
™, ms 2. Inthe case of am-frequency interaction, equation (6.166) takes the
form

(d/dz+ ax/2)E; = (2rsiwr/ich)y ™ Vi E, . .. Emexp(Aky), (6.173)
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where
m
Ak = > sk, Ei =6, E(K), (6.174)
i=1

and integration w.r.t.x,y,t in (6.168) yields the following restrictions for the
interacting modes and the sign indices:

m

Ak, = Z sk, =0, (6.175)
i=1
m

Aw = Z Swi =0. (6.176)
i=1

In addition, accumulation of the interaction alongequires that the longitudinal
wave mismatches areficiently small,

Ak= " sk, 1/ (6.177)
i=1

Let us re-normalize the mode amplitudes so that their sguare equal
to the longitudinal photon flux density. (To simplify the atbn, we assume
Fi = ijz > O.)

aj = (cM/8rhwi)'?E;, (6.178)

lal? = Fi. (6.179)

As a result, (6.171) and (6.173) take the form

d
(d_z + %)a’i = %ﬂl_,_mag ...amexp(Ak2), (6.180)
d
(d_z + al) Fi1=s1MB1 maz...amexpiAka), (6.181)
where
1 (8xh\™? w1...Wnm 12 .
- — | == wi---%m (m-1):
Br.m= Zh( c ) (n_l...n_m) X" e, .. en (6.182)

These equations will be analyzed for several typical cas&gcs. 6.4, 6.5.
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6.3.5 The Manley-Rowe relation and the permutation symmetry

Suppose that only a single interaction betweesffrequency field components
ni,...,Nm(see (6.154)) is essential, corresponding td-photon process. (For a
parametric interactiorl,= m, while for a non-parametric one= m/2.) Let this
interaction be non-resonance for some pair of frequengies,. To be more ex-
act, let the photons with these frequencies be created d@nikatad only together,
simultaneously, which is the case if the correspondingigirievel is far from any
real one. Then,

51N1 = SzNz, (6.183)
where
S = sign() = sign(wn). (6.184)

These relations are similar to the Manley-Rowe equatioes urs the oscil-
lation theory for describing nonlinear circuits [Migulidag78)]. The signs of the
frequencies are determined by the energy conservatior6i2\s3) or (6.158)N,
is the rate of the flux variation for photons with the frequefag,|. Apparently,
AilwnlNp + Pn = 0, whereP,, = wnlME}Ph/2 is the power absorbed by matter at
frequencyw,.

From (6.154) and (6.183), it follows for the case of a paraimétteraction
that

|m(X12"EE1E2-~-—le"EEzE]_...) =0, (6.185)
where

X2 = xlwswz...) = ()" (6.186)
Let us substitute (6.155) into (6.185),
D IEwEos .. IM{(2 — x2E-) expli(p1a + @25 + .. )]} = 0. (6.187)
ap...

Here, all amplitudes and phases of the field harmonics cambedvindepen-
dently; therefore, the expression in round brackets istidalfy equal to zero,

Xop = Xpa" (6.188)
This permutation relation is more general than (6.21) wiieeemedium was as-
sumed to be transparent at all frequencies.

In the case of a non-parametric interaction, the phasesrateviant, and we
obtain from (6.157) and (6.183) that

Im( M2 BB BBy - - — y2ALESE,ELE; ...) = 0, (6.189)
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D EwnEyEs B .| IMOLS ~x205) = 0. (6.190)
ap...

Hence, we obtain the invariance to ‘block’ permutations,

X = (6.191)

We have already observed such symmetry for Raman transiiod, in gen-
eral, two-photon transitions (Sec. 6.2). Assuming in ()8 = w_ > 0, wy =
—ws < 0, we obtain, with the help of (6.16),

Xaz%«fds(“’t = WL+ ws —ws) = Xy(saﬁ (ws =ws+wL—w)". (6.192)

Strictly speaking, (6.192) leads to the symmetry of onlyithaginary parts
of the susceptibilities; however, using relations of Krasakronig type (4.8), one
can show that the real and imaginary partg®? have the same symmetry. Re-
lation (6.191) also follows from (6.188), if one considengaonance parametric
process with the frequencieg = —w1, w4 = —w>:

XE2 = B2 (6.193)

By performing complex conjugation and using partial syntmé6.14), (6.15),
and (6.16), we obtain (6.191).

Permutation symmetry of susceptibilities, or the Manlayafe relations, lead
to several simple integrals of motion for SVA. For instanicethe case of non-
resonance interaction, the coupling fft@entsg (6.182) are invariant to the per-
mutations of all indices; therefore, the right-hand side&gs. (6.181) for the
intensities difer only in signs. Hence, it follows far, = 0 that

s:dF1/dz= sdFy/dz= - -- = spdFm/dz= Im(BL_mas . ..an€*?,  (6.194)

where the sign factors = +1 in the case, > 0 are determined by the en-
ergy conservation in the corresponding elementary proddesce, for systems
(6.180), (6.181) we findn — 1 integrals of motion, which allow the intensities in
m— 1 modes to be expressed in terms of the intensity in a singtemo

Fk(@ = s1s«F1(2 + C«, C1 =0, (6.195)

and the constantS, are determined by the boundary valig£0).

If all essential frequencies, including the combinatioe®nare in the trans-
parency windows (i.e., parametric processes are non-aesej), then there is no
dissipation of the field energy and there must exist one nmaegial of motion
corresponding to the conservation of the total light endéirgy However, one can
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easily see that the total energy flux is expressed in tern@ cbnstants. To this
end, let us multiply relations (6.195) liyux and add them,

1(2) = Z hokFu(2) = Z hCu. (6.196)
k=1 k=1

In parametric interactions, there is yet another integrdlich defines the
phase dierence

¢@ =) se? (6.197)
k=1

of the complex amplitudes = Fx explskek) in terms ofFy(2) andy(0),
$iFnAK + 28(F1 - - - Fm)Y? cosfp(2) + AkZ = C. (6.198)

Here,n is any of the subscripts, 1. ., m. By differentiating the left-hand part of
(6.198), one can see, due to (6.180), (6.194), and thearlat= g%, that it is
independent of.

6.3.6 °Derivation of one-dimensional equations

In order to derive equations (6.166) for SVA in theq, zrepresentation, let us
write the frequency components of the fi&d(r),

E(w, 1) = (1/2)[En(r)6(w — wn) + Ex(Né(w + wn)],

which enter the Helmholtz equations (6.151), in terms ofrttede amplitudes
Ex(2) = 4n|udE(w, g, 2)/L defined in (6.164). Lab > 0 and the polarization type
be fixed, then

2E(w, 1) = f ;—:Téwt f d%(%)g Ex(2) explk - 1 — iw(K))
_ (%)3 f PKEL() explk - 1)6(w — w(K))

L 3
=(§) fdzqz|Ukz|_1Ek(Z)expﬂC1'Piikz(a), )z, (6.199)

whereq = {ky, ky}, p = (X, Y}, Uz = dw(K)/dk,. The functionkz(w, ) = k, > 0
is defined here indirectly, through the dispersion lag, k;) = w. In deriving
(6.199), we have used the property of the delta function

o[19] = D a6(x—x). F(x) =0, & = df/dxL,. (6.200)
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Further, assume that only a single mode with a certain sidq f excited &i-
ciently, then

E(w.1) = f dalud "Ex(2) explk - 1),

1673 (6.201)
K = {dx, 0y, k(w, Q)}.

While substituting (6.201) into (6.151), let us take int@aent that usually
both absorption and nonlinearity are low. Th&R(z) vary very little at a distance
of a wavelength, and the second derivatives can be negléctechore detail on
the SVA method, see [Akhmanov (1964)]),

|0°E,/dZ| < |k.dE/dz. (6.202)
As a result,

V x VxeE(2e"" ~ & "{—kx (kxe)+ikx (Vxe)+iVx(kxe)lE®),
(6.203)

where thek index is so far omitted. The first term here will be further caled
due to (6.163). Let us take the inner products of (6.151) &2D@) withe and
use the vector identity

e-{kx(Vxe+Vx(kxe}=2ex(exk)} V, (6.204)

then (6.151) takes the form

(1&3)fd2quﬂ tgkrac?lex (ex k)] - V - wie € - elEx(2)
= drwie- PNY(wy, ). (6.205)

Here, the vectoe x (e x k) ~ Ex x Hy is parallel to the ray vectos, i.e., to
the direction of the energy flux at’ = PN- = 0, andV = zd/dz Let6 denote
the angle betwees, andZandp be the angle betwee andk, which is usually
small; then,

[ex (ex k)] - z= —kcosf cosp = —Nwy/C ~ —k;. (6.206)

Equation (6.166) is obtained by acting on (6.205) by the ammef d?p expiq -
p).
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6.4 Non-parametric interactions

Non-parametric (non-coherentfects of nonlinear optics, i.e.ffects like multi-
photon absorption, are described by odd-order suscefiibilof the form

Y2 V(wy = w1 — -+ — wm + wm). The rate of the modk; amplitude varia-
tion scales then as the local amplituggz) of the same mode, there is no phase
matching factor expfk2), and one-dimensional SVA equations (6.166) can be
represented in the form

d a1 Zmiowr_ o 5

—t = - Eof- - |Em?|ExL = O, 6.207

P SN o (6.207)
1= X% (w1 = w1 — - — wm + wm)Eer ... E e (6.208)

Thus, the real part of; determines the local variation of the propagation con-
stant (i.e., of the wavelength or the phase velocity) of madehich scales as the
local intensities of other modem@uced dispersioeffect), while the imaginary
part of y; determines additional absorption or amplification due toehergy of
other modesr(onlinear or induced absorptiogffect).

Multiplying (6.207) by E; or directly using (6.181), we find the system of
equations for the intensitie§{(= Fi,),

[d/dz+ a1+ o (9]F1(2) = O, (6.209)

where

a’(m):ﬁ(m)F --F ﬁ(m):i @ mu ’
1 —F1 2 m P = 2% c n_ln_m 1

Recall that the signs d¥; andn; coincide and are determined by the sign of khe
projection onto the axis; thereforel; can increase in the course of propagation
only if y7 < 0.

Below, we will consider the basic types of non-parametfieas: nonlinear
absorption (including the saturatioffect), Raman amplification and absorption,
spontaneous and stimulated scattering, self-focusingalfiemodulation, as well
as their role in optics applications and in spectroscopy.

6.4.1 Nonlinear absorption

Consider the single-mode case. The imaginary part of thie cuisceptibility,

X =2 Imy®(w = w - w + w)Eeee
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Fig. 6.6 Variation of the intensity of light in the course abpagation and the limitationffiect under
two-photon absorptionF is the photon flux density time8l, whereg is the two-photon absorption
codficient, and is the thickness of the layer.

leads to the violation of the exponential Bouger’s law fa thtensity variation in
matter. This &ect can be related to two-photon absorption (see (6.1480hich
x®” > 0, and to the saturation of a single-photon resonance, waecerding to
(4.99),

X = WA Ty To/m2[1 + (wo — w)°T3].

Let a plane monochromatic wave be incident on a transparetitg linear ap-
proximation) medium orthogonally to the boundary. Theroading to (6.209),

dF/dz+BF? = 0, B = 327%hw’y®” /c?n? > 0. (6.210)
The solution to this equation can be easily found,
F(2 = F(0)/[1 + BzF(0)] - 1/Bz (6.211)

The last equation takes placeR{0) > 1/8z and describes thimitation effect
(Fig. 6.6), in which the intensitf (2) of the transmitted light does not depend on
the incident light intensity(0).

If F(0) has fluctuations (in particular, due to the photon stmecof the field),
the two-photon absorption will smear them, i.e., at the outy the layer photons
will be distributed in time and space more uniformly thantet input (theanti-
bunching gect see Sec. 7.6).

For two-photon inter-band transitions in semiconductiks CdS,©® ~
10713 cmPlerg at1p ~ 0.7 w andn ~ 2. Then,8/hw ~ 1 cmyGW, i.e., the limi-
tation level al = 1 cm forl = AwF is on the order of 1 G\Wn?. Note that at
such intensities, the structure of the matter can be charnlge can be a phase
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transition and plasma can be created. Syumfical breakdowiin a transparent gas
or condensed matter can start from multi-photon absorpiieonization.

lonization of an inert-gas atom requires the absorptionbaiud 10 photons
from the neodimium lasefifp ~ 1 eV). According to (6.209), the number of such
transitions per unit volume and time is

N = dF/dz= (87/c)*%? 102 ~ (E1/En)?, (6.212)

with Eni ~ hiwo/dp. Although this value is extremely small, th&ext can be ob-
served by focusing a Q-switched laser [Delone (1978)]. Nuaéthe high power
of the field in (6.212) increases th&ext of its fluctuations. Indeed, according to
(7.41), radiation with Gaussian statistics(i8%/(1)*° = 10! ~ 3. 10° times as
efficient as a non-fluctuating radiation with the safhe

As it was shown by Keldysh (see Ref. [Elyutin (1982)], Seq, 28very large
field valuesE; or small frequencies, so that the conditiodpE; < 7w is violated,
the dramatic power dependence of (6.212)Eingets slower due to the factor
exphwo/doE1), which is typical for the fect oftunnel ionizatiorin a constant
field.

Power dependence of the form (6.212) can be also violatedaltlee dis-
sociation of multi-atom molecules in the field of IR-laserslar a single-photon
resonance with one of the vibrational frequencies of theeawde,w ~ Q. In the
case of a CQlaser { ~ 10u,%iw ~ 0.1 eV), dissociation requires several tens
of photons. However, experiments with short pulses, whellssion relaxation is
too slow to be revealed, manifest a weak dependendg omhis efect is proba-
bly caused by the fast transfer of the absorbed energy t@a farmber of other
vibrations (‘intra-molecular relaxation’). Suclffects are studied by a new field
in quantum electronicdR photochemistryand used for the laser separation of
isotopes.

In photochrome materiafBarachevsky (1977)], the limitation (darkening) ef-
fect is observed at much lower intensities, even in sunligherel ~ 0.1 W/cn?,
due to the ‘photochemical’ anharmonicity, which is verysity but inertial.

The lowest nonlinearity threshold is observed for the ppaphic process,
where the photochemical reaction (creation of blackenergers, silver particles
in AgBr microcrystallites) sometimes requires an energysitg (exposure) as
low aslt ~ 1078 Jcn?. It is noteworthy that for the creation of a single center,
several photons are requiret & 1), i.e., this is a highly nonlinear process. At
small exposures, the degree of blackeringf a developed negative scales as the
number of centers; therefor®, = 5I™, wheren is the film sensitivity, and we
ignore the statistical variance of. The relative intensity decrease for the probe
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light after passing through a negative with a small thickrés
Al/l = =D = —a™1)|, (6.213)

wherea™1) = »IM/I.

Various types of photochemical nonlinearity are used fdotn@phy and, in
general, for information recording. More ‘fast’ optical mimearities form the
basis ofdynamical holographgnd theoptical phase conjugatioeffect (Sec. 6.5)
where recording and reading are simultaneous.

Thus, even a material that is transparent in the usual setsegrtes absorbing
or reflecting at sfliciently high intensities. The study of suckexts can have
very important applications in connection with the problefitaser thermonuclear
synthesis.

Saturation of a single-photon resonance (Sec. 4.3), orothteary, leads to the
bleaching of matter (in the absence of the population ingejsIn this case, the
intensity fluctuations become more pronounced, which igl isemode locking
in picosecond lasers. According to the two-level model aibgorption cogicient
a(F) (or, ata < 0, the amplification cd@&cient) at large intensit{F has the form
ao/(1 + F/Fs), with the parameteF s determined by the relaxation timds, T»
and the transition moment,, (see (4.96)). Hence, (6.210) is replaced by the
nonlinear transfer equation for a plane wave in the presehsaturation (i.e., at
a single-photon resonance),

dF a/oF

@I EE = (6.214)

Note that here, in contrast to (6.210), contributions ofrdmite number of odd-
order susceptibilities are taken into account. The saiuiao(6.214) can be easily
obtained in an indirect form,

—aoz = In(F/Fo) + (F — Fo)/Fs, (6.215)

whereF = F(2), Fo = F(0). The two terms in the right-hand side of (6.215) cor-
respond to the exponential and lind&z) dependencies, respectively (Fig. 6.7).
At strong saturation, the exponential Bouger’s law becolnesr,

aoZ
F~l1- —= _|F .21
( 1+ Fo/Fs) 0 (6.216)

and in the limitFy > Fs the matter is completely bleached (compare with the
nonstationary SIT fect described in Sec. 5.1).
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Fig. 6.7 IntensityF of a wave versus the distaneaén an amplifying or absorbing medium in the
presence of saturation. At strong saturation, the exp@iesriation ofF is replaced by a linear one
(the dashed line)qo is the amplification caicient for a weak signalFs is the signal intensity at
which aq is reduced twice.

6.4.2 Doppler-free spectroscopy

Induced absorption due to a two-photon transition and ieduseaching due to
the saturation of a single-photon transition form the bfsisvo interesting spec-
troscopic methods that allow one to overcome Doppler’sdeaing of resonances
masking the fine details of the spectra.

The scheme of a two-photon Doppler-free spectroscope isrshoFig. 6.8.
The gas under study is placed into a standing wave with tlopiéecyw, which
is scanned in the vicinity of the transition half-frequeagy2. Due to the linear
Doppler dfect, a traveling wave gets a frequency shift—- w = —k - v, where
w is the field frequency in a laboratory frame of referengeis the same in the
reference frame of a molecule moving with the velogitk is the field wave vec-
tor. In a standing wave, half of the photons have the wavevécand half have
the wavevectork; therefore, their Doppler shifts ffier in signs. As a result, if
a two-photon transition occurs through one photon absoitoead the ‘forward’
wave and the other photon, from the ‘backward’ one, theshifé¢ fully compen-
sated, so that the observed resonance will look like a sheak with the natural
or collision width, on a broad Doppler’s pedestal.
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Fig. 6.8 Doppler-free two-photon spectroscopy: (a) theleyw is the scanned laser frequency and
«’ is the frequency of the observed fluorescence); (b) the seldrthe spectroscope; (c) the idea of
Doppler-shift compensation; (d) the signal as a functiotheflaser frequency.
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Fig. 6.9 Doppler-free saturation spectroscopy: (a) thesehof the saturation spectroscope; (b) the
observed signal as a function of the laser frequency.

Note that it is convenient to register the resonance intlirelby observing
single-photon fluorescence accompanying the transitioam widlecule from the
excited level to a third level. A disadvantage of the two-{omospectroscopy
is the necessity to use a strong field, because of the smadiitian probability,
which leads to a considerable shift of the resonance duestoyitical Stark fect
(see (5.48)).

The Doppler-free saturation method [Letokhov (1975)] alses counter-
propagating waves with the same frequency (Fig. 6.9). Tiwdal wave has
a larger intensity and causes strong saturation of molseut®se velocities have
appropriate projectiong, = (w — wp)/k on the wave propagation direction. The
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backward probing wave ab # wg interacts with another group of molecules,
which have the opposite sign ef, and therefore is strongly absorbed. However,
atw = wo, We havev, = 0, and the resonance is bleached for the probe wave due
to the saturation caused by the forward wave. Hence, thengsdf the detector
registering the power of the probe wave after the samplegriliv atw ~ wo.

The width of the resonance will be determined by the natewlision, or field-
induced (4.101) broadening.

For more detailed description of nonlinear spectroscopg ,Refs. [Letokhov
(1975); Akhmanov2 (1981); Bloembergen (1977); Steinfel®7@8); Walther
(1976); Letokhov (1983)]. Let us mention other types of Diepfiree spec-
troscopy: the methods gfuantum beat§Sec. 5.2)molecular beamduffer gas
In the last method, an inert gas is added to reduce the fréegbdhe molecules
under study, so that the free path becomes much less tharatheength. This
leads to a narrow peak with the homogeneous broadening @pgé&athe center
of a broad Doppler line.

6.4.3 Raman amplification

Consider now non-parametric interaction of two modes wiiffecent frequencies.
Here, the most interestingtect isRaman amplificatioywhich is closely related
to the inelastic scattering of light. In the macroscopiccigsgion, the scattering
is explained by a resonance of the cubic susceptibifty(w,, —w1, w1) atwy —
w2 = Q ~ Qg > 0. Here, the combination frequengyis close to the frequency
Qo = wpa Of Some matter excitation. Usuall§, is one of the eigenfrequencies
of molecular vibrations@, ~ 107 — 10° cm?) or the frequency of an acoustic
wave Qo ~ 0—0.1 cnT?). In the first case, the scattering is called Remarone,

in the second one, thidandelshtam-Brillouirone. In piezoelectric crystals, one
also observes light scattering by polaritof¥, < 10° cm™ (Secs. 4.2, 6.5). In
this case, similar to the case of acoustic-phonon scattgrifi andQo depend on
the angle betweek; andk,. Therefore thesefiects are actually resonance ones,
and they will be considered in more detail in Sec. 6.5.

It is important that the imaginary part of the cubic susdafity is negative in
the vicinity of the Stokes resonance. As a result, the enisrgnansferred from
the high-frequency field components to the low-frequenaysonThe spectrum
becomes ‘redder’ and the matter is heated; as a result, {hadaion diference
N, — Np for the transition with the frequeney,, reduces.

Let two polarized plane waves with the frequencigs > 0 be incident on
a transparent medium, orthogonally to the boundary. Fro20@), we find the
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equations for the energy fluxes,

dFy/dz+ BF1F, = 0, (6.217)
dF2/dz-BFiF2 =0, (6.218)
where
B = —327%hkikoy @’ /r2n = @ (Na — Np) > 0, (6.219)
X(?’)” = Im/\((S)(wz =wy—wi+ wl)fegege’iel
= —Imy® (w1 = w1 — w2 + W) Ee1658. (6.220)

The last equation follows from (6.88) (see also (6.146).98)); it provides
conservation of the total number of photons in Raman twagahtransitions,

Fi1(2 + F2(2 =C. (6.221)
By substituting (6.221) into (6.217), (6.218), we find
Fi= < F (6.222)
17 Fro+ FpoefC2 1 '
F» ¢ F2o, (6.223)

where Fjp = Fj(0) andC = Fip + Fzo. At a suficiently large distance,

F1 —» 0, F, —» C, i.e., all photons become Stokes ones (Fig. 6.10). The re-
leased energy is then spent on the excitation of matterptiémomenon is used
for the generation of ultrasound via stimulated MandelshBrillouin scattering.

In practice, the energy conversion is not complete becaliseveral &ects we

did not take into account here. In particular, these are tsp@ous-stimulated
transitions and the generation of new components with gguencies @21 — w»

and 2v,— w1, as well as waves with the same frequeneigsw, but with different
polarization etc.

Let now F19 > Fy, then at sticiently smallz the variation of the high-
frequency field can be neglected (thedepleted-pump approximatipnin this
case, (6.223) yields exponential Raman amplification,

F2 = Faoexplaz2), (6.224)
a2 = BF10= —327T2w2,\/(3)”|10/C2n1n2 > 0.
In practice, for strong Raman resonances with moleculaatitns in liquids;
is as highas 1 cnt atl » 0.1 GW/cn?. Thus,Raman anharmonicity enables light
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Fig. 6.10 Raman interaction of two waves at various initidensities. The horizontal axis is the
distancez in 1/8C units and the vertical one shows the intensitigsn unitsC = Fip + Fao, i.€.,
the functionsF1 = (1 + a€?)t andF, = 1 — F1, wherea = Fog/F10 is the relative initial intensity
of the Stokes wave. (a) = 1/25, the dashed line shows the asymptotics describing thenexpial
amplification of the Stokes wave in the undepleted-pump @ppration; (b)e = 1/5; (¢)a = 1; (d)

a = 5. The anti-Stokes wave, roughly, decays exponentially.

amplification without the population inversioRaman amplification (or, for anti-
Stokes frequencies, attenuation) is used in spectrosespyell as for shifting
the frequency of lasers. If the feedback is added, with tHp @ka mirror, an
amplifier becomes an oscillator Raman lasey.

6.4.4 Spontaneous and stimulated scattering

Even without a feedback or an external signal at frequesicywith F19 # 0 the
matter will emit incoherent radiation at frequencies+ Q. At aul > 1, the
radiation at Stokes frequencies, i.e., the intrinsic noise of the Raman amplifier,
can be comparable with the pumB; ~ Fi. This dfect is calledstimulated
Raman scatteringStRS). The emerging noise field with the central frequency
w1 — Qg plays the role of the pump for the second Stokes componetit, thé
frequencyw; — 2Qg, which excites the third one, and so on. In addition, due to
four-frequency parametric interactions like2— w, — ws = w1 + Qp, intense
anti-Stokes components appear, and a quantitative asalyshe phenomenon
becomes diicult.

Let us estimate the power of StRS in the undepleted-pumpoappation,
without taking into account higher-order Stokes and atik&s components.
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At Fy = 0, the Stokes field is generated due to spontaneous (to besgrec
spontaneous-stimulated) transitions. According to thehtidT law (Sec. 7.1),
which is valid for two-photon transitions as well [Klyshkb980)], the intensity
of the noise at the frequenay, at the output of the amplifier is (in photons per
mode)

N=(N+1)G-1) (6.225)
where
-1
G = explaal). N = = '\ibNb - {exp[@} - 1} : (6.226)

T is the temperature of the matter, and we assume that thétimares— b is not
saturated.

For passing fronN to F, one has to multiply the photon flux density in one
mode,Nc/L3 (L2 is the quantization volume), by théfective number of modes
for the amplifier or the detector,

Nc NcA’k  AwAQ
AF = T5Ag = o = N—— (6.227)
Here, we have considered a single polarization type, asstimeerefractive index
to be unity, and denoted th&ective frequency and solid-angle bandwidths of the
amplifier or the detector asw andAQ, respectively.

If the scattering volume has the shape of a thread, wita 1 andG > 1,
only longitudinal scattering ~ 0) or backscattering¥ ~ 18C) into the solid
angleAQ ~ A/I? is considerablé. (Here, A = a? is the cross-section area of the
scattering volume anldis its length.) Then, from (6.227) we find the relation be-
tween the noise power per unit frequency bag = iwFA/Aw, and the number
of photons per mode,

P, = hwniN/2x, (6.228)

where the dimensionless number = A/Al is called the wave parameter or the
Fresnel number. Substitution of (6.225) into (6.228) ysdld= a2, w = w>)

P, = hwnZ(N + 1) - 1)/2x. (6.229)

The total output power is found by integrating this expressi w, which
reduces to the multiplication by thdfective noise bandw and the substitution
of w;—Q = w for w. Inthe case of weak pumpingw is determined by the width

Kin stimulated Mandelshtam-Brillouin scattering, it is pridackscattering that isflécient, since
Q(0) = 0 (see (6.93)).
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of the Raman resonance, i.e., by the decay rate of molecibleations (usually,
Aw/2rc ~ 1 — 10 cnTl). At high amplification,Aw becomes ¢l)¥/? times as
narrow (Sec. 2.3)

Thus, according to (6.229), the scattered power dependseopump inten-
sity as exp8lF10) — 1. At BIF1p < 1, the exponential dependence turns into a
linear one, and then the scattering is capdntaneou$SpRS). Replacing/I?
in (6.229) byAQ, we find the power of spontaneous Stokes scattering per unit
frequency and solid angle,

Poo = (he/ BN + 1)BV Fuo, (6.230)

whereV = Al is the volume of the scattering area. It is noffidult to verify
that this expression agrees with the above-calculateds @estion (6.148) of a
spontaneous-stimulated transition. In contrast to StRRShas a broad direction
diagram, determined by the convolutiomy@® with the polarization unit vectors
(6.220).

At F, > F1, the role of the pump is played by the lower-frequency field,
and the external (anti-Stokes) field (2), according to (6.217), (6.218), decays
exponentially. This ffect is used in the spectroscopic methodnykerse Raman
scattering The noise field is then described by (6.225), (6.229) or3®) 2vith
the permutation of indices, 2 and the replacements + 1 - -N, 8 — 8.
Therefore, spontaneous anti-Stokes scattering with andreguency is

N/N + 1) = Np/Na = exphQo/xT)

times as weak as the Stokes scattering, provided that at etinditions are the
same. With a sfliciently strong pumping, the power of the anti-Stokes congmbn
is saturated. The number of photons per mode tends therrdirngdo (6.225), to
N, i.e., the anti-Stokes field acquires the brightness teatpe

Ter = Tw1/Qo > T. (6.231)

6.4.5 Self-focusing

This single-frequencyftect is connected with the ‘self-action’ of a quasi-plane
quasi-monochromatic wave due to the real part of the cutsicestibility y® =
Rey®(w, —w, w). The main contribution iny® is from the electro-striction and
orientational anharmonicity (theg® > 0). In an absorptive medium, tempera-
ture anharmonicityy® < 0) and saturation are added.

With an account for linear susceptibility, the polarizatiamplitude is (we
assume thgtt” = @ = Q)

P=(x® + x®EPE = x(EPE,
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whereE = E;(r, t) is the slowly varying amplitude, i.e., the envelope. Assuig
the refractive index depends on the local intensity of the fie

n(r,t) = [1 + 4ny(IEP]Y? = no + nylE2, (6.232)

wheren, = 27y /n,.

Lety® > 0, then alight beam entering a medium forms a dielectric waice
with the profileAn(r.) = ny|E(r.)? repeating the intensity distribution in the
beam. The propagation velocityn at the beam axis will be less than at its edges,
so that the side beams will bend towards the am@n{inear refractior), and the
beam will shrink. This will lead to an additional increaseAin near the axis, as
well as in the rate of the shrinking, so that, as a result, #ebwill ‘collapse’ to
a certain minimal size, determined by competing processgs§.11).
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Fig. 6.11 Self-focusing and defocusing (dashed line): leanbwith low powerP <« Pq, slowly
diverges due to diraction; 2, a beam with a critical powe®p, becomes ‘channeled’; 3, a beam with
P > Py ‘collapses’.

One of the competingfiects is difraction. It is described by the divergence
angletdq ~ 10/2npa, wherea is the initial beam radius anth = 2rc/w, while the
nonlinear refraction is characterized by the angle of toternal reflection due to
the refractive index variationn,

2An
UNL = arcCOSs———— = 4 |——

Mo , (6.233)
No + An No

where the beam profile is assumed to be rectangular. If tedraend dffrac-
tion compensate each other exactly, then waveguide prtipagzccurs, with a
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constant beam radius€lf-channeliny Assumingdy,. = ¥4/2, one can obtain a
rough estimate for the self-channeling condition:

Anpin = ME2. ~ ngt¥3/8 ~ 13/32n8%. (6.234)

It follows that the waveguide cross-sectioa’ scales as the inverse intensity of
light. In this case, the power of a self-channeling beam khioa

Po = CrolE[,,8°/8 ~ cA3/256n,. (6.235)

This estimate dfersz?/4 times from a more accurate result, which will be
obtained below from the nonlinear quasi-optical wave €quaf6.239) in the
aberration-free approximatign.e., under the assumption that the wave front is
spherical,

Po = CA3/64r°n,. (6.236)

Let g = 1, x® = 1012 cné/erg (carbon sulfide), andy = 1.5, then,
according to (6.236)Py ~ 10* W. This estimate shows that self-focusing can
considerably change the features of other nonlingi@cts, such as harmonics
generation, StRS, and others, which are usually obsenstrbaig pumping. Self-
focusing is also related to the important problem of theagbtstrength of matter,
which determines the maximal intensity of laser beams.

6.4.6 °Self-focusing length

Clearly, at? > Py the beam will compress (self-focus), and under the opposite
condition it will diverge due to diraction. The length of self-focusing will appar-
ently depend on the valu@®(- Po)/Po.

In order to find this dependence, consider the solution taontirdinear wave
equation (6.151) for a monochromatic field Re)e ! in quasi-optical and
aberration-free approximations (see Ref. [Vinogradow¥@}]). In a homoge-
neous isotropic medium without external sources, the fieliiansverse, so that
(6.151) leads to the nonlinear Helmholtz equation,

V2E + K¥(1 + (e/&)EP)E = 0, (6.237)

wherek = now/c, No = /&, & = 4ny® = 2ngn,.

Let a polarized light beam with a limited cross-section bithva narrow di-
rection diagram (narrow angular spectrum) be incident oardimear transparent
medium occupying a semispagze> 0. Then the field in the medium can be
searched in the form

E(r) = eE(r) exp(k2), (6.238)
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wherelef? = 1, e, = 0, andE(r) is a slowly (compared te*?) varying amplitude
(SVA) describing the variation of the local amplitude of fiedscillations along
the beam and over its cross section.

In practice, the typical distanceg zy_ at whichE(2) changes noticeably due
to diffraction and nonlinearity are much greater tiatherefore 9?E /47> is neg-
ligible compared to ROE/dz (the SVA approximation In this case, from (6.237)
and (6.238) we obtain @onlinear parabolic equatiofor E(r),

2ik OE/dz+ V2 E + (K*e2/0)|EI’E = 0, (6.239)

whereV2 = 92/0x2 + 02/9y?. At e; = 0, (6.239) is the basic equation gfiasi-
optics which studies the propagation of directed wave beams.
If we neglect the variation df over the cross-section, (6.239) leads to

E(2 = E(0)é**?, Ak/k = An/ng = 167%®1/cng, (6.240)

i.e, the nonlinearity only changes the phase velaojtfk + AK) = ¢/(ng + An) of
the plane wave. For GSatl = 1 GW/cn?, An = 21075,

Now, let the incident wave have a Gaussian profile and a plaee ront
at the boundaryE(x,y, 0) = Egexp(-p?/a3), wherep? = x* + y* andag is the
initial radius of the beam. Let us try to find the solution ta2@) in the form of
a Gaussian beam with a variable rad&g) = apf(2), and a parabolic wave front
with a variable curvaturg(z) on the axis,

E(r) = EoexplF(20” +i¢(2]/f(2), (6.241)

F(2 = ik8(2)/2 - 1/a3f2(2). (6.242)

Here,¢(2) is the additional t.kz phase delay on the axis, and the factpf pro-
vides the dependence of the wave powegon

P = (cro/8n) f dx dy|E|? = (cro/16)E3a2. (6.243)

At small p, the wave (6.241) has approximately spherical wavefrottt thie ra-
dius Y/B(2). Below, it will be shown that the curvature of the front ahe width
of the beam at a givenare related through Eq. (6.247).

From (6.241), we find

AE/0z= (0°F" +i¢’ — f'/f)E, V2E = 4F(1 + p°F)E, (6.244)

E2 2 E2 2
2 0 2p . 0 1 2p
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In the last equation, we have passed from a Gaussian profilg@otrabolic one,
which is possible for the paraxial part of the beam (@herration-free approxi-
mation). By substituting (6.244) into (6.239), one can find the fiows f, 3, ¢.
Indeed, setting to zero the sum of the fiméents byp?, we find

2ikF’ + 4F2 - K%/ T4 = 0, (6.245)
where
2 = nodd/4Ang (6.246)

andAng is the refractive index variation at point= 0. The imaginary part of
(6.245) yields

B=d(Inf)/dz (6.247)
and the real part,
7 =1/2f3 (6.248)
Here, the following notation has been introduced:
%= - 3) " =7/ P/Po) = 7 /(Po/P — 1),
23 = k&5/2, /2 = P/Po = (Ano/no)(kao)?.

The g parameter determines the length at which the beam ‘collsipaed the z
parameter has the meaning of thefftaction’ length here, £y and® are given
by Egs. (6.236) and (6.243).

Hence, we finally obtain the dependencies for the width and the curvature
radiusR(2) of a parabolic beam due to its self-action,

a(2)/ao = f = (1+ )", (6.250)

(6.249)

R@=1/8=21+7%2), (6.251)

with Z = z/z,. The functiong(2) can be found from the céiécients of the ze-
roth order inp appearing after the substitution of (6.244) into (6.23%e Tield
amplitude in the beam has the form

E(r) = — =2 exp|- L @ (6.252)
@ PRy iz ) '
This solution atP < Py (i.e., atzy ~ z4) describes the so-called TElywave,
which is the simplest solution to the nonlinear paraboligatipn,
2

2 } . (6.253)

Erem = —2  exp|l-——2
TEM =1 viz/zg P a2(1+iz/zq)
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Fig. 6.12 Dependence @ (in ka%/z units) on the beam powét (in the units of critical powefy),
given by the expressio — P|"1/2. At £ < 1, zp has the meaning of the beantdiction length, and
at® > 1, itis the ‘collapse’ length. The latter, & > 1, is approximately equal to the ‘nonlinear’
lengthzy (dashed line).

(Note that 1+ iz = (1 + Z2)Y?exp( arctarg), i.e., hereyp(z) = — arctang/zy).)

The difraction lengthzy determines the distance at which the cross-section of the
beam is doubled and the front radius achieves its minimalev2d; = ka2 = b (the
so-callecconfocal parameteof the beam). AP — Py, the role ofz is played by

Z, and ditraction slows down. Finally, & > Py, the parametezg and, hencez%;,
becomes negative, the beam is narrowed, and its width andahefront radius
turn into zero aiz = |z|; atP > Py, |20l ~ zvL (Fig. 6.12). Certainly, quasi-
optical aberration-free approximation describes colyewutly the initial stage of
self-focusing; however, the typical self-focusing lengtiould be on the same
order of magnitude ag|.

In the vicinity of the focus, an important role can be playgdigher-order
nonlinearitiesy®, . .. and multi-frequency nonlineaffects, for instance, stimu-
lated scattering. Note that in the case of pulsed fields,dbed positionzy(t)| is
time-dependent: as the intensity increases, the focus srfomm infinity to some
minimal distance, and then it goes to infinity again (th@ving focul

Next, let a wave with a plane wavefront and a complicated lerofi
IE(x,Y,0)> = I(xy) (a wave with transverse amplitude modulation) be inci-
dent on a nonlinear medium. In the course of propagatidiradtion tends to
smoothen the profile inhomogeneities, while the nonlinefaction, in contrast,
makes them more pronouncesk(f-modulatioh Qualitatively, these féects are
described by (6.250) #(2) is understood as the width of an inhomogeneity. As a
result, a wave can split in numerous waveguided filament$) ebthem carrying
a power ofPy. This splitting is an example of dynamii@nsverse instabilityor
waves in a nonlinear medium and is similar to the formatiosaditons in the case
of longitudinal instability(see below).
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Clearly, aty® < 0, self-defocusing should take place (Fig. 6.11). It is de-
scribed by the above-given theory with negatfe¢ andz,, . This dfect can
be easily observed in continuous-wave laser beams by addhsqybing dyes to
transparent solutions.

In two-frequency (angr two-wave) experimentsyutual focusingr defocus-
ing is observed due to RE&)(w> = wy — w1 + w1): an intense light beam with a
frequencyws turns a plane-parallel plate into a collecting or dispaydens for
the wavew,. The same frequency component of the cubic susceptibéisgdbes
induced dispersioand theoptical Kerr gfect a plane pump with the frequency
w1 turns an isotropic medium into a birefringent one for theosecwave, with
the frequency,. The optical Kerr &ect and mode-locked lasers enable the man-
ufacturing of optical shutters with switching times on thdex of 1 ps.

Consider now a plane quasi-monochromatic wave with the-timodulated
envelopeE(t). In a linear medium, within the first approximation of thespker-
sion theoryE(t) propagates without changing its shape, with the groupcityio
u = Vo(k). In the framework of the second approximatiofw/dk? # 0, and
the intensity spikes get spread; thiSeet is similar to the diraction smooth-
ing of transverse inhomogeneities. In a nonlinear mediwgti;action can lead
to an inverse fect: aty®d’w/dk? < 0, pulses with sflicient energy are com-
pressed gelf-compressignsee Ref. [Vinogradova (1979)], Sec. 9.5). A quasi-
monochromatic wave with a small initial modulation spliés a result of self-
modulation, in separate pulses with fixed energy and shapesdlitons, which
are analogues of waveguided filaments in the case of salfsfog. In practice,
such éfects are observed for picosecond pulses, so that inertidihearity mech-
anisms (for instance, the temperature one) are not mamifest

6.5 Parametric interactions
In the case of a parametric interactiomofmodes with positive frequencies, the

stationarity condition has the form of the energy consémwdaw for anm-photon
process,

m
Aw = Z Swj =0, (6.254)
i=1

wheres = +1, wi = w(ki) > 0. According to the one-dimensional model, the
waves interacting in an infinite layer should satisfy thessgerse momentum con-

'Recall that light solitons (with the areaPare also formed in the range of resonance absorption due
to the two-level anharmonicity (Sec. 5.1)
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servation law,
Ak, =0, Ak, = 0, (6.255)

whereAk = ' skj. Formally, one obtains (6.254) and (6.255) by doing theghre
dimensional Fourier transformation of Maxwell’s equatdBec. 6.3). In experi-

ment, the interaction timeand cross-sectiof = a? are always limited; therefore,

(6.254) and (6.255) are valid only up to an accuracy/af 1/a, respectively,

[Aw| < 1/7, |AK,| < 1/a. (6.256)

In this section, as a rule, for simplicity we will neglect éar absorption
(ei = 0). Then, interaction o modes can be described within the linear ap-
proximation, according to (6.173), by a system of linearagiuns,

dE; 275w iA
— = Pi(2€™* 257
dZ |Cn_]_ l(z)eI 5 (6 5 )
where
Pi(@) = ™ N(s101; Sowz; . .. Smwm)E2(2) -+ Em(2), (6.258)

E = Ex ats = 1 andE = E; ats = -1, y(™? is the convolution of the
nonlinear susceptibility tensor with the polarizationtwctorsi = ncosé cosp,
nis the refractive indexg andp are the angles formed by the Poynting vector with
thez axis and thek vector, respectivelyl = Ak,. Equations fole,, ..., Eyn have
a similar form and can be obtained by subscript permutations

It follows from (6.257) that parametric interaction iffieient only at sfi-
ciently smalljA|, i.e., under the condition that the longitudinal momentufrthe
field is preserved,

A= 1) skal < /1. (6.259)

The phase matching conditiakk ~ 0 reduces dramatically the number of
essential ‘interactions’, i.e., combinatiofis, vi, 5}, especially in an anisotropic
medium where the refractive index(w, ¢, ¢) = ck/w,(k) depends not only on
the frequency, but also on the polarization index 1,2 and the directiork =
k/k = {9, ¢}.

6.5.1 Undepleted-pump approximation- the near field

Let ki, > 0 andE;(0) = 0, i.e., the mode labeled by 1 is not excited by an ex-
ternal source. If the nonlinearity, or the layer thicknessthe incident pump
fieldsE;(0), i = 2,...,m, are stficiently small, one can neglect th&ect of the
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nonlinearity on the pump, i.e, assume that the nonlinearjzationP,(2) at fre-
guencyw; in the right-hand side of (6.257) is a given function of thembnates,
determined by the spatial distribution of free incidentdtel

For a given polarization, taking into account definitionl@s), from (6.257)
we find the expression for the amplitude of the mokle/) excited in a homoge-
neous transparent linear medium by a Fourier componenegidlarization,

87T2ikuk
L3n2 cospk

E,(K) = f d*re”®Te, - P(w, 1), (6.260)
\%

whereu is the group velocity. Note that (6.260) determines theaial field
outside of the radiating aréaregardless of its shape.

Inthe case of a plane-parallel layer with the thickreggollows from (6.257)
that

Az _
Ei(2) = - Z’Tsl";—;;sz(m En0)° (6.261)
(m-1)|12
1y(2) = (C) wllgiuzsmc?( )|22(0) wd0), (6.262)

wherely, = cg|Exl?/8n = hwiFy, is the longitudinal component of the energy
flux density in modek and sinck) = (sinx)/x. Egs. (6.261), (6.262) give the
efficiency of parametric frequency conversion.

Note that the ‘new’ model(, v1) = k; is determined through the pump modes
ko, ..., km by conditions (6.254), (6.255) only up to the polarizatigpdv; and
the signo; of the longitudinal componei, (see (6.165)). In other words, each
combination of polarized pump wavasski, i = 2,... excites, in principle, four
waves with the frequency;, which difer by indicesv; = 1,2 ando; = 1.
However, the factor sirf¢Az/2) in (6.262) usually strongly suppresses the wave
with ki, < 0 (about k3,2)? times, see Fig. 6.13).

Thus,in the undepleted-pump approximation, excitation of newesacales
as the product of the incident intensities, the squared ineal susceptibility,
and, provided that phase matching is satisfighlz( < 1), as the square of
the interaction length.In the case of the opposite inequalis, is replaced by
(A/2)?sirP(Az/2) ~ 2/A?, i.e., if the phase velocities are not matched, the ampli-
tude of the new wave periodically turns to zero. The distaty¢&|, at which the
intensity of the wave varies monotonically, is called tiderence length
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Fig. 6.13 In the case of parametric frequency conversion ws — wa — w1, there are two waves,

kgi), satisfying the energy and transverse momentum consenvégivs. However, the coherence

lengthsr/A) for the ) wave is extremely small, on the order of the wavelength.
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6.5.2 The far field

In practice, Egs. (6.261), (6.262), as well as, generdily,dne-dimensional ap-
proximation with a finite number of transverse modes, detegronly the near
field of the nonlinear sample, where thdfdiction dfects are not important due
to the finite cross-sectioA of the interaction area. However, in the undepleted-
pump approximation it is not necessary to use the mode eigraand the one-
dimensional model. Indeed, the problem is reduced to splairsingle wave
equation (6.151) at a given distribution of monochromatiarsesP(w, r), i.e.,
to finding the Green'’s functio®(w, r) of the Helmholtz equation. This function
has especially simple form in the case of a homogeneousjsotmedium and a
large distance from the sources to the observer.

We have already defined the Green’s function of the Maxwelbéigns in the
w, k representation (see (4.23)). One can show that its threerdiional Fourier
transformation yields, in the first order ityr, i.e., for thewave field the expres-
sion

2
Glw,r) = %e‘krﬂ(?), (6.263)

wherell,s = dqp — fofg is the projector onto the plane orthogonal to the direction
f = r/r andk = n(w)w/c. Letr > kA (thefar field), then (6.263) leads to the
following relation between the field and the external palatipn (compare with
(6.260)):

2 o
E(w,r) = %e‘kr f & eI - P(w, 1), (6.264)
\

wherek = ki andr connects some point inside thearea containing the sources
and the observation point. Thuat large V the far field scales as the Fourier
transform of the external polarization.
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Consider generation of a field with the frequengyby an undepleted pump
consisting ofm — 1 plane waves. AV — oo, the nonlinear polarization is also a
plane wave, its frequency and wave vector being

m m
wlz—ZZ:Swi, E-Z;ski. (6.265)
1= 1=

Let the tensox ™ be nonzero within a rectangular box with dimensiani, c,
then, ats; = 1, (6.264) yields

2
E*(wy, 1) = %e—‘kﬂ(n A TVE, EVER), (6.266)
f(F) = f B’ €2K7 )V = sinc(Akea/2)sinck,b/2)sincAk,c/2),  (6.267)

AK = mawrif/c— K. (6.268)

The direction diagram of the field; at fixedK is mainly determined by the
function f(f). For an dficient frequency conversion, the length kKfshould be
close tomw;/c = ki; in this case, the radiation intensity is maximal in the di-
rectionK (for which f ~ 1) and has a considerable value within a solid angle of
abouti?/A, whereA is the area of th& projection onto a plane orthogonal o
(Fig. 6.14).

4

Fig. 6.14 To the definition of the direction diagrdif#) for the field emitted by a polarization with
the frequencyw and the wave vectd from a domain with the dimensiorgsb, c: the radiation has a
noticeable intensity only if the observed wave vedtrelongs to a domain of dimensiongl1/b, 1/c
near the poink.
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Fig. 6.15 Angular dispersion of the refractive inde¥(6) for the extraordinary wave enables the
frequency dispersion to be compensated and the phase natgiditionn®(w;) = n®(2w1, 61) to be
satisfied for second-harmonic generation, as well as f@rdtiree-wave interactions.

6.5.3 Three-wave interaction

Let us consider, in the framework of the one-dimensional @hatie interaction
of three waves or modes with the frequencigs+ w; = w3, due to the quadratic
susceptibility, which has a noticeable value only in pidzokic crystals. For the
phase matching conditionk = ks—k,—k; = 0, to be satisfied in the transparency
range, the crystal should be birefringent and have a ceotéémtation of optical
axes with respect to the incident beams (Fig. 6.15).

Let us re-normalize the wave amplitudes so that their sgumieequal td-;,
the longitudinal photon flux densities hav; units (see (6.178)). From (6.257) (or
from (6.180)) it follows, ats; = s, = —s3 = —1 and in the case of all waves
co-propagatingy > 0, that

day/dz = iBe*%a}as, (6.269)
dap/dz = iBe*%a;as, (6.270)
dag/dz = iBe ™ ?aay, (6.271)
where
B = (32r%hwiwaws/Cmng) 2y, (6.272)
A = Aky, x = YD (w3 = wp + w1)'E380€. (6.273)

Here, the convolutio can be considered as real and invariant to a simultaneous
permutation of the frequencies and the polarization uritarse (Sec. 6.1).

After multiplying these equations l&/, we see that the rates of flux variations,
dF;/dz are equal for modes 1 and 2, while for modes 1 and 3 they hgwesip
signs. Thus, the energy fluX hw;F; is only redistributed, without absorption,
between the three modes, and the share of each mode scakefraguency (the
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Manley-Rowe relations, see Sec. 6.3),

AF1 = AF2 = —AF3, (6.274)
where

AF; = Fi(2) - Fi(0). (6.275)

There is also the third independent integral of motion (8)18r Egs. (6.269)—
(6.271), determining the phasefférence. These integrals allow one to solve
Egs. (6.269)—(6.271) in terms of a single quadrature. Asaltghea;(2) depen-
dence is given by elliptic functions describing a periodiergy exchange between
the three modes [Bloembergen (1965)]. Here, we will conditke limiting cases
where one of the waves is much stronger than the other twau(ttiepleted-pump
approximation, or thparametric approximation

6.5.4 Frequency up-conversion

Let F1o0 > F», F3 (undepleted low-frequency pumm@so = a3, andA = 0, then
(6.270), (6.271) yield

dap/dz = iyas, (6.276)
dag/dz = iyay, (6.277)
y = faso = (327°wows/C*NipNgl10) Y2y (6.278)

These equations are easily solved with the help of the subeti a; = ;€%

ay = axpCOSyZ + iazpSinyz,
] ) (6.279)
ag = aggCOSyZ+ laggSInyZ
Thus, modes 2 and 3, similarly to coupled pendulums, pesalyi (at a dis-
tancen/2y) exchange energy (ifw; units) according to (6.274) (Fig. 6.16).
Let us estimate a typical length of the parametric intecactzy, = 1/y ~
/lon/4ﬂ'2,\/E10. Letloa=Az3=1u,n=1Ly= 108G, l10 = 100 MV\//cmZ, then
ZnL = 0.3 cm.
At azo = 0, it follows from (6.279) that

F3 = Foosir’(z/zu), F2 = F20coS(z/znL). (6.280)

This equation describes parametiem-frequency generatipor frequency up-
conversionwhich is used, in particular, for visualizing IR radiatioht the inter-
action lengthz = nzy/2, the output intensity of the converter reaches its maxi-
mum, equal (in photon units) to the input intensity. The asion éficiency is
then equal, in ordinary units, #3/w; > 1.
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Fig. 6.16 Parametric interaction in the case of a low-fregyeundepleted pump. (a) The intensity
versus the distance (b) two versions of the radiation spectrum (arrows showdhection of the
energy transfer).

Equation (6.280) can be easily generalized to the ¢ase 0. The sum-
frequency generation is then described by the equation

Fa = Faolysin"2)/T"%, T" = (¥ + A%2/4)Y2, (6.281)

Hence, atA? > 4y? we obtain (6.262) once again. Comparison of (6.280),
(6.281) with (6.261), (6.262) shows that the approximatériwo undepleted
pumps,a;» = const, is applicable only at 42A)?> > 1. Then, the period of
spatial modulation is determined by the wave mismatcdnd not by the pump
intensityy.

6.5.5 Parametric amplification and oscillation

Let F3o > F1, F2 (high-frequency pump), then, instead of (6.276)—(6.2W&),
have

da/dz=iya;, da/dz=iyaj,

(6.282)

_(32eor, N o
Y= C3ﬁ1r_]2r_]3 30 X 3, W1, 2636162

The solution to this system is (compare with (6.279))

a; = aypcoshyz + ia},sinhyz,
ST (6.283)
ap = axocoshyz +iaj,sinhyz
If a10 = 0, then (compare with (6.280))
F1 = FogsintPyz = (G - 1)Fq,

6.284
Fo =Fo COS|’? YZ= GFyo, ( )
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Fig. 6.17 Parametric amplification andférence-frequency generation (high-frequency pumping,
forward interaction). (a) Dependence of the intensity andlstance; (b) typical frequency spectrum
and the directions of the energy transfer; (c) relation ketwthe wave vectors at phase matching.
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Fig. 6.18 Optical parametric oscillator.

whereG is the parametric amplification cfircient. These equations describe the
effects ofdifference-frequency generatian; — w, — w;, andparametric ampli-
fication In contrast to the case of a low-frequency pump, here tlemgities grow
exponentially (Fig. 6.17). Note that (6.284) satisfies thenMy-Rowe equations
(6.274),AF1 = AF, = (G — 1)F2.

Itis not difficult to show that in the case af# 0, amplification and dference-
frequency generation with high-frequency pumping are dlesd by (compare
with (6.281))

G = 1+[ysinh(2)/T]? T = (y* - A%/4)Y/2, (6.285)

Note that aty? < A%/4, the exponential growth turns into beats.

If there is a positive feedback at the frequergyor/andw, (Fig. 6.18), the
amplifier turns into aroptical parametric oscillato(OPO). One of the frequen-
cies (for instanceg,) is then called thesignal one and the other onevf), the
idler one. Certainly, the oscillation requires that the absorpéind other losses
(which we ignore here) are compensated for by the paranstmification. The
OPO oscillation frequencies are mainly determined by thespkmatching con-
dition, i.e., by the refractive indices; therefore, at a fixed pump frequeney
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Fig. 6.19 Parametric amplification andférence-frequency generation in the case of backward in-
teraction. (a) Intensity (ifF1o units) as a function of the coordinatgin 1/y units) atF; = 0 and

vl = 1.5; the parametric amplification cfieient is 7/ co£(1.5) ~ 200; (b) the phase-matching trian-
gle for backward interaction.
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the OPO can be smoothly tuned by varying the orientationroptrature of the
crystal. The existing pulse-pumped OPOs cover the range0.4—20u, which

conveniently complements the range of tunable dye lasessofimizing the
parameters of the crystal, the focused pump beam, and tlitg, @ne can obtain
oscillation even in the cw regime.

6.5.6 Backward interaction

Let the pump and signal waves propagate in the layer ‘frottdefght’, ky,, ks, >

0, while the idler wave, ‘from right to leftk,, < 0. The phase matching condition
can then be satisfied due to strong birefringence or anommaispersion. For the
backward waveg, > 7/2 andn; < 0, so that instead of (6.282) we have

day/dz=iya, dap/dz=—iyal. (6.286)

Let the layer have a thicknessthen the boundary conditions have the form
a1(0) = ajp, ax(l) = ay. Itis easy to check that the solutions to (6.286) are
(Fig. 6.19)

a; = {aspcosp(l — 2)] + ia, sinyz}/ cosyl,
e (6.287)
a = {ag cosyz + iaj,sinfy(l - 2)]}/ cosyl,
wherey is assumed to be real. At — /2, these solutions tend to infinity, i.e.,
oscillations are generated, despite the absence of themnirOne can say that
backward interaction provides a distributed feedbackrtalar effect takes place
in a backward-wave tube).

MTo be precise, the sign af= ncoso cosp is determined by the angle= 9 + p between the Poynting
vector and the axis; however, in the transparency range, the anisotrogle atoes not exceed several
degrees, and we neglect it here.
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6.5.7 Second harmonic generation

Second harmonic generation (SHG) in the one-dimensiomabapnation and in
the absence of linear absorption is described by equat®B3 ), (6.270), with
the subscript replacement3 2 — 1,

day/dz = iBe’a]ay, (6.288)
dap/dz = iBe2%a2/2, (6.289)

where
B = (64r°1w3 /i) 2y, A = koy — 2Kyy, (6.290)

x =x" = x(~wi; 2w1, —wr) @181 = 2¢A(-2w1; w1, w1):eer€r.  (6.291)

The factor 2 in the last expression was added accordingatioal(6.13).
One can easily see that these equations satisfy the camdftibe field energy
conservation, which in this case coincides with the Mari®yve equation,

lagl? + 2lagl® = Cy, (6.292)

and the factor 2 is due to the fact that each second-harmbitmop has an en-
ergy twice as large as the pump photon energy. The secorgtahte equations
(6.288), (6.289), according to (6.198), has the form

la1|’[A — 2Blaz] cOSfpr — 2¢1 + AZ)] = Co, (6.293)

wherey; are the phases of complex amplitudes

In the general case, the solutions to equations (6.2823%.describe spa-
tially periodic energy exchange between the modes of theppama the second
harmonic. (These solutions can be expressed in terms ofllthcesine func-
tion [Bloembergen (1965); Dmitriev (1982)]).

Here, we will only consider the most important and simplecscabereA =
0, a2(0) = 0. Then, assuming in (6.293)= 0, we find thatC, = 0 and, hence,
at anyzwe have cog = 0, wherep = ¢, — 2¢1. Thus, the phase shift between
the modes is constant. One can easily show that the phasesrestant as well.
Indeed, let us substitute into (6.289)= b; exp (¢i), by > 0:

dbp/dz = (1/2)8b?sing = (1/2)8|b3, (6.294)
dy,/dz = (8b7/2b,) cosp = 0. (6.295)

From the second equation, it follows that bgthandy, are independent & and
from the first one, that the energy transfer direction (frowe first harmonic into
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Fig. 6.20 Second harmonic generation. The horizontal éxdsvs the distance (in/% units), the
vertical axis corresponds to photon fluxes for the pump aechtrmonic (inF1p units). AtZ > 1,
every two pump photons turn into a single double-frequeriaytgn.

the second one or vice versa) depends on the sighsanfle. In the case consid-
ered,b; is increasing (from zero); therefoggsing > 0, i.e.,¢ = (7/2) sigry.
Substituting (6.292) witlC, = bfo into (6.294), we easily find the solution

dby/dz= |I(b%, - 2b3)/2, (6.296)
Iﬁl ™ 0/2 b2 = |'Bfmarctanh\i;—: (6.297)

Hence,
by = (1/ V2)byotanhyz, by = byo/ coshyz, (6.298)

where
¥ = |Blbso/ V2 = 2(2r/cny) > walyll 2. (6.299)

Thus,the intensity of phase-matched second harmogn(g)lincreases mono-
tonically astantf yz, and atyz > 1 it achieves the initial intensity of the pump
11,(0) (Fig. 6.20). The pump intensity goes in this case dowrto as ¥ cosif yz,
with its phase being constant. At 1/v, the SHG #iciencyn is 58% in the en-
ergy and 29% in the photon number. At+ 0 ora,(0) # 0, monotonic solutions
are replaced by periodic ones, apceduces.

In practice, powerful pulsed lasers proviglas high as several tens per cent.
Note that phase-matched SHG in piezoelectric crystalshpgritant applications,
such as shifting laser frequencies up by as much as an octave.

Let us also mention much weakeffexts that do not require phase match-
ing: SHG under the reflection from a medium without the center ofnsy-
try [Bloembergen (1965)] and incoheresdattering of light at frequencfw by
non-centrosymmetric molecules [Kielich (1980)], as welllay any molecules,
atoms, and free electrons, due to the ‘magnetic’ anharritgifiec. 6.2).
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Note that the conditiol,(+0) = 0 accepted above does not fully correspond
to an ordinary experiment where it is the incident seconurloaic field that is
zero, while the transmitted and reflected fieki$+0), E2(-0) are non-zero due
to the requirement that the tangent components of the figjdbl, should be
continuous at the boundary [Bloembergen (1965)]. HoweawepracticeE,(+0)
are indeed very small.

6.5.8 The scattering matrix

Parametric interaction between two modes in a nonline&r]aynsidered in the
undepleted-pump approximation, leads tinaar relation between the input and
output amplitudeswhich in the general case can be written as

a1 = gu1d10 + 12850, 8 = G21210 + G223 (6.300)

The codficientsg;; form the two-dimensionaicattering matrivof the sample,
which depends on the layer lendthabsorptiorw;, nonlinearityy, the pump am-
plitude ago, the wave mismatch and so on. If reflections from the layer bound-
aries are taken into account, the matrix becomes four-dsioaal, while in the
presence of diraction (finite transverse dimensions A&f it becomes infinitely
dimensional.

The scattering matrix should possess a certain symmetiighvithllows from
the general principles, in particular, from the Manley-Rowlations (6.274). In
the case where the input fields and a, are statistically independent, photon
exchange between the modes is described btisegy scattering matrix G =
lgij 12,

F1=GuFi0+ G12F20, F2 = Ga1Fi10+ G2aF20. (6.301)
Substitution of (6.301) into (6.274) yields
(G11 = 1)F10 + G12F20 = (G22 — 1)F20 + Go1F10.

Becausd-1p andF, can be varied independently, the scattering matrix of astran
parent layer should satisfy the relations
G11-1=Gy1, Gpo—1=Ga2 (6.302)

The system (6.282) is symmetric with respect to indice®; therefore Gy, =

Gy, = G and there is only a single independent element of the eneajiesing

matrix, the transfer cdgcientG. As a result, (6.301) takes the form
F1=GFio+ (G- 1)F2,

(6.303)
Fz = GFZO + (G - 1)F10.
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Fig. 6.21 Spontaneous multi-photon processes can be takeraccount in the semiclassical the-
ory, by adding a single extra photon into the output modes €rresponding arrows are directed
downwards). The figure shows the direct and inverse threésptparametric processes.

6.5.9 °Parametric down-conversion

The quantum theory, in principle, allows a three-photongition in which trans-
parent matter (an atom or crystal) absorbs a photon from rkedaed emits a
pair of photons into model; andk;, returning into its initial state (Fig. 6.21).
The probability of such a transition scales &k ¢ 1)(N2> + 1)N3, whereN; are
the initial photon numbers per mode and the unities appeartathe quantum
fluctuations of the mode amplitudes in the ground state (@&naf). The prob-
ability of the inverse process, where photons in mddek, are absorbed and a
photon is emitted into modk;, scales afNiNo(N3 + 1). As a result, the rate of
pair generation scales as

N]_ = Nz = —N3 ~ (N]_ + N2 + 1)N3 - N1N2. (6304)
Hence, in the first order iN3, we have
N1 — N1o = N2 — Nog ~ Nig + Nog + 1. (6.305)

Thus, due to theflect of the radiation at frequenays, the matter generates pairs
of photons with frequencies; andw; = w3 — w; distributed within a broad
range, from zero to the incident radiation frequency. Indase of macroscopic
matter, the frequencies and directions of emission ar¢eckiarough the phase
matching conditiorks = k; + ky. This dfect, observed in birefringent crystals, is
calledparametric down-conversid?DC)' or parametric fluorescend&habotin-
sky (1969); Klyshko (1980); Akhmanov (1971)]. PDC can beipteted as the
guantum noise of an optical parametric amplifier.

NEditors’ note: in the original text, D. N. Klyshko used thene‘parametric scattering’, suggested
in his pioneering work (1967) on the theory of PDC [Klyshk@®@8D)]. Later, the term ‘parametric
down-conversion’ became widely accepted.



Nonlinear Optics 221

The scaling factor in (6.305) should be equal to the conearsbdiicient
Gi12 = G - 1, which was found in (6.285) in the framework of classicahliveear
optics. Hence (compare with (6.303)),

N]_ = NlO + (G - l)(Nlo + Nzo + 1) = GN]_O + (G - l)(Nzo + l) (6306)

A similar expression can be obtained fss through the permutation of indices
1,2. Here G — 1 does not have to be linear in the pump intensity any more.

The obtained expression allows the following rule to be folated. In or-
der to take into account spontaneous emission in the clalsdiscription of a
parametric amplifier, one should add an extra single photda each input idler
mode® The same result follows from (6.306) in the case of a more ig@ns-
formation,

Nio = Nio+ P, Noo = Nog+ 0, Ny — Ng +p,

wherep+qg =1, 0 < p < 1. In particular, one can add half a photon to all numbers
of photons per mode.

According to (6.306), quantum noise yiel@s- 1 photons in each output mode
of a parametric amplifier, witt® being the amplification cdgcient for this mode.

A similar result (Kirchhdt’s law) is valid for quantum and Raman amplifiers (see
(7.7) and (6.225)).

Note that atN, = N3 = 0, it follows from (6.304) that three-frequency up-
conversion with low-frequency pumping has no contribufimm quantum fluc-
tuations. In the case of four-frequency interaction, it @sgible that two pump
photons decay in a pair of photons with the frequeneiesnd 2v3 — w, occupying
the range 0—@ (hyper-parametric scatteringr light scattering by lightP

Let us pass from photon numbers per mode to the spectralthegh Using
(6.306) and (6.227), we find that by = 0 (we assume that = 0)

loa(K1) = fiwiFua(ki) = (hw1/21a3)[G(ky) - 1], (6.307)

whereF,q = dF/dwdQ is the flux of photons in thd; direction with the fre-
guencyw, (ki) per unit solid angle, unit area (orthogonalkg and unit circular
frequency. The valug,q (K, r) is called thespectral brightnesgsometimes, sim-
ply theintensity of incoherent radiation. Recall that the brightness, andhse of
a transparent medium, does not vary in the direction of ligbpagation.

°An ‘idler’ mode, with respect to the considered ‘signal’ neodith the frequencyv;, is the mode
with the frequencyw; = w3 — ws.

PEditors’ note: now this process is commonly caliggbntaneous four-wave mixingtarting from the
beginning of the 2000 s, it is applied for the generation afalassical light, both faint one (photon
pairs) and bright one (squeezed light).
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Thus, the noise spectral brightness of an ideal amplifienabzed toG — 1
(i.e., relative to the input), is

1Y3¢ = Tiw/ 27022 = hw®n?/8r°c. (6.308)

This value can be naturally called the spectral brightnéssem-point fluctua-
tions of macroscopic field (for a single polarization type)tbe vacuum spectral
brightness’. It corresponds to the presence of a singlegphioteach mode. At
A =1uandn = 1, the brightness of fluctuations per unit wavelength irdkiv

1Y2¢ = |dw/dA|1 Y3 = 7ic?/ A% ~ 0.6W/(A - cn - sr). (6.309)

Thus, the relation between the spectral brightness and libeop number per
mode is

lLoa(k) = 1Y2N(K). (6.310)

Let us also estimate the brightnes#féetive) temperature of superfluores-
cence at the output of an ideal amplifier. From the Planck @dan(2.102) and
the Kirchhdf law N = G - 1, it follows that

Ter1(K) = hw/k In(L+ N ) = ~fiw/x In(1 - G 1)
~ (hw/k)G ~ 10PK. (6.311)

The last estimate was made foe 1y andG = 100.
Substituting (6.285) and (6.308) into (6.307), we obtaia ithtensity of the
parametric amplifier quantum noise,

loa(K) = 1S SinFP[(y? — A%(k/4))Y21]/(1 - A%(K)/47°), (6.312)

wherel is the thickness of the nonlinear laya(k) is the deviation from phase
matching for modé, andy ~ y'?E; (see (6.282)). According to (6.312), the PDC
intensity has a sharp maximum at frequencies and direction$ ¢} satisfying
the phase matching conditiark = 0.

This condition determines th&fequency-angular spectruraf PDC w(9),
wheret is theangle of scatteringi.e., the angle between the observed wave vec-
tor k and the pump wave vectég. The dependence of the frequency on the angle
¢, as arule, can be neglected, i.e, the PDC spectrum is agiatlynetric w.r.t. the
directionks. Field with a given frequency is emitted along a cone with a certain
angled(w). As one can see from Fig. 6.22, the frequency spectrum of fQG
a blue pump covers a broad range of IR and visible wavelengies visible ra-
diation is directed mostly forward, at angles not exceedingeral degrees, which
is due to the fact that crystals have small birefringencéénttansparency range.

When the idler frequency approaches the eigenfrequentibe arystal lat-
tice, which are usually in the region of hundreds of inversaticneters, PDC
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Fig. 6.22 Frequency-angular spectrum of parametric dosviversion in lithium niobate for élierent
pump wavelengthds: 91 is the angle of the cone along which the wadeis emitted. The anglés
between the pump beam and the crystal axis fs 96hends is reduced, the gap in the spectrum (for
A3 < 0.53p) disappears.

continuously turns into the Raman scattering by polaritams optical phonons.
Then,y has a resonance growth due to the contribution from elegttarear an-
harmonicity (Sec. 6.2), but this growth is accompanied binarease in the linear
absorptioru; at the idler frequency, so that the brightness integrated the fre-
quency,lq, does not change much. Certainly, when the idler frequensynall
andaszl > 1, (6.312) has to be multiplied by (w,/T) + 1, whereT is the lattice
temperature andy/ is the Planck function.

By analogy with the scattering by polaritons, PDC can be defims the scat-
tering of the pump radiation by the field fluctuations in thkeidnodes, i.e., as
light scattering by light similarly to the way Mandelshtam-Brillouin scattering
can be called light scattering by sound.

The important features of PDC, distinguishing it from othgres of light scat-
tering in matter, are, first, a broad continuous spectrunt,netated directly to the
eigenfrequencies of the matter, and, second, the two-plstitocture of the emit-
ted radiation: at small pumpingy{ < 1), sighal and idler photons are emitted
only in pairs, practically simultaneously.

Note that, in addition to coherent (forward) emission, ¢hisrincoherent PDC
by separate non-centrosymmetric molecules (to be prebis¢he density and
orientation fluctuations of such molecules). Then, the elmatching condition
plays no important role, since the momentum deficit of the fieprovided by the
molecule.

Letyl < 1 andn = 1, then from (6.312) we find the intensity of spontaneous
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PDC (SPDC) in the directiok with the frequencyv(k),
lua(K) = 1Y2%212sin@[A(K)1 /2]
= 4hc 5wy PP 30sin[A(K)1 /2], (6.313)

wherew = w3 — w and the polarization indices are assumed to be chosen st that
is minimal. Note that the PDC intensity in the directions xéet phase matching
depends on the nonlinear layer thickness quadraticalligivik typical for SPDC.

Let I3p = 1 W/en? andl = 1 cm, then the amplification in the phase-matched
direction isG = 1+ 9212 ~ 1+ 1077 (see the estimate after (6.279)), and it follows
from (6.311) that aft = 0.5u, Tess ~ 1800 K. Such radiation can be easily seen
by eye and looks like colored rings. Note that the actualsfiemcodficient of

the sampleG” with such pumping is always less than the unity because of the
reflection, absorption, and scattering losses.

The dfective frequency band of the SPDC spectrumat a fixed observation
direction is determined, similarly to the band of paranweamplification, by the
phase matching width, i.e., by the conditith= +7. Considering only the linear
expansion ofA\(w), we can write

Aw = (2n/)l0A/dw|™ ~ 2n/It1 - T2, (6.314)

wherer; = |/u;. According to Eq. (6.314), which is valid in the case of au#ar
phase matching with; # w,,% the width of the SPDC spectrum (in Hz) is equal
to the inverse time delay (in seconds) between the signabplamd the idler one
during their passage through the interaction regiassually, Aw/2rc ~ 10 cntt

atl =1cm.

At yl > 1, (6.312) describeparametric super-fluorescencer stimulated
parametric down-conversioccording to the estimates made above, stimulated
PDC can be observed from pulsed pump with the intensity ab@@tMW/cny or
higher. Certainly, stimulated PDC, similarly to parametscillation, is observ-
able in practice only in the directioh ~ 0, at the frequencies of collinear phase
matching,w;i(0). This is due to the fact that, as it follows from the geomef
the experiment, thefiective interaction length,s in the case of a narrow pump
beam /1 < 1) is dramatically reduced (ag sind) at¢ > a/l. The total power
of stimulated PDC can be estimated as

P = 1, 0AwAQA = "% AwAQA/4, (6.315)

where we have introduced th&ective frequency and solid-angle bands and the
effective cross-section (see the estimatePdbr the StRS (6.229)). Stimulated

9Editors’ note: It is also valid in the case of type-ll phaseteching, in which the signal and idler
photons are orthogonally polarized and therefore hafferént group velocities.
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PDC is used, similarly to parametric oscillation, for a cotiable shift of laser
radiation frequencies.

6.5.10 °Light scattering by polaritons

This process is described by the system (6.269)—(6.27h) hmieéar absorption
introduced into one of the equations. In the approximatibarmepleted high-
frequency pump, the interaction between the Stokes (Sigmal the polariton
(idler) waves is determined by the equations

day/dz = iyaye??, (6.316)
dap/dz+ 6ap = +iya;e’?, (6.317)

wheres = a2/2, y = Bago (see (6.282)), and the lower signs correspond to the
case of the backward idler wave. In the polariton range oPIh€ spectrum, i.e.,
in the vicinity of lattice eigenfrequencies, the idler wasestrongly absorbed, so
that usuallys > |y|, 6l > 1, and the amplitude of the idler wave is determined by
the local amplitude of the signal wave.

For this reason, let us search the solution to (6.317) in thmiax(2 =
b, exp(A2),

dby/dz+ 6by + iAby = +iya]. (6.318)

Here, the derivativdb,/dzdoes not much excedégh,|; therefore, ifiy| < [5+iA],
it can be neglected. Then,

by = iyal/(6 = iA). (6.319)

In this approximation, the incident idler radiation does mfluence the output
field, due to the high absorption, which is much stronger thamparametric am-
plification. Substituting (6.319) into (6.316), we obtain

da;/dz= (9/2)a, (6.320)
where
9= 2V1%/(6 FiA) = 64r°wiwa [y PPl 303 M Mna(6 F iA).

Thus, strong absorption of one of the two interacting waeasl$ to the ex-
ponential increase, similarly to the case of usual Ramasrastion due tg/®)
(Sec. 6.4), with the only dierence that here, phase matching conditidr« § is
important.
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Comparingg at A = 0 with the Raman amplification cfiecient (6.224), with
the definition ofa, (6.167) taken into account, we find the equivalent cubic sus-
ceptibility (assumingy = 1),
(3)// _ IX(2)| / (l)n (6321)

equw

The same relation between the resonance susceptibilftibg dirst, second, and
third order follows from the microscopic theory [Klyshka9@0)].

The spectral brightness of the Stokes figld(k;) in spontaneous or stimu-
lated light scattering by polaritons can be found throughKirchhdf law,

lua(k) = 15T (w2/T) + 1l{explg’(ky)Z - (6.322)

or by using the results of Sec. 6.4. Note thatifis understood as the amplitude
of the sound wave, the above analysis will describe the Mahtiem-Brillouin
scattering (spontaneous and stimulated).

6.5.11 Four-wave interactions

In centrally symmetric media, macroscopic quadratic spisioitity @ is equal
to zero, and therefore the simplest parametric processviesdour field modes
interacting due to the cubic susceptibilift)(ws = ws + wo + w1). In the corre-
sponding quantum transition, four photons are absorbedhitesl and the state
of the matter remains the same.

The most important four-wave parametriteets are (Fig. 6.23)eneration of
combination frequencidgor instance, the third harmonic) for converting laser ra-
diation to the UV and IR rangespherent anti-Stokes Raman scatter{@fRS),
andoptical phase conjugatiofOPC). Let us also mention three-waveets due
t0 x®(w4 = w3 +w, +0) in a constant fieldEy, which breaks the central symmetry
of the medium.

| . ,
; |
/ / \ X—

(@ (b) (c) (d)
Fig. 6.23 Basic types of four-wave single-resonance patramngrocesses and their applications:
(a,b) generation of coherent UV and IR radiation; (c) coheemti-Stokes Raman scattering (active,
or CARS, spectroscopy); (d) phase conjugation.
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© (d)

Fig. 6.24 Phase matching conditions in four-wave inteossti (a) generation of UV radiation is
usually performed under collinear phase matching; (b) irRSAall frequencies are close and phase
matching is satisfied at small angles of scattetin¢c) in the general case of frequency conversion of
the formw; + w2 — w3 — wa, the phase matching has the fokn+ k, = k3 + k4. The wave vectors

in this case can be non-planar: the phase matching quadraaglbe folded along the dashed lines;
(d) in OPC, all four frequencies are equal and the phase rngtcdwondition is satisfied for any two
standing waves.

In the frequency conversion, it is usually the electron amuaicity that
‘works’, CARS is due to the mixed electron-nuclear (Placgeknharmonicity,
and OPC, similarly to self-focusing, is due to the inertjgdds of anharmonicity:
the orientation and sriction ones (Sec. 6.2).

Note that in OPC, which will be described in more detail belailfrequen-
cies are degenerate, as in non-parametric interactiongeriteless, we classify
it as a parametric process, since it preserves the field giaadleads to the co-
herent excitation of new modes with the phase matching tiondk; + k; =
k3 + k4 =0.

In the case of frequency conversion in gases, collineareptradching is sat-
isfied due to anomalous dispersion (it is convenient to useumds of gases for
this purpose). CARS in many condensed materials requinescalinear phase
matching with the angles of scattering abou{ih the case of a two-beam pump,

see Fig. 6.24).
In all effects mentioned so far, the incident (input) field has, in teeegal
case, three modes exciteNid # 0,1 = 1,2,3), and the output radiation has

‘new’ photons in the fourth modeks(w1 + w2 + w3 — wa). Such &ects can
be calledstimulated they are well described by classical electrodynamicsdin a
dition, there arespontaneousftects, in which the pump contains, in the general
case, two modesi; + w2 — w3 + w4. Then, photons in the output modegtap-
pear simultaneously, in pairs, due to spontaneous-sttediteansitions (compare
with the parametric down-conversion). Such processegwhtcludehyperpara-
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Fig. 6.25 Active spectroscopy. The matter is excited by @seis with frequencias; andw, such
thatw; — wy equals the frequenc®2y of molecular vibrations. The resonance can be detected by an
increase in the intensity, polarization, or phase of any one of the four frequenciesenpled while
scanningwi or wy.

metric scattering or light scattering by lightand ‘spontaneous CARS’, are only
described in terms of nonlinear quantum optics and, in saBes; equations like
the Kirchhdf law [Klyshko (1980)].

6.5.12 Nonlinear spectroscopy

The absolute value gf® and, correspondingly, thefeiency of four-wave para-
metric interactions increase dramatically near intermediesonances, where one
of the virtual levels coincides with a real one (Fig. 6.23).0$¥linteresting are
two-photon resonances like + w,; = w3 = w4 = Qg, in which neither the pump
not the output field undergo single-photon resonance atisorp

Observation ofy® resonances is the main instrument for several methods
of nonlinear spectroscopythe most important of which is, probablgctive
spectroscopybased on CARS [Akhmanov2 (1981); Bloembergen (1977)]. The
scheme of a nonlinear spectroscope for the study®fdispersion is shown in
Fig. 6.25. It uses two lasers with the frequencigs w; (let w; > w>), one of
them (saywy) tunable within the range; — Qo, whereQ)g is the frequency of the
molecular vibration under study. Af, = w; — Qo, the frequency components of
the cubic susceptibilities(w; = w1 — w2 + W), (w2 = W2 — W1 + w1), x(wa =
2w1 — wy), x(ws = 2w, — w1) have resonances (see (6.88)) caused by the exci-
tation of atom oscillations in a molecule by bi-harmonidliglue to the mutual
influence of electronic and nuclear degrees of freedom 2.

"Editors’ note: called novepontaneous four-wave mixing
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In the case of active spectroscopy, the resonance manifeslfsin the in-
tensity variation at the ‘new’ frequencies or ws. (It is convenient to use the
anti-Stokes rangeya, Where there is less stray light caused by the fluorescence
of the sample and the optical elements.) According to (6.2@L262), in the
undepleted-pump and plane-wave approximations, thesityeof CARS is

C NR FXR (WA = 2w1 — W), (6.323)

4 21212
4r\ ol @ L @
NZnzna

Ia(w2) = (

where the non-resonance real park@f,/\/ﬁ??, has a weak dependence on the fre-
quency and causes the asymmetry of the observed spediative spectroscopy
has advantages over usual Raman spectroscopy in sensitegblution, and the
amount of available informatiarNote that using tunable lasers allows one to do
without dispersive elements.

In the case oRaman amplification spectroscqpyne registers the intensity
increaseAl,, at the output, equal, according to (6.224), to

327'1'2602“ 1

3 _
g IMy® (w2 = wy — w1 + w). (6.324)

Alp(wp) = -
One can also observe the decrease of the intehsif the field with the higher
frequencyw; near the resonance. This phenomenon is calleihtresse Raman
effect

The resonance can be also registered in other ways: by niegse phase
delay of the incident field); or w,, which scales as R€) (the Raman Kerr#ect
method), or by measuring the polarization parameters df¢ldsw;, i = 1,2,3,4
(nonlinear ellipsometry[Akhmanov2 (1981)].

All these nonlinear spectroscopy methods, together wehwlo-photon spec-
troscopy and saturation spectroscopy, considered in S&cb&came a consider-
able extension of the traditional pre-laser spectrosompich mainly used linear
effects and spontaneous Raman scatterfgignificant broadening of the scope
of spectroscopy due to the use of lasers together with tHéiebiof nonlinear
spectroscopy allowed one to speak about the ‘laser revaiuiin spectroscopy

6.5.13 Dynamical holography and phase conjugation

The idea of the optical phase conjugation (OPC) method basé¢lde four-wave
interaction is clear from Figs. 6.24(d) and 6.26. Let a siagpadnonochromatic
pump wave (a ‘reference wave’, according to holography terofogy), i.e. ks =
—k1, be excited in a medium with the cubic nonlineagiy(w = w+w—-w). Then,
if a third plane waveks with the same frequenay and an arbitrary direction is
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Fig. 6.26 Phase conjugation using degenerate four-waggairtton. A nonlinear medium excited by
a standing pump wave ‘reflects back’ all waves of the sameiegy along the way of their incidence.
As a result, a divergent spherical wave becomes a wave @eveto the source (dashed line).

incident on the medium, the fourth wave will appear, with tteguencyw and
the wavevectok, = ki + ko — k3 = —ks. Thus, the medium excited by the pump
acts as a mirror reflecting all plane waves back along the qfatteir arrival, in
contrast to a usual mirror, which performs the transforargtj — —k,.

In the case of an arbitrary spatial distribution of the sldoajec) field Es(r)
it will contain many Fourier componentks}, each of them creating its own con-
jugate component. As a result, the initial object wave wadlrbstored around the
medium,RE;(r), with the same wave front shape, but propagating in the sifgo
direction (from the medium) and, of course, having fiedlent energyR # 1). It
is important that due to the backward parametric amplificasee (6.287))R|
can considerably exceed the unity. (Usually, this is onlyi@ged in the pulsed
regime.)

The possibility of the OPCfeect for an arbitrary optical field, which, in a
sense, provides the time inversiblooks striking from the viewpoint of nonlinear
optics. In fact, this ffect has been discovered in the optical range as early as in
1949, long before the birth of lasers and nonlinear optigsiGabor, the author
of holography. In holography, OPC manifests itself in thgpegrance of twin
images, which were considered by Gabor only as sources sé ndhe perspec-
tives of OPC applications were understood only much lateiniy in the sev-
enties, when the practical methodsdyihamical holographjave been invented,
which enabled OPC to work ‘in real time’, without the delay fithotographic
film developing. These methods, in addition to four-waveapagtric interaction,

SOPC is equivalent to the— —t transformation only for a strictly monochromatic field. hetcase
of a quasi-monochromatic field, OPC does not change the sifdabe envelopdsy(t).
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Fig. 6.27 Applications of the OPQfect: (a) correcting the wave front distortions. The plammafr
of the wave incident from the left becomes distorted, bwdrafeing reflected by a ‘phase conjugating
mirror’ and passing the same medium again it restores tiglishape. (Reflection from a usual mirror
would double the distortions.) (b) Focusing of strong lasatiation on small targets: light from a
weak laser (top) is scattered by a target, part of the sedttiéeld is amplified by a strong amplifier,
gets reflected by the ‘mirror’, is amplified once again andmres to the target.

'

use three-wave degenerate interactifiaas, 180 light scattering, and superflu-
orescence [Zeldovich (1985); Bespalov (1979)]. OPC methwale been also
developed for acoustic waves.

OPC is an example addaptive opticsaiming for the automatic correction
of optical systems. OPC allows one to correct the distostiohthe wave front
(phase distortions) appearing due to the signal wave gatisiaugh an optically
inhomogeneous medium, like an opaque glass or a quantunifi@mglo correct
for this, it is suficient to reflect the wave back at the output of the inhomogeseo
medium by means of a phase-conjugating mirror and this wayahke it travel
along the same path in the opposite direction. Then, albdienhs of the wave
front formed on the way will be ‘straightened’ and the frorili westore its origi-
nal shape (Fig. 6.27(a)). (Of course, amplitude distogicaused by irreversible
absorption or amplification will not be compensated but andated.) This ef-
fect allows powerful but inhomogeneous amplifiers to be deeéhcreasing the
energy of weak lasers providing single-mode beams with thrérmal (diffrac-
tion) divergence and ‘natural’ bandwidth. This techniquevides record values
of spectral brightness.



232 Physical Foundations of Quantum Electronics

Another application of OPC, important for solving the prerl of laser ther-
monuclear synthesis, is automatic focusing of strong les@iation onto small
targets (Fig. 6.27(b)).

Using a resonance susceptibilig?) (in particular, enhanced by two-photon
resonances in the vapors of alkali metals) allows one toa@the pump power in
four-wave interactions (down to 1 }éh?, with the reflection coficient|R| ~ 1).

In OPC via stimulated scattering suficiently strong monochromatic wave
ReE(r) expiwt) serves as a pump causing 18fimulated Raman scattering
or stimulated Mandelshtam-Brillouin scattering in a noar medium. If the
wave front of the pump is rather non-uniform, the back-reédStokes radiation
ReEs(r) expiwst) (with ws = w — Qp) has approximately the same wave front
shapeEs(r) ~ RE(r), wherelR| is close to unity.

At first stages of backscattering £ 1) the Stokes field is chaotic, it has all
modes with diferent wavevectork excited independently and homogeneously.
(Since the wavevector lengih= n(ws)ws/c is fixed, the modes are determined
by the transverse componekit = ). In the case of a multi-mode pump, var-
ious Stokes modegsj(ws) have diferent Raman amplification cfiientsa(q).
Moreover, one can show [Zeldovich (1985)] that if some magey is presentin
the pump spectrum, then the Stokes modeg, (vs) has, on the average, an ampli-
fication codficient twice as largex(—q) ~ 2a. Because atl > 1 this diference
is amplified exponentially, it is $hicient that the part of the Stokes field repeating
the pump spectrum is considerably more intense than the pais.

The advantages of ‘Brillouin’ or ‘Raman’ mirrors are the abse of the pump
(they are analogues of reference-free holography) andsld@0% éiciency.
The disadvantages are the existence of a threshold, thesigc® have multiple
modes in the signal field, and the frequency shift of the redbcadiation. The
latter restricts the accuracy of the reconstruction. Of Imin¢erest are lasers in
which one of the mirrors is phase conjugating (a ‘Brillougrie) and the other
one, a usual mirror, plane or concave. This scheme simulteste provides Q-
switching (due to the threshold behavior of the stimulatsdtering) and correc-
tion for the optical inhomogeneity of the active medium.

Let us consider OPC via four-wave interaction in a little maletail. An
arbitrary signal field (for simplicity, considered as scatzan be represented as

E(r,t) = ReEo(r)e™! = |Eo(r)| cosfwt + ¢(r)]. (6.325)

The phase-conjugated field describing monochromatic waiteshe inverse di-
rections of wavefront propagation, by definitionffdrs by the sign of the time,

E(r,t) = E(r, -t). (6.326)
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The amplitude and phase of the phase-conjugated field wilEffieed by analogy
with (6.325),

E(r,t) = ReEq(r)e ! = |Eo(r)| cosfwt + &(r)]. (6.327)

Certainly, the transformatio — E is possible in practice only in the absence
of irreversible processes. From (6.325)—(6.327), we fiedd¢ations between the
spectral amplitudes of the incident field and the phasetgaig one,

Eo(r.t) = Eg(r), &(r) = —¢(r). (6.328)

Hence, the wave surfaces of the monochromatic fields datexhtiy the equa-
tions(r) = const andp(r) = const coincide. Thus, the OP&ect reverses not
the wave fronts but the propagation directibnilote that reflection by a usual
mirror, plane, spherical, or of a more complicated shaps l#lads to the trans-
formationE — E, but only in trivial cases where the mirror surface coinside
with the wave surface.

The reversed fielé copies the signal one in all space outside of the nonlinear
medium, including any transparent or scattering bodieghuifrary shapes (pro-
vided of course that the scattered field fits the ‘mirror’ &pes, see Fig. 6.26).
However, as we have already mentioned, if real, irrevezsibkorption (or ampli-
fication) is present, these are only phase surfaces tha¢stared; the amplitude
of the reversed field will be further reduced (or increasexthe way back through
the absorber (amplifier).

Let a signal field, RE3 exp(iwst), and a pump field, R&, exp(iwit), be
excited in a nonlinear medium, which for the sake of simpliwiill be considered
isotropic. An electromagnetic field present in a medium oatpanied by other
fields, for instance, pressupér, t), temperature, vibrations of molecules, excited
electrons, and so on (Sec. 6.2). In photographic matetizse are ‘fields’ of
metallic silver or other products of photochemical reatsion the simplest cases,
the amplitudes of these fields scale as the constant or skaryng part of the
squared local fieldE2(r, t). For instance, due to the optical electrostriction,

p(r. 1) ~ ReEy(r)Ex(r) expli(ws — wa)t]. (6.329)

The pressure field (6.329) is a bulk hologram, it containg iffbrmation
about the signal provided that the pump field is known. Celtaa record made
by pressure will be erased soon (within a relaxation titjig, wherev is the sound
velocity) after the signal is turnedfoin contrast to the fields of photochemical re-
actions. However, if the signal is changed, the record wabgize fast as well. In

Editors’ note: the author used the term ‘wave front revérsalich was more popular earlier.
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the case of monochromatic fields with the same frequenpiekis a static field
materializing the spatial distribution of the interfererfteld E1(r)E;(r). This
simple model illustrates the idea of dynamical holograpttyich is used for the
study of fast processes.

The record (6.329) can be read out with the help of a secordarte wave
ReE; exp(-iwat), which will be scattered by the fieldn(r,t) of the refractive
index induced by the pressure field. In other words, the we#dield E, induces
polarization scaling apE;, and the field it emits is

Ea(r) ~ Pa(r) = x®E1(r)Ex(1)E5(r), (6.330)
wherew, = w1 + w2 —ws. The relation betweeB, andP,4 in the Born approxima-
tion is given by Egs. (6.260), (6.264). One can see from .88t if the product
E1E, has a weak dependence onthe OPC éect takes placeks ~ E; = Es.

In particular, this is the case for a plane monochromatiedstey-wave pump, for
which wy, = w; andk, = —k;. Note that in usual, static holography, since the
nonlinearity is inertial, it is necessary that = w3 andw; = wy."

Note that OPC can be also obtained via three-wave intergctio

Pa(r) = x@E1(r)E4(r). (6.331)

However, in this case, only a part of the signal fi&glis reversed, whose fre-
guency and angular spectrum is within the phase matching hekil < 1,

Ak = ki — k3 — ky4, which leads to a loss of fine spatial and temporal details
of the signal. In addition, the phase-conjugated flejdpropagates ‘from left to
right’, similarly to the signal field, and an additional nariis required for reflect-
ing it back. A huge advantage of four-wave interaction isghssibility to obtain
phase matching automatically using standing plane waves.

Let us estimate thefigciency|R| of OPC via degenerate)( = w) interaction
using one-dimensional (@raction-free) approximation in the undepleted-pump
regime. To this end, let us use Eqgs. (6.286) for backwardanot®n, with an
obvious replacement of frequency subscripts. From (6.287 > 0, we find the
ratio of the incident and reflected amplitudes in mod&sandk,

IRl = |E4(=Kk)/E3(K)| = tanyl, (6.332)
where, according to (6.278), with the replacemgit— y®E, andE; = E,,

2nw 3278
v = Ew(g)ElEﬂ = mL\((S)Hl. (6.333)

Let y® = 10 cmPlerg,] = 1 cm, g = 1y, n = 15, thenyl = 1 at
I1 ~ 1 GWcn?.

UIn the case of a bulk holograrkl(> 1), both a static or a dynamic one, the phase matching conditi
(Fig. 6.24(c)) leads to the equality of all four frequencies
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It is important that atyl = n/2, the conversion cdicient turns to infinity,
and then the field&s, E4 are emitted spontaneously. Thus, a standing wave in a
cubic medium has instability with respect to the paramegeneration of back-
ward waves, — in addition to the instability of traveling vegvwith respect to
self-focusing, self-modulation, and stimulated scatigriNote that ayl = 1 self-
focusing, according to (6.236), will be not significant at

a? < Po/l = Al/4, (6.334)

i.e., in the case where the pump has consideraltfeadtion divergence in the
layer. (In this case, the validity of the one-dimensiongbragimation is also
violated.)
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Chapter 7

Statistical Optics

In classical electrodynamics, the electric fiedd(r,t) = E(X), x = {r,t,a} is
assumed to be deterministic and, in principle, measuralite an accuracy as
good as required. (We speak only about the electric field &sthie field that
determines the observablfferts.)

In classical statistical optics, which includes the coheegheory as its impor-
tant part,E(x) for everyx is considered as a random variable, witheing a pa-
rameter. It is convenient to split space and time in numbeedld and to consider
X as a discrete parameter spanning a countable number obwalughus, a fluc-
tuating light field is described by a set of random varialiles E(x). (Another
way of ‘discretizing’ the field, the mode decomposition, esdribed in Sec. 7.3.)
All properties of the random set ensemblig} are given by a multi-dimensional
distribution function or a set oimomentgcorrelation matrice)E;E; - - - Eq) of
various ordersn (the angular brackets denote averaging over the distobdiinc-
tion.) In experiment, the averaging is of course not overresemble of fields but
over a certain spatial and temporal interVgd:. In addition, the field is filtered in
frequency and in the propagation direction.

From the viewpoint of statistical optics, the macroscopaxell’'s equations
are kinetic equations for the first momens), (H;). The intensity and spec-
trum of light are determined by the second momeigs;), while n—quantum
processes are given by moments of order 2

However, classical statistics is, strictly speaking, myileable to the optical
range, since the degeneracy factbh = [exp(iw/kTes) — 1]7%, which has the
meaning of the average number of photons in one mode, or dotrapbrightness
lpa in fic/ A3 = 13 units, is usually much less than unity. For instance, for the
green part of the sunlight spectruific¢ ~ 6000K 1 ~ 0.5u), (N) ~ 0.01, and
it reaches the unity only in the IR range, At= 3.5u. Among the few excep-
tions there are laser fields, for whiclffective (brightness) temperature exceeds
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the one of the sunlight by many orders of magnitude. In cotmeevith this, let
us mention one of the paradoxes in the history of physicsnigua optics started
its rapid development only during the laser age, when lighd$ with(N) > 1
appeared (although the general principles of quantumrelatamics were de-
veloped much earlier).

In quantum optics and electrodynamics, an ensemble of figlgaen by a
wavefunction¥ or a density operatgs. The angular brackets in the definition
of the correlation function denote now quantum averagirgy 8vor p; then, E;
are operators acting dff according to certain rules. It is important that, in the
general case, the fields at the neighbouring points of sfiaxeedo not commute,
which leads to the quantum fluctuations of the field, to the mwis(E; E;) being
nonzero even for the vacuum, to the spontaneous emissiotcivé@ atoms, and
to the noise of quantum amplifiers and generators.

The statistical theory of laser radiation studies the mostirtant parameters
of lasers, such as the maximal possible monochromaticitsofilators and the
sensitivity of amplifiers. Similarly to a consistent theafithermal light emission
by heated bodies, this theory should be based on quantutnoglgeamics and
non-equilibrium thermodynamics [Zubarev (1971); Klimovith (1982)]. A spe-
cial difficulty in the quantum-statistical analysis of a laser is thatnonlinearity
plays a principle role, as it determines, due to the satmadtect, the stationary
amplitude of oscillations (the limiting cycle of a classieato-oscillator).

The most important achievement in the nonlinear quantunoryheof
lasers [Loudon (2000); Klimontovich (1980); Lax (1968); e&chi (1974);
Klauder (1968)] is the conclusion that in the cavity of a tagegerating well above
threshold, the field is ia coherent statea concept introduced into quantum optics
by Glauber [Glauber (1965)]. There is a close analogy betveefeld in a coher-
ent state with a large amplitude and a classical harmonittatsm and, since the
saturation &ect manifests itself only in the case of high amplitudesnibainear
regime of a laser is rather accurately described by the stassical theory. Non-
linear theories predict all statistical characteristitaeer radiation: the intensity,
the spectral width, the coherence radius, and the higherentsm

Even more crude, but still useful is the approximation coesad in the linear
theory of noise in quantum amplifiers and oscillators (Set), Avhich ignores
the saturation féect and is therefore valid only below the oscillation thidh
The most important results of this theory dhe Kirchhgf law, giving the noise
intensity of an amplifier in terms of its amplification gieent, and the Townes
formula, relating the ‘natural’ bandwidth of an oscillattw its power According
to the linear theory, the radiation has Gaussian statjsiitg therefore these two
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parameters, the intensity and the spectral width, fullcdbe the statistics of the
field.

This chapter is devoted to the foundations of quantum opfidse consid-
eration starts with the linear theory of noise in quantum lfieps, which does
not require the quantization of the field (Sec. 7.1). In Se2, Basic notions of
classical statistical optics are considered. The nexi®e¢Sec. 7.3) describes
the initial stage of the field quantization, i.e., writingetMaxwell equations in
the canonical form, which allows the quantization to be garmied in an easy way
(Sec. 7.4). Section 7.5 considers the basic classes ofuastates of the field,
and Sec. 7.6 describes the statistics of photons and pkotoais for these states.
Finally, in Sec. 7.7 we once again return to the question ati@i probability
of a transition due to a noise field (Sec. 2.4), but this timecaesider it in the
framework of the quantum theory.

7.1 The Kirchhoff law for quantum amplifiers

The intensity of the noise radiation of a laser or a maseraijpeyin a linear sta-
tionary regime can be calculated without using quantumteldgnamics, from
the general considerations based on certain rules of noifikrgum thermody-
namics like the Nyquist formula (or the fluctuation-dissipa theorem, FDT)
and the Kirchhd law for the thermal radiation.

7.1.1 The Kirchhgff law for a single mode

Let an ideal waveguide be filled by homogeneous matter of ézatpreT, ther-
modynamical or fective. Consider the electromagnetic energy carried hygesi
waveguided field type (for instanddg; in a rectangular waveguide) in the station-
ary case. Let the waveguide be connected with a matchedesancca matched
load, so that the backward wave is independent of the foramaedFig. 7.1).

We will be calculating the power spectral density(w,2) = AP/AT, i.e.,
the energy of incoherent radiation with the frequenacy: 27f > 0 transferred
through a cross-sectiarin 1 s within the frequency bandwidth 1 Hz. It is easy to
show that iiw = hf units,P;(w, 2) corresponds to the mean number of photons
N(w, 2) per one longitudinal mode of the waveguide,

u hfu hfu

Pi =6 =Ny =——giN=hfN (7.1)

Here,u = dw/dk is the group velocityk is the propagation constarit; is the
length of some part of the waveguide, which is much greatar the wavelength
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Fig. 7.1 Waveguide Kirchh® law. The noise of the waveguide is determined by the conpetit
between the absorptiam and the spontaneous emissips ag/N, where N = Ny/(N1 — Np) is the
Planck function and\; are the level populations. As a result, the noise can be sspdein terms of
the transfer caicientG = e %? and the temperaturE.

A = 2r/k but much less than the distance at whi{{z) changes noticeably
is the spectral energy density of the macroscopic field withiN; = &¢/hf is
the number of photons withib per 1 Hz, which is equal tdl times the spectral
density of the longitudinal modeg = LdA%/dw = L/u. The inverse valuay/L,
is equal to the interval between the eigenfrequencies oh#ighboring modes
(for the notion of a mode in more detail, see Sec. 7.3).

Let us start from the linear kinetic equation féfw, 2) of the form

dN/dz= —aN + j. (7.2)

Here,a(w) is the absorption or amplification ciheient due to stimulated transi-
tions andj(w) > 0 is a distributed source of noise due to spontaneous emissio
This equation provides a phenomenological descriptiorhefstationary inter-
action of matter with a single transverse mode of the field,nezessarily in a
waveguidé It is useful to compare this equation with one-dimensioalaions
(6.171) for the ‘slow amplitudes’ and with Einstein’s rétats (2.99) for non-
stationary interactions. Apparently,~ B(N; — N) andj ~ ANy, whereA, B are
the Einstein cofficients andN; are the populations of a pair of levels separated by
an intervaliw.

The solution to (7.2) has the form

N = NoG + (j/a)(1 - G), G(w,?2) = exp[-a(w)Z], (7.3)

whereN; is the signal at the input of the amplifier a@ds thetransfer cogicient
of the waveguide. Here, the second term, which is indepemdéme input signal,
is the noise of the waveguide.

aSuch equations are calléthnsfer equationgfor photons, neutrons, etc.), they imply that a space
coordinatez, defined up to an accuracy el /2, can be attributed to a photon. In the general case, a
function N(k, r, t) is used, which has the meaninglotal spectral brightnesi 7ic/A2 units.
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Let us express the ratifya in terms of the temperature of the matter. Let
az> 1, then, according to (7.3N = ja. On the other hand, in a 8iciently long
waveguide with damping, equilibrium radiation should berfed, with the mean
number of photons per mode given by the Planck funchbrHence,

jla =N = [exp(iw/kT) - 1]t
= (1/2)[cothficw/2T) — 1] = NP /(N9 - ND). (7.4)

This conclusion is rigorous only for a completely equilibri system where the
populationsN; and the photon numbét obey the Boltzmann and Planck distri-
butions, respectively.

However, it is reasonable to assume that (7.4) is approeiymatlid even
in the absence of equilibrium radiation, for instancegat<s 1 andNy = 0.
Then, the parametdrrelates only to the matter, whose temperature is maintained
constant and uniform, despite the radiation cooling (‘iregsilibrium’). For
this, it is necessary that the degrees of freedom that erdighgorb radiation at
frequencyw interact with the thermostat much stronger than with thel figh this
approximation, Eq. (7.3) &llp = 0 describes the spatial spreading of equilibrium
Planck’s field (with a single propagation direction) in a wguide of a layer with
the lengthz, temperaturd and absorption cdicienta(w),

N=AN, A=1-G. (7.5)

Here, A is the absorptivity of the waveguide or the layer (in the gehease, with
an account for reflections at the input and output). It can basuared, according
to (7.3), using an external signat = 1 — dN/dN.

Equation (7.5) is the Kirchit®law relating the thermal radiation of a heated
body to its thermodynamic paramefieand kinetic parametefl. It can be easily
derived in the form (7.5) without using the kinetic equatibandau (1964)]. Note
that this law is used in the construction of photometry rexfiee sources for light
intensity, although, in principle, it is only applicablethin the approximations of
strong coupling with the thermostat, linear optics, andngetnic optics. For its
generalizations, see Ref. [Klyshko (1980)].

7.1.2 The Kirchhgf law for a negative temperature

The phenomenological relation of spontaneous and stiedilefects with the
level populationsj/a = N2/(N1 — Ny), is confirmed by calculations in the frame-

bet the timeT; characterize the interaction of the particles with thertiestat; then the condition for
the Kirchhdf law (and, generally, FDT-type equations) to be applicablean-equilibrium problems
is, apparently of the form/T'; > A(2N + 1), compare with (2.115).



242 Physical Foundations of Quantum Electronics

Z

7 A
9 44/.
14
LA

/
hzz -7 I w;:v?/?o;

Fig. 7.2 The Planck function determining the mean numberhatgns with the frequency > 0
in a single mode of an equilibrium field, as well as the numbezxaited atomsN, divided by the
population dfferenceN; — N,. Here,T is the dfective temperature; in the case of a field; 0.

work of the two-level model. Itis then generalized to thesoafsa non-equilibrium
matter with non-Boltzmanhj. In this approximation, it is also convenientto keep
relation (7.4) and the Kirchhblaw in the form (7.5), but to interprét as the ef-
fective (spin) temperaturdc¢, which is determined by the actual population ratio,
expfiw/«Tes) = N1/Np (Sec. 3.2).

From the definition of the functiow(T), it follows that in the case of pop-
ulation inversion, wherex and T are negative NV is also negative (Fig. 7.2),
N(=T) = —[N(T) + 1]; therefore, the Kirchhid law can be written as

N=[N(-T)+1](G-1),
or (see Fig. 7.3)

N = N{1 - exp[-ao(w)z/(2N + 1)]}, (7.6)
sincea = (N1 — Np) = aptanh@iw/2«T), whereay is the absorption cdicient
atT = +0.

In particular, in the case of full inversiobl; = 0, T = -0, N = -1, so that

the spectral noise density of a single-mode ideal quantupiifien in hf units is
simply equal to the transfer cfiegient with the unity subtracted,

N=G-1 (7.7)
The -1 appears here because the noise source is a distributedHemee, the

noise relative to the inpul/G, is 1- G™1, which atG > 1 yields one photon per
mode, i.e., one photon in a unity frequency band per unit.time
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Fig. 7.3 The spectral density of the thermal radiation editty a single-mode attenuatdr ¢ 0) or
amplifier (T < 0) as a function of its lengthand temperatur&, according to the Kirchh®law. g is
the absorption cdicient atT = +0.

If an incoherent signal with the power spectral denkify\, is present at the
input, one should ad@N, to (7.7). The result can be represented in the form

N +1=G(Ng+ 1) (7.8)

This equation provides the following algorithm for takinga account the spon-
taneous emission (or, in other words, the quantum fluctngtiof an ideal ampli-
fier: a unity is added to the number of photons at the inputrgbelt is multiplied
by the classical amplification céiient, and then the unity is subtracted, which
yields the output number of photons. Thtiw signal-to-noise ratio at the output
of an ideal quantum amplifier with large amplification is ebteaN,, the number
of signal photons per mode

The unities in (7.8) can be interpreted as a result of zeintgld fluc-
tuations; however, this interpretation should be treat&tl waution [Ginzburg
(1983)]. Quantum fluctuations determine the limiting stvisy and accuracy of
guantum amplifiers, as well as any measurement deviced; A 0, ‘thermal’
fluctuations, scaling a&/(-T), are added to the quantum ones (see (7.6)).

In the microwave range, one often uses the concept ofithee temperature
of an amplifier T,. By definition, T, is the brightness temperature of the noise
radiation at the output relative to the input,

N(Tn) = N/G = N(Ter) (€% - 1), (7.9)

whereN is the Planck function for the chosen frequencyThis equation relates
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Tn with the dfective (spin) temperature of mattdg;. The notion ofT,, is conve-
nient only in the classical temperature range, where: «T /hiw and (7.9) takes
the form

Tn= (6"~ 1)Ter,
which in the two limiting cases of small absorption and laag®plification yields
Th=azTer, lad <1, (7.10)
Tn=-Ter, az< -1 (7.11)

Thus, the spin temperature determines not only the ratioeopbpulations but
also the limiting noise temperature of a quantum amplifier.

In paramagnetic amplifier§lq¢| is on the order of the lattice temperature of
the active crystal, which is cooled down to helium tempeegdor the sake of
lowering Ty, reducing spin-lattice relaxation, and increasing theldgmium pop-
ulation diference. As a result, the noise temperature of such ampisiars low
as several Kelvins. At the same time, in ordinary electramiplifiers, T, ~ 10°
K, due to the high temperature of the cathode; in parameidoowave amplifiers
based on semiconductor diodég,~ 100 K.

In practice,T, in paramagnetic amplifiers is determined by the thermal-emis
sion not from the active medium, according to (7.11), butftbe elements of the
input channel (the aerial, waveguides, and ferrite deyjcascording to (7.10).
Indeed, an input waveguide with the walls at room tempeeatund the losses of
only 1% makes a noticeable contributidn,~ 3 K.

It is not difficult to generalize the Kirchiblaw (7.5) to the case where the
waveguide has several sources of homogeneous lineaniossid noisej;, with
different éfective temperatures; (i = 1,2,...). Assuming agairj; = o Nj, we
obtain the kinetic equation

dN/dz= Za/i(N— N), (7.12)

which only difers from (7.2) by the replacemenits— Y, a; andaN — Y, aiN;.
As a result, (7.5) takes the form

N=(1-e") ) (ai/a)N, (7.13)

with @ = } ;. Thus,the contribution of each element to the total thermal emis-
sion scales as its contributian /« to the total absorption cggcient

Consider now the shape of the thermal emission spectrumeinitinity of
a single narrow resonance at various optical densitig$ig. 2.4). Whena|zis
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small, the emission spectrum repeats the absorption spedi(w) = a(w)zNV
(the dependenck/(w) is too slow to be taken into account here.) At large positive
az, the line gets flattened and broadened, tending eventuatyet equilibrium
spectrumN(w), and at large negativez the linewidth is reduced (similarly to the
amplification band, see (2.68)) and tends to zero/asG.

7.1.3 Noise of a multimode amplifier

We have so far discussed a single transverse mode of a waeednithe general
case, where the radiation is delivered to the detector &saléndependent modes,
(7.5) or (7.12) should be summed over all essential modéise Wiaveguide cross-
sectionA is much greater thaa?, summation can be replaced by integration.

In free space, the number of transverse modes (i.e., modeshei same fre-
guencywg = cK) observed by a pointlike detector in the near-field zoneescas
the spatial aperture of the emittédr= ab, and the angular aperture of the detector,
AQ = AJAY,

Ag, = (@AM (ALY = AAQ/ A2, (7.14)

whered = 27k, we consider only a single polarization type and assumetltieat
observation direction is orthogonalfo According to (7.14)the angular interval
between the neighboring transverse modes is on the ordeedjfraction angle
A/a.

Multiplying (7.5) by the photon energfw, the detector band f = Aw/2r,
and the number of transverse modes , we find the power of multimode thermal
radiation with a single polarization type,

AP = (lwAwAQA/21A?)N (1 - G), (7.15)

where we assume that the transferficentG = e %* and the fective tempera-
tureT are the same for the modes having close directions.

The ratio AP/AwAQA is called thespectral brightnessthis is the main
energy characteristic of incoherent multi-mode radiatidn the general case,
lwa = 1(K, r) depends on the frequency, direction, and the observation;gow-
ever, in the absence of scattering, emission, and absorpétween the points
r andr + a, the spectral brightness at these points is the same pobthae the
argumenk is parallel toa,

I(k,r+a)=1(k,r), k]| a (7.16)

Certainly, it makes sense to speak about the displacemehthe observation
point only ata > A.
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In photometry, there are special terms for the integralsvaf.t. various vari-
ables:the brightness, the radiance, and the luminous intefisity

B(k, r)sfomdwkl(k, r), E(r)sfdQB(R, r) cosdy,
P(2) = f dxdyHr). (7.17)

Here,k = k/k, 9 is the angle betweek and thez axis. The spectral and volume
energy density is

polw, 1) = Ti)) | dai(kn), (7.18)

whereu is the group velocityw = wyg. In the case of the thermal radiation from
a heated bodyi (k, r) cosdy is called theemittanceof a body (at pointr of its
surface).

According to (7.15), the Kirchh® law for the multimode emission from a
matter layer with the thicknessand the &ective temperaturd@ has the form
(compare with (6.225), (6.307))

loa(K) = 15GN(K), (7.19)
where
1Y3¢ = fiw /2722, N(K) = N(1 - e*®?), (7.20)

where we take into account only a single polarization typiee Valuel /%" corre-
sponds to the spectral brightness of radiation having desptgpton in each mode
(i.e., 1" is the doubled ‘brightness of zero-point vacuum fluctuatiprit is a
natural unit for the measurementlgf,: the mean number of photons per mode
N is equal to the spectral brightness Jff units.

7.1.4 Equilibrium and spontaneous radiation; superfluorescence

Consider three typical cases:

1. Ataz > 1, (7.19) leads td,o = IYN, which, in the case of isotropic
radiation, corresponds to the blackbody radiation andyralieg to (7.18), ati =
c¢/n, to the Planck formula,

20, = (87n/Q)luq = (81R/ )N (7.21)

the factor 2 accounts here for two polarization types.

¢Sometimes the attribute ‘energy’ is added, indicating they are measured in physical units and not
in light-engineering ones. The latter take into accountsiectral characteristic of the human eye and
are based on theandelaunit.
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2. If lajlz< 1, then (7.19) leads to
luo = ENaz = 1"8N, ol / cosiy, (7.22)

where the optical density of the layez for the modek was assumed to lag(N; —
No)I/ cosdk. Let us write the transition cross-sectiorin terms of the transition
dipole elementy according to (2.52) and find, using (7.17), the total power of
spontaneous emission. Let 1, then

P = do f dxdycosiy f dwl,o = (47r2/hc)|2’j)°N2Vwo dQ(do - ex)?,

A A 0 A (723)
whereV = Al is the matter volume. The integral here 'vsd@/& so thatP/V N,
coincides with the expression found above for the power@tfiontaneous emis-
sion per one molecule4d2/3c® (see (5.32)).

3. Now, letez <« -1, thenN = GN, and

P = Np(Nz — Np) 12 GoAe AQe AW (7.24)

where we have introduced théfective apertureé\., AQg; and the frequency
bandwidthAwet, Which can be rigorously defined in terms of the correspond-
ing integrals, and the amplification déieient at the center of the lin€q. This
equation determines the power @afperfluorescengehe amplified spontaneous
emission. Assume, for a crude estimate, thatcoincides with the cross-section
A of the amplifier,Awet coincides with the amplification bandwidikw, and
AQet ~ A/I2, wherel is the length of the amplifier, then Bt = 0

P = 1'8GoA’AL/I2. (7.25)

At 1 = 05u, A1 = 10 nm,A = 1 cn?, | = 10 cm, andG = 10, we obtain
P =2-10°W.

For many transitions in gases, inversion can be obtaingdfonh short time,
7 < 107%s, even with the help of very powerful lasers. This is due eoetktremely
long lifetime of the lower level. Then, if the active areadémis larger than
cr ~ 30 cm, a mirror-based feedback is too slow to haveféece The radiation
of lasers using such ‘self-restricted transitions’ is,antf superfluorescence. An
important example is the nitrogen laser with the wavele3§® nm.

Certainly, at stficiently highGg the superfluorescence power (7.25) can be
large enough for saturation; then the problem becomesmeariand the Kirchh®
law is not valid any more.
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Fig. 7.4 Cavity quantum amplifier: (a) in the optical rangb) in the microwave range; (c) an
equivalent circuit.

7.1.5 Gain and bandwidth of a cavity amplifier

For increasing the gain at a given length of the active mediome can use a
positive feedback provided by a bulk cavity. With the helaofequivalent circuit,
let us find the gain cdicientG(w) and the transmission bardy of a reflective
cavity amplifier i.e., an amplifier with a single coupling waveguide or a king
semi-transparent mirror (Fig. 7.4). In the microwave ratige amplified reflected
wave is separated from the incident weak signal by meansrefaciprocal ferrite
devices (circulators).

Consider the spectral range in the vicinity of some eigepfemcywy of the
cavity. If the corresponding oscillation is non-degenegatdw is well separated
from other frequencies, then the field at an arbitrary poirnthe cavity depends
on the time similarly to the parameters of any other osaitlaystem with a single
degree of freedom, for instance, like the current inL&@contour. Then the elec-
tric field has the fornk = u(r)q(t), whereu(r) is a known function determined by
the shape of the cavity amt) obeys the equation of motion for a harmonic oscil-
lator. This allows the cavity response to be calculatedgidie equivalent circuit
shown in Fig. 7.4(c). Damping (and, according to the Nyqtlisbrem, noise
as well) are introduced into the circuit by three resistantbe external load
(which, by definition, coincides with the impedance of a sraission line corre-
sponding to the coupling waveguide), the resistdRgecaling as the losses in the
cavity walls, and the negative resistariRgscaling as the emission of the active
medium. The width of the chosen spectral line is assumed touzh greater than
Aw, and therefor®, is a real parameter.

In the case of a transmission line, the reflectionfioient, i.e., the ratio of
the complex amplitudes for the backward and forward wawesdetermined by
the ratio of the load (cavity) resistan@g to the impedance of the ling. For
instance, the reflection cfigsient for the current is

R-Z R-R-iX
R+Z R+R+iX’

K(w) = (7.26)
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where

2
RCER0+Ra,xsi—szwL(@—l)zzL(wo—w). (7.27)
wC w?

The relation betweeR, and the other parameters depends on the coupling between
the cavity and the waveguide.

Let us pass from the equivalent paramefrto dimensionless variables that
have a direct physical meaning: the Q-fact@s= wolL/R; or the damping con-
stantsd; = 1/Q;. The valueQ; is called the (magnetiguality factor of the active
medium After dividing both the numerator and the denominator 0267 bywolL,
we find

d| —dC—ZiX

K@) = 47 a. 72

(7.28)

wherex = (wg — w)/wp. The gain (or attenuation) of the reflected wave power is

d — do)? + 4x?
G(w) = [K(w)? = W. (7.29)

It is important that the coupling between the waveguide dmddavity can
be varied, for instance, by changing the orientation of #exlback loop or the
transmission of the mirror. Then, the normalized loshes R /wolL due to the
external circuit will also vary from zero (no feedback, aatbt reflecting mirror)
to infinity (maximal feedback, no mirror). In the case of aom@nce ¢ = wp) and
positive losses in the cavityl{ > 0), variation of the feedback strength fromt
to +1 leads to the variation of the amplitude reflectionf@ic&nt for the current
Ko. The dependence passes through zero at the point of loadimgtd, = d.
(Fig. 7.5).

If d. = do + dy < O, then by decreasing the feedback strengths one mé&kes
and Gy vary from 1 toco. Thus,a cavity quantum amplifier with a giciently
high-quality cavity (@ > —Q,) enables a weak signal to be amplified as much as
possible due to the regeneration

However, an increase Ky is accompanied by a decrease in another parameter,
important for many applications, namely, the amplificati@mdwidthAw. As we
will show below, atkg > 1 the product of the amplitude gain and the bandwidth
does not depend on the feedback,

KoAw = 2wo/|Qal. (7.30)

The producKpAw is called the regeneration parameter. It characterizegiuthke
ity of the active medium for paramagnetic amplifiers.
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Fig. 7.5 The gain cd&cient Kg of a cavity amplifier as a function of the cavity quality factyd.
By reducing the feedbactij, at a fixedd; < 0 one can mak&y as high as desired. Herd; is the
cavity damping constant with an account for the negativerimtion from the active mediuny is
the damping of the load, i.e., the relative losses due toxteral circuit.

According to (7.29),

_ ~dcd
whered = d, + d; = 1/Q is the total damping constant aflis the quality factor
of the loaded cavity. It follows that & > 1 the frequency characteristic of the
amplifier has a Lorentzian shape and #replification bandwidth is determined
by the quality factor of the loaded cavity with an accountdtbtosses

Ao g L 11
wo Q Q Qa

For achievingG > 1, a nearly full compensation of all losses is necessary,
—da = dg + d, in which caseKq ~ 2|d|/d, so that the product of the gain and
the bandwidth is a constar{pAw = 2wo|d|. Usually, the quality of the cavity,
Qo = 10% is much greater than the quality of the active medii@) < 10°,
hence, in practice.; = Qa, which yields (7.30).

Let us writeQ, in terms of the parameters of the matter by using the general
definition of the quality factor as the ratio of the energyrstbin an oscillation
contour,

G-1 (7.31)

(7.32)

E= | dPr(e€E2+H2)/8r= | d®rev?(r)/sn, (7.33)
Ve Ve
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to the energy of losses during the timgl,

Plwo= | d®re” (wo)u?(r)/8n. (7.34)
Ve
Here, we have used the equaliti&s = Emag 9%(t) = 1/2, and Eq. (4.15) for the
losses per unit volume. Hence,

Q;t = ne’ /€ = na/k, (7.35)

wheren = V/V. € 1 is the factor showing the proportion of the cavity filled
by the active medium and determined by the ratio of the imlegn (7.33) and
(7.34);e = 1+ 4ny, « is the linear amplification factor for plane waves with the
wavevectok; in the case of a magnetic transitiat1, should be understood as the
magnetic permeability. At electron paramagnetic resoeane: —5- 102 cm !
(Sec. 2.3), which yields, with = 3cm ande’ = n = 1, Q; = —40. LetKp = 100,
then it follows from (7.30) thaA f = 5 MHz. This bandwidth is not ghcient for
many applications (communications, radar, radio astronopfor this reason, one
uses several coupled cavities and slowing-down systems.

7.1.6 The Kirchhgff law for a cavity amplifier. The Townes equation

In order to take into account the noise of the active mediwnus add to the
equivalent circuit (Fig. 7.4) a source of current with thegpal density given by
the Nyquist equation (see Ref. [Akhmanov (1981)]),

i2 = 4TRy/|1Z%, (7.36)

whereZ = R + R, + iX andT is the dfective (spin) temperature of the active
medium. (We neglect the noise related@g.) For taking into account quan-
tum noise T should be replaced biwwN. The load resistance will produce the
spectral power densitf; = iR, which is, infiw units,

N = 4ANdqd /(02 + 4x%) = N(1 - G). (7.37)

Here, we used (7.31) in the approximatiQg > |Qa|. Thus, we have again,
according to the Kirchh@ law, expressed the noise in terms of thkeetive tem-
perature and the gain. The width of the noise spectidsp at half maximum,
according to (7.37), coincides with the amplification baidtivAw (see (7.32)),
and hence, it tends to zerodt — —d,. Similarly to the case of a traveling-wave
amplifier, atG > 1 andfiw < «T the noise temperature has the same absolute
value as the spin one.
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Let us find the full noise power &k ~ d; ~ —d, andAw < wy,

p— [ atnon = 9N [T de Rl (7.38)
'}ﬁ @ __&Qgﬁ A2/d+ (wo— w2  AwQR '

This leads to th&ownes equatiogiving the spectral width of the emission of a
cavity amplifier in terms of the total radiation power,

hwg N2

AW = ———.
YT PQZ(N; - Ny

(7.39)

Letd=1u, P =1mW=10*ergs,N; = 0,a ~ 1/1Q, = —0.01 cnT?, then
Af = hc®a®/PA ~ 1HZ (7.40)

Certainly, this calculation ofAw is valid only for the linear regime of the
amplifier below its oscillation threshold) < —Q,). However, one can expect
that even above the threshold, (7.39) provides a correerarfimagnitude for
the bandwidth of a quantum oscillator (in the limiting cadeeve the ‘technical’
noise, like mirror vibration, is absent). More accurateakdtions, taking into ac-
count the nonlinearity due to the saturation [Loudon (2QRiGinontovich (1980);
Lax (1968); Arecchi (1974); Klauder (1968)], which restsithe noise amplitude,
lead to a factor 12 appearing in (7.39) for the regime high above the threshold
This can be explained by the suppression of amplitude fltiots which give
the same contribution to the spectral width as the phasesfitions. One should
keep in mind that the random slow phase variation (phasg dfia harmonic sig-
nal leads to the fluctuations of its frequency and to a finitéthvof its spectrum.
The diterence between the oscillation shapes of a quantum amgtgeilator)
below threshold and above it is explained in what followg(F.7).

Itis only the absence of amplitude fluctuations that qualitdy distinguishes
the radiation of a single-mode laser from a narrow-band Boif the case of a
multi-mode laser with independent modes, thifedince vanishes as well.

7.2 Basic concepts of the statistical optics

Above, we have found, in the form of the Kirchffitaw, the spectral brightness
of the radiation (k) as a function of the frequency and the observation diractio
in the far-field zone. Although the intensity is an importaharacteristic of the
radiation, clearly, it does not provide the complete stiats information about
the electromagnetic field.



Statistical Optics 253

In the present section, we will consider, using severalcigipéxperimental
schemes, the observed quantities and the correspondimgrdent theoretical
tools, the correlation functior@!”,, .

Because the most part of observable opti¢Bdas do not require the quanti-
zation of the field for their interpretation, we will restriwur consideration to the
more simple classical theory, and only in some cases thétsesfthe quantum
theory (Secs. 7.4-7.7) will be given without the derivation

7.2.1 Analytical signal

In statistical optics, it is convenient to use, instead & thal fieldE,(r,t), a
complex functionE{” (r, t), which is calledthe analytical signabr the positive-
frequency fieldlt is unambiguously defined as

EM(t) = f dwe ' E(w), (7.41)
0
whereE(w) is the Fourier transform of the real field,

E(w) = f ) dtd“' E(t)/2r = E* (~w). (7.42)

By definition,the spectrum of the analytical signaf*|t) contains only pos-
itive frequenciesd > 0) while the spectrum of the complex conjugate (negative-
frequency) field E) = E®*, only negative frequencie§rom the definition, the
relation follows (Fig. 7.6)

E(t) = ED(t) + EO(t) = 2REM (). (7.43)
pImE r ImE

N £ (ﬂ(t) fG)ﬁ)

Y| R | #et
\ | Lzt k/ﬁm}

(@ (b)

Fig. 7.6 The analytical sign&(*)(t) and the real fieldE(t) in the case of a monochromatic spectrum
(a) and in the general case (b).
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In the case of a quasi-monochromatic field with a narrow spegtit is con-
venient to introduce a ‘slow’ complex amplitu@g(t), defined as

E(t) = ReEg(t)e !, (7.44)

wherew is some mean frequency. The absolute vétigét)| is calledthe envelope
and the argument is called the slowly varying phase.Thetspawmf Eq(t) is lo-
cated within the intervatAw/2 around the zero frequency. Apparently, one can
write that

EM(t) = (1/2)Eq(t)e . (7.45)

The readings of optical detectors, such as PMTs, bolomgtexgographic
films, etc. depend on the square (or higher powers) of the dieddaged over a
certain timeT due to the non-instantaneous response of the detectoralSed
do not take into account the finite spatial dimensions of #tector.) Assume that
Aw < 1/T < w, i.e., the envelope is much broader than the detector respon
time, which, in its turn, includes a large number of lightipds. Then the reading
of the detector will scale as the ‘instantaneous interfsity’

I(t) = E2()/2 ~ [EM () = |Eo(t)?/4. (7.46)

In Sec. 7.7, this statement will be justified more rigoroudBy using here the
analytical signal, we automatically eliminate the termailéating with the double
optical frequency.

7.2.2 Random intensity

In a random field, the instantaneous intensity at pointr varies: it fluctuates
both in time and in spaceOften, one measures only the simplest characteristics
of the field: the mean (ensemble-averaged or time-averagesity at a single
point (E® = ESV(r, 1)),

(1) = (ECVEM), (7.47)
and the mean square of the intensity,
(12) = (EC2ZEM2y, (7.48)
or the variance,
(AI1%) = ((1 = (1)%) = 1% = (Y2 (7.49)

dSometimes we will omit the scaling factor, which in the casa plane wave is/2.
€Strictly speaking, one should consider the random tehgoe E(({) E;(;)' wherea, = x,y,zor, in
the case of directed radiatiom, 8 = X, y.
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In principle, one can measure the parameters (7.47)—-(Byi®&)serving the mean
value and the variance of the readings of a broadband siugletum detector (see
below). The readings of an n-quantum detector directlydytbe n-th moment,
(m =G,

We will assume the field to be stationary, so that the mearesalu (7.47)—
(7.49) do not depend on the time, and ergodic. The angulakets may then
denote the averaging either over time or over an ensembtle §ome distribution
functionP(1)).

After passing to the quantum theory (Sec. 7E)) is replaced by the operator
E®, which is written in terms of the photon annihilation operag, while EC
is replaced by the operat& ), which is written in terms of the photon creation
operatorsa:. Complex conjugationis then replaced by Hermitian confiegaand
the angular brackets denote quantum averaging with thedielpwvave function
or a density matrix. Most quantum states of the field alsonafiweraging using
thequasiprobability distributions B) (Sec. 7.5), which is similar to the classical
averaging. In quantum averaging, the order of the operatatters; the ordering
presented in (7.47), (7.48) is called thermal one. Of course, in the classical
theory the normal mome&®™ = (EC"EMM) can be replaced byE™)2").

In the vast majority of cases, the optical field is emitted ngindependent
sources with random amplitudes and phases, such as, fanagstin the case
of the thermal radiation from heated matter, a quantum dimp(iSec. 7.1), or a
multimode laser with independent modes. Then, the digtabwf the complex
amplitudeEq = Ej + iEj is a normal (Gaussian) one, with independgfitand
Eg ., while the intensity distribution is exponential (Fig. ¥.7

Pr(1) = (1)t exp1 /(1)). (7.50)

Thus, the mean intensityl) fully determines the statistics of a stationary
chaotic field (at a single point and for a single polarizatitpe) Note that the
most probable intensity value is zef®(0) > P(l). Using (7.50), one can easily
find the moments and the variance of the intensity,

G = nih™, (A% = (1), (7.51)

where the subscrig indicates that the field is chaotic (thermal).
Another typical case is the radiation of a single-mode lag#r a stabilized
amplitude (Fig. 7.7). Then,

P(1) = 6(1 = lg), G™ =10, Al = 0. (7.52)

Equations (7.50)—(7.52) do not take into account the disoess of possible
energy values, i.e., they ignore the photon structure ofitie; therefore, they
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Fig. 7.7 Two basic types of the field states. The figure shoagfiproximate shape of the field vari-
ation in time from the classical viewpoint (a) and the cqumsling distribution function®(|Ey|): the
classical ones (b) and the quantum ones (c). Top: the quarsdchromatic field of thermal radiation,
of a quantum amplifier or oscillator below the threshold (btbte amplitude and the phase fluctuate);
bottom: the field of an above-threshold quantum oscillattoe &mplitude fluctuations are suppressed
due to the saturationfiect).

are only valid for classical fields for which the degeneramtdr(N) (see below)
is much greater than the unity. The general case will be densd in Sec. 7.6.
So far, let us only note that in the quantum theory, the comltis distribution
(7.50) is replaced by the ‘discrete exponential’ one, wlillé?2) is replaced by
the Poissonian distribution (Fig. 7.7(c)).

7.2.3 Correlation functions

The distributions or intensity moments considered aboweige no information
about the correlations between the fields at neighboringtpai space and time,

or between the dierent Cartesian components of the field. Complete informa-
tion is given by the set of multi-dimensional distributiomistensorcorrelation
functions(CF). The latter, according to Glauber [Glauber (19654, @efined as

G(n)

0= (ED . EQED . EY). (7.53)

(Here we use the notation that is also valid in the quanturcrig®n.) Each
subscript denotes a set of arguments, for instace, E,, (r1, t1). For simplicity,
we only consider CFs with even numbers of fields, since incggtie moments
of the form(E;E»E3) are usually equal to zerand, in addition, are éficult to
measure.

fExceptions are fields at the output of nonlinear media exdifeexternal radiation [Perina (1972);
Akhmanov (1971)] or heating [Klyshko (1980)].
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The CFs of a stationary field are invariant to the choice ofitfitgal time
moment, i.e., to the replacement of time arguments

th, .. ton >t + ALt + AL, (7.54)

whereAt is arbitrary. It is convenient to chooa¢ = —t;.

As aresultG™ depends on2-1 time arguments, while its Fourier transform,
the spectral CE(", depends onr2-1 frequencies. For instance, the first-order CF
has the fornG(r4, r», 7); it is called themutual coherence functicof the field at
pointsra, rp, while its Fourier transfornG(ry, r2, w), is called thenutual spectral
density At ry = ry, the first-order CR3(r, t), is called theautocorrelation func-
tion, while G(r, w) is thespectral density Traditional polarization characteristics
of directed radiation, such as degree of polarization oStio&es parameters, are
also determined by the first-order CF with an account fordeiredices [Perina
(1972)]. With all arguments coinciding, CFs become intgngioments (we omit
the tensor indices),

G, = (ED(ry, tg) 2 = (1"(ry)). (7.55)

Among the various statistical models of the field, a spe@& belongs to
the Gaussian model, in which all CFs are expressed in terntiseofirst-order
CF [Glauber (1965)],

1 1
Gy =, G0 -G, (7.56)

where})” denotes the sum of afi! permutations of the primed indices. For in-
stance,

6%,= oo} +olal) (7.5)
All information about a Gaussian (chaotic, thermal) fielddgntained in the
first-order correlation function Gs(ry,ro,7) or the mutual spectral density
Gaﬁ(rl, r2, w).

For a rough characterization of a quasi-monochromaticticenon-polarized
Gaussian field, it is dficient to fix at each point the intensi€, (r) and the co-

herence parametetson ~ 1/Aw, pcon fOr both polarization types = 1,2. The
meaning of these parameters will be explained in the nexiosec

7.2.4 Temporal coherence

Consider the fieldE’(t) at the output of a Michelson interferometer (Fig. 7.8). It
consists of two terms fering by a certain time delay,=t’ —t,

E'(t) = [E() + E()]/2,



258 Physical Foundations of Quantum Electronics

EI/ ‘5 E
B e ——— e Y,
= —
£ C1/2

Fig. 7.8 The Michelson interferometer and the measurentfehedongitudinal coherence length.
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Fig. 7.9 Typical dependence of the mean intensity at theudutpa Michelson interferometeg]’),
on the position of the moving mirrog(z) is the normalized autocorrelation function of the fieldre t
input.

where E(t) is the field of the plane wave at the input of the interferanet
According to (7.46), the intensity at the outputis

I"(t) = [1(t) + 1 (") + 2REEC ED(1)]/4.
Hence, in the case of stationary radiation,
(") =) + ReG(7)] /2 = (N1 + Rey()]/2, (7.58)
where

G(1) = (ED(0)EM (7)) = (Ej(0)Eq(r))e ! /4 (7.59)
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is the auto-correlation function of the field at the outpuhieh is related, ac-
cording to the Wiener-Khinchine theorem, to the spectraisitg G(w) via the
Fourier-transformationg(r) = G(r)/{l) is the normalized CF, and) = G(0).
Note that in optics, CFs are usually normalized to the mearegaand not to the
standard deviationasl .

According to (7.58)the dependence of the intensity at the output of a Michel-
son interferometer on the delay time determines the redlgfdahe first-order CF
One can show that the functi@(), similarly to E®)(z), is analytic in the lower
semi-plane. Therefore, its real and imaginary parts a@eelvia the Hilbert
transformation, so that, in principle, from the interfezempattern one can restore
the radiation spectrum. This method forms the basis foFtheier spectroscopy
Besides, the interference of the field under study with aresfee coherent wave
is the source of information iholographic interferometry

A typical interference pattern in the case of a single spétitre is shown in
Fig. 7.9. The relative amplitude of the oscillations in theput intensity is called
theinterference visibilityor thedegree of coherencéccording to (7.58), (7.59),
the visibility coincides withg(7)|.

If we define thecoherence timeq, by the conditiong(rcon)| = 1/2, then
it follows from the properties of the Fourier transformatihatrcon ~ 27/Aw.
Hence, thdongitudinal coherence lengthrg is on the order of the inverse spec-
tral width in inverse centimeters

For instance, for lines with natural broadening in the V&sitange,Aw ~
2. 10s™, Ieon ~ 10° cm. This can be viewed as the length of the wave train
emitted by an atom during spontaneous emission. In the dasesiogle-mode
laser, estimation with the Townes equation (7.40) yieldshecence length on the
order of a light second.

7.2.5 Spatial coherence

The correlation of fields at two pointg andr, can be measured with the help of
the Young interferometer, which is a screen with two pine@lkaced orthogonally
to the direction towards the source (Fig. 7.10).

The interference pattern at an arbitrary point behind tmeesg similarly to
(7.58), is determined by the first-order CF of the generahfor

Gu2(1) = G(r1, 2,7) = (ED(ry, ) EM (12, t + 7)), (7.61)
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Fig. 7.10 Young's interferometer and the measurement dfrtmsverse coherence radius.

while the pattern on the symmetry axis is determined3a(0). Thecoherence
radiuspcon is determined by the distance between the pinholes at whiekisi-
bility is 50% reduced.

An ideal laser with a single transverse mode emits plane loersgal waves,
for which pcon = . In the case of a multi-mode laser, or a chaotic (thermaitlig
sourcepcon in the far-field zone® > az//T) is determined by the transverse size
of the source and the distanz&om the source (Fig. 7.10),

Peoh ~ AZja = 204 = A/Da (7.62)

wheredy is the difraction angle and, is the angular size of the sourc®ue
to diffraction, the transverse coherence radius increases in these of light
propagation. The shape of the phase front in this case increases and tends t
the spherical one. The van Cittert-Zernicke theorem [Akhava(1981); Klauder
(1968); Perina (1972)], which describes thieet quantitatively, states th#ie
dependence of the first-order CF én — ry), is given by the Fourier transform
of the brightness distribution over the source cross-secti

Relation (7.62) enabled Michelson to measure, with the loélpis stellar
interferometer, the angular diameters of several starsytiichd, > 107 rad and
Peoh S 10 m. At smaller?,, the coherence radius is determined by the atmospheric
distortions of the wave front, which hinder the operatiothafinterferometer. The
Hanbury Brown—Twiss interferometer (see below) is freenaf tirawback.

7.2.6 Coherence volume and the degeneracy factor

The coherence volume is defined as the product of the corﬂsmaapgoh, and
the coherence lengthy,,. For the far-field zone of a chaotic source, it follows
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from (7.60) and (7.62) that
Veoh = A4/ AAAQ,, (7.63)

whereAd = 42/l.onandAQ, = (a/2)2 is the solid angle at which the observer sees
the source.

An important dimensionless statistical parameter of ttiBatéon is thede-
generacy factgrwhich is the mean energy of the field (for a single polarati
mode), infiw units, contained in the coherence volume. In other wordsd
generacy factor is the number of photons crossing the coberarea during the
coherence time,

5 = (E)con/ M. (7.64)
Let us write(E)con in terms of the radiation spectral brightness,
(E)eoh = 1w AWAQaTeon02o = 274 o (7.65)
Hence,
§ = ABly/hc = (N). (7.66)

Thus,the degeneracy factor is equal to the spectral brightne&‘{zt;,iﬁ3 units.

In other words, the mean photon number per coherence volwineides with
the mean number of photons per single mgéi®, In an equilibrium fieldg =
N(w) = [exp(iw/«T) — 117X In a non-equilibrium field, the temperature should
be interpreted as the brightness temperaflyg,

The degeneracy factér= (N) is not only a convenient measure of the spectral
brightness; it also defines the applicability of classidatistics: ats < 1 (i.e.,
hw < «T) the photon structure of the field becomes important.

Let us divide the far-field space of a quasi-monochromatice®into cells
with volumesVqn. By definition, the radiation at any two points of the same
cell is mutually coherent. Hence, the field within one cet @ approximately
considered as single-mode, i.e., assumed to be a sphecalaromatic wave
with a definite amplitud¢Ey| and phase. Passing from one cell to another, we
will observe random fluctuations ¢&y| andy. Thus, the spatial distribution of a
stationary field forms the ensemble of harmonic-oscillatates.

Fields belonging to dierent coherence volumes are, by definition, uncorre-
lated and, generally, independent. Hence, by virtue of émeral limit theorem of

9Editors’ note: It may seem that the degeneracy faétcan be considered as a measure of nonclas-
sicality. However, this is not true, and this is not statedhim book. At < 1, theshot noisewhich

is related to the photon structure of light, prevails overess intensity fluctuations and therefore be-
comes important. At the same time, there are nonclassissof light withs > 1 (squeezed states,
squeezed vacuum).
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Table 7.1 Basic distribution types for the photon numberthedenergy.

Quantum theory | Classical theory
State Number of modes
1 >1 1 >1

Coherent (laser) | Poissonian | Poissonian| §(&E - &p) Gaussian

Chaotic (thermal)| Geometric | Poissonian| Boltzmann's | Gaussian

K-photon (mixed) | Pk =(N)/K, | Poissonian
Po=1-Pg

the probability theory, the energy distribution in a voluméhat is much greater
thanV¢on will be Gaussian, with the variance inversely proportidnahe number
of cellsV/Vcon In the quantum case, whefes 1, the Gaussian distribution for a
multi-mode field is replaced by the Poissonian one (Sec. 7.6)

Table 7.1 shows some types of distributions for the energh@mnumber of
photons. The states that are call&dphoton’ ones have no classical analogues
and manifest photon anti-bunching and bunching (Sec 7.6).

7.2.7 Statistics of photocounts and the Mandel formula

The intensity distribution for the field at one ‘point’ can beeasured by means
of a PMT operating in thg@hoton-counting mode Then the mean intensity of
light (I) should be sfiiciently low, so that the photocurrent pulses at the PMT
output do not overlap (Fig. 7.11). By repeatedly counting nlumber of pulses
m coming within a certain fixed time intervdl, one can find the distribution
P(m) of the number of primary photoelectrons released from thetgrathode
by the incident light. (Of course, the total duration of theasurement should
considerably exceed the coherence timg.)

Let us find the relation between the statistics of photocoantd the field
statistics. Suppose thait< tcop andA < Acon, then one can neglect the intensity
variation during the sampling tim€& and over the photocathode arda Under
this condition, theP(m) distribution will be determined by thB(l) distribution
regardless of the detection volurdgs; = cT A Here,r¢on andAgon = p(z:oh are the
typical scales of the field fluctuations, and the above-gimequalities enable us
to consider the detector as ‘pointlike’ and ‘single-mode,, measuring a single
degree of freedom of the field. (This also implies that theeckerr measures a
single polarization type.)

PEditors’ note: nowadays, much more convenient for singletpn counting are avalanche photodi-
odes (APDs) (see also Sec. 1.3).
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Assume first that the intensityis constant, i.e., it does not vary from sample
to sample. It is important that even in this case, the numbphotoelectrons in
a single sample is, according to the quantum mechanicspnananpredictable.
The very process of energy measurement necessarily irdes@additional Poisso-
nian stochasticity into the detector readings. (We do nosier the non-realistic
case of a detector with a 100% quantufficiency and a pure energy state of the
field with a fixed number of photons.) Using the semi-clad¢®ac. 2.1) or purely
guantum (Sec. 7.7) perturbation theory, we can only finddh&ation probabil-
ity WiAt ~ | for a single atom of the photocathode during a small timeriate
At.

In the case of a dticiently smallAt, the probability for any on thBl indepen-
dent atoms of the photocathode to be ionizel imes as large, and also scales
asl,

W =NW, = (a/T)I. (7.67)
Herea is the scaling factor, which can be represented as
a = NVgey/ 2ntiw, (7.68)

whereVyet = cTAis the dfective detection volume; = oINg = oN/A is the
guantum vyield of a thin photocathode with the thicknkss is the ionization
cross-section, andp = N/Al is the concentration of atoms. We assume tha
constant within the spectral width of the field.

By definition, all time moments withifl are equivalent, since the wave inci-
dent on the photocathode is a ‘pure’ sine one, and an electorappear within
any time intervalAt with the same probabilitwl At/T. This statistical model, as
one can easily show (see, for instance, Ref. [Rytov (197&4)s to the Poisso-
nian distribution with the parametet,

P(m) = C(al)™/m!, C=e™. (7.69)

Intensity fluctuations from sample to sample can be takem agtcount by
averaging (7.69) with th&(l) distribution,

P(m) = fom dIP(mMP®) = (P(mil)). (7.70)

As a result, we obtain theemi-classical Mandel formulfar the photocount dis-
tribution, i.e., for the probability of discovering pulses at the PMT output,

P(m) = ((al)Me)/ml. (7.71)
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Fig. 7.11 Relation between the statistics of the field andpthetocount statistics from the semi-
classical viewpointE is the field,i is the PMT output current; (a) in the case of a field with a camist
amplitudeEy, the number of photoelectroms emerging during a certain time intervelhas a Poisso-
nian distribution; (b) the amplitude fluctuations of thedialT <« 7¢on cause additional fluctuations in
the number of the photoelectrons (the bunchifiga); (c) a multi-modeT > 7o) detector averages
over the field fluctuations, and the bunchirteet is not observed.

The quantum-theoretical approach, mainly developed bylt#a(Sec. 7.6),
yields an expression of the similar form, with the onlfféience that the probabil-
ity P(l) is replaced by thguasiprobability a function that takes negative values
or has singularities (like delta-function derivatives) $ome states of the field.

By expanding (7.71) in powers of the detector quanttiiiciency, one can
expresP(m) in terms of higher-order intensity momen&Y = (1¥), with k > m,

P(m) = i(—l)k‘makG(k)/m!(k - m)! (7.72)

k=m
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For a stficiently small detection volumex(~ TA — 0), as a rule, one can
take into account only the first term in this expansion, neglect the exponentin
(7.71). TherP(m) can be represented as

P(m) = T_mw(m) = M
m! ml
whereW™ is themth derivative ofP(m) in T, W, is the ionization probability per
unit time for a single atom\ is the total number of atoms in the detector.

The Mandel formula (7.71) describes the ensemble of randonpkes difer-
ing by ashift in time(due to the assumed stationarity and ergodicity of the field)
One can easily see that in the case of radiation that is honeoges and ‘spatially
ergodic’ alongx, y and propagates approximately alanghe same formula de-
scribes an ensemble of samplefeting by aspatial shift in thgx, y) plane This,
in principle, allows one to study the statistics of nonistadry fields in real time,
with the help of a large number of photon counters placedfégreént points of
the beam cross-section over an area much greatefan

Further, it is clear from the derivation of formula (7.7 13thit is also valid in
the case of an arbitrary coherence voluxfyg; = cT A provided thatl is under-
stood as the intensity averaged oV,

I(r,t) = %fd)(dydt’l(x’,y,z’), (7.74)

where the integration limitx+ a/2, y+ b/2, t + T/2, are determined by the sizes
and the time constant of the detector. In this case, theildision P(l) should

be replaced b)P(B. In the limiting case ofA > Acon or/andT > Teon (Multi-
mode detection), the fluctuationslofre completely eliminated due to averaging:
P(l) = 6(I_— (1)), so that we once again obtain the Poissonian distribuR{om|))
from (7.71), but now it is independent of the field statisti®y observing the
dependence d?(m) on A, T in the intermediate case, one can, in principle, obtain
information about the coherence time and area of the field.

(WM, (7.73)

7.2.8 Photon bunching

Relation (7.71) between the distributions also determiheselations between
the moments of the photocount numbers,

(my = > mp(m), (7.75)
m=0
and the intensity moments,

PN
(l >_f0 dil kP(1). (7.76)
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Using the generating functions method (Sec. 7.6), one cgitydimd the general
rule,

(mm=1)...(m=k+ 1)) = (). (7.77)

The linear combination of moments in the left-hand side i&edahe kth-order
factorial momentFrom this, in particular, it follows thaim) = a(l) and

(AMP) = (m) + (Al 2), (7.78)
(A% =12 = (1), (7.79)

and similarly for(An?). Thus,fluctuations of the photoelectron number contain,
in addition to the usual Poissonian (shot-noise) part, atdbation from the fluc-
tuations of the light intensityOnly in the case of a single-mode stabilized laser
(Al = 0) this contribution is absent. In other cases, fluctuatiminthe photo-
electron number, according to (7.78), should at first sigleeed the shot noise,
since from the definition (7.79) and from the conditiB(l) > O it follows that
(A1%) > 0.

The existence of these ‘excess’ fluctuations has been ctiéephotocount
bunching gect since in a Poissonian sequence of pulses, by definitionaphe
pearance of a single pulse has fkeet on the appearance of the next one, and the
inequality(Am?) > (m) means that the pulses have a tendency to bunch. A similar
effect for the photon number&\N?) > (N), is calledphoton bunchingr photon
correlation A close dfect has been discovered by Hanbury Brown and Twiss in
1956 in the chaotic light of a mercury lamp.

In chaotic light, it follows from (7.51) and (7.78) that

(AmPyr = (M(L + (M), (7.80)

i.e., the excess part of the variancéns times as large as the Poissonian one, so
thatthe photon bunchingfgect is more pronounced in classical fieldsrom the
classical viewpoint, strong fluctuations of the amplitiigs of a wave formed by
many independent sources with random phases are quiteusbvidore surpris-
ing for the classical theory is thenti-bunching of photonand, correspondingly,
photocounts, so thatn? < (m, in contradiction with (7.78) and the initial Man-
del formula (7.71) ifP(l > 0) is assumed. (As we have already mentioned, the
last condition is violated in quantum theory.)

7.2.9 Intensity correlation

The photocount number distribution (7.71) does not produect information
about the temporal or spatial radiation spectrum, as it oafyains ‘single-point’
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CFs with all arguments coinciding (see (7.72)). A compl&i@racterization of an
nth-order CF requires the measurement of the fieldhgidnts of space-time. In
the case of the first-order CF, this can be done with the heiptefferometers, as
it was schematically described above.

Consider now the measurement of the intensity correlatioatfon, namely,
the second-order CF of the following particular form:

GA(x4, o, X1, %2) = GO() = ¢ 1(x)1 (%) :), (7.81)

wherex; = {ri,ti}, 7 = t, — t1, and ther, — r; = p vector is orthogonal to the
propagation direction. The colons remind that in the quartalculation, alE®)
operators should be put on the rightif) operators before the averaging.

In the case of a Gaussian field, with the help of (7.57) we find

GA(r) = (111 + g3, (7.82)

whereg(l)(r) is the normalized first-order CF. Thus, a chaotic field, by mea-
suring the intensity correlation one also gains informatiabout the amplitude
correlations This relation betwee®® and G® forms the basis for thepti-
cal mixing spectroscopjCummins (1974)], also callespectroscopy of intensity
fluctuationsor themethod of photon correlations

In the general cas&@ is not related t&Y, and the second-order coherence
parameters may fler fromp{}, 75 For instance, in two-photon light), >

The time dependence &@ () atp = 0 is measured by means of a single
detector with a delay line and an electronic correlationutd One can also use
the spectral analysis of photocurrent fluctuations. Thedikperiment of this type
has been performed by Forrester, Gudmundsen and Johnsanyaasin 1955,
before the advent of lasefdviodern technique enables one to achieve the spectral
resolution much less than 1 Hz.

In order to study the spatial second-order coheredé¥p), one has to use
two detectors with a variable distance between théxacording to (7.82), when
p is varied fromeo to 0, G®@ is increased, in an ideal case, by a factor of two
(Fig. 7.12). This &ect has been discovered by Hanbury Brown and Twiss in 1956
and used for the measurement of the angular diameters ef[stanbury Brown

iEditors’ note: This is the case in one of the possible definitiof second-order coherence parame-
ters, see the last subsection.

IEditors’ note: see Fig. 7.14(a).

kThe possibility of similar experiments on the ‘heterodygiiof light had been discussed even earlier
by Gorelik [Gorelik (1948)].

'Editors’ note: see Fig. 7.14(b).
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Fig. 7.12 Correlation and anti-correlation of light intéies: i1, i are the photocurrents of the de-
tectors;p is the displacement of one of the detectors from the symoyebsition; 1, thermal radiation;
2, laser radiation; 3, two-photon radiation.

(1971)] whose intensities are correlated within distarmeethe order of hundreds
of meters.

The Hanbury Brown—Twiss experiment on the measureme@t(p) for the
light from a mercury lamp is shown in Fig. 7.13. Splitting bktbeam with the
help of a semi-transparent mirror allows one to measuredhelation at points
that are arbitrarily close to each other. Let the PMTs ojdrathe photon count-
ing regime, then the correlation between the photocounthentwo channels,
(mumy), is arax(l1l2). Hence, with the help of (7.82), we find

(mymp) = (M (M) (L + I8D(0)). (7.83)

This result is only valid in the case of single-mode detes;tashere the time
constant of the detectdr is much less thamg., and the detector apertureis
much less thaigon. If, for instance,T > 7¢on, then a small factor on the order of
Tcon/ T @ppears by the second term of (7.83), which reduces theadubefect.

It
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Fig. 7.13 Hanbury Brown—Twiss experiment on the obsermatidlight intensity correlation.
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The intensity correlationféect is closely connected with the intensity fluctua-
tions of light at the input of Hanbury Brown—Twiss interfereter. Indeed, lely
andl, be random intensities in the arms of the interferometerdndndAl, be
their fluctuationsAl, = I, — (In)). The output signali;i,) scales as

(l1l2) = (l1X12) + (Al1Al). (7.84)

The second term here characterizes the mutual correlatiotensities. From the
conditionly + I> = |, we find the relation

(A1%) = ((Al1 + Alp)?) = (A1) + (AIZ) + 2(Al1AlR). (7.85)
Thus, thecorrelation is determined by the varianges
(Al1AL) = (1/2)(A12%) — (Al2) —(AI2). (7.86)

Assume first that the incident light has a constant inten@agiation of a
single-mode laser), thekl, = 0 and, according to (7.86), the correlation is equal
to zero. Then(lilz) = (I1){I2). Now, suppose that usual light from a thermal or
luminescent source be incident on the interferometer;,thecording to (7.51),
(Al?y = (1)2. Suppose that similar relations hold for the secondary Isesmvell,
(AI2) = (I»2. Hence, with the help of (7.86) we find (Fig. 7.12) that

(AliAl2) = (1/2)(1)” = (1% = (12)?) = (11)I2).
02 = (11l /(l1)(12) = 2.

This reasoning can be easily reproduced in the photon |layggioa changing
I to photon numberdl,. In this case, the shot noise (Poissonian noise) is added
to the variance, so that

(7.87)

(AN?)jas = (N), (AN?)7 = (N) + (NY2. (7.88)

In fact, the result is the samat thermal light, there is photon correlation caused
by photon bunchingr, in other words, by the presence of excess noise in additio
to shot noise.

Further, consider field with a fixed humbirof photons. Thes&l photons
will be randomly split by the semi-transparent mirror betwehe two channels
with the probabilitiesp andg = 1 — p. This picture corresponds to the well-
known Bernoulli's probability model [Rytov (1976)], whiahives the binomial
distribution for the probability oN; photons going to channel 1,

P(Ny) = Cphgh ™. (7.89)
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The moments of this distribution have the form

(Np) = pN, (N2) = p?N? + pgN,

(N2) = AN, (N3) = ¢°N? + pgN (799
Hence, we find
(NiN2) = (1/2)(N? = (N§) = (N)) = paN(N - 1). (7.91)
It is noteworthy that now the correlation is negative,
(AN1ANz) = (N1N2) — (N1)(N2) = —pgN
Then (see Fig. 7.12),
¥ =1-1N. (7.92)

Thus,photon anti-bunching in the initial beam leads to photonttarorrelation’
in the two output beams

Consider, finally, the general case of a field with an arbjtedatistics. Then,
(7.91) should be additionally averaged over the photonfremdistributionP(N)
in the incident field. As a result,

(NiN2) = pa: N23), g2 = (- N2 3 /(N)2 = @), (7.93)

where(: N2 ;) = (N(N - 1)) is thenormalized(factorial) moment and the an-
gular brackets denote averaging over the distribuN). Thus, therelative
correlation of photon numbers at two field point%)gL 1, is determined by the
normalized factorial moment of the fiel’y The same result follows from the
rigorous quantum-theory approach (see (7.331)).

7.2.10 Second-order coherence (added by the Editors)

Unlike the first-order coherence parameters, which are egfimambiguously as

the widths of the first-order correlation function (CF) im#& and space, and can

be measured as shown in Figs. 7.8—7.10, second-order omlegime and radius
allow different definitions. This is because the second-ordeG&X¥ty, ry, to, ro)

has two time arguments and two space arguments, and theseal ways to
define its width. In the stationary case, the second-ordeelzdion function de-
pends only on the tlierence of its time arguments; the same relates to the space
arguments in the spatially homogeneous c@®(ty, r1, ts, 1) = GA(x, p). Then,

the second-order coherence parameters can be defined asdtieswf G2(r, p)

in T andp. In the non-stationary (spatially inhomogeneous) casey ttan be
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Fig. 7.14 Measurement of the temporal (a) and spatial (b}hsidf the second-order correlation
function.

introduced by analogy, as the widths 0P, r1, tp, r2) inty —t, or ry — r, (‘con-
ditional’ width of the CF).These parameters can be measured using two simple
setups shown in Fig. 7.14. Intensities at two space-timatpa@re measured by
two detectors, usually photon-counting ones, and the @énces of their counts
are registered with the help of a coincidence (correlatawrcuit. Time delayr

is usually introduced electronically, by delaying the autpulses of one of the
detectors (Fig. 7.14(aY¥).Space delay is introduced by displacing one of the de-
tectors (Fig. 7.14(b)). Such setups (see, for instancenfdb(2004)]) allow one

to measure the second-order correlation function and, riticpéar, its widths in
space and time.

However, there is another way to introduce second-ordeeresite param-
eters. By analogy with the experimental schemes of meastiia first-order
coherence time and radius (Figs. 7.8—7.10), which are baséuke first-order in-
terference, one can define the second-order coherence gtararmsing various
experimental schemes for observing second-order in@réer (intensity interfer-
ence). In particular, intensity interference can be olegising Michelson’s or
Young’s interferometers (Fig. 7.15). One measures theca@mce counting rate
between two detectors, which register the intensitiesefitid at two points (us-
ing a beamsplitter if necessary, as in Fig. 7.15(a)). Therfetence phase can be
varied by moving the mirror in the Michelson interferomefy or by displacing
one of the slits in the Young interferometer (b). The intexfeee pattern will be
formed by the dependence of the coincidence counting ratteegphase, provided
that the first-order interference is absertte second-order coherence time can be
introduced then as the delay in the Michelson interferomegterhich the visibility
of the intensity interference decays by a factor of two. I&ntyj the second-order
coherence radius can be defined as the distance betweeritthimshe Young's

MIn the case of SPDC, the correlation time is usually less thamesolution of the detectors; in such
cases, other technigues should be used.
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Fig. 7.15 Intensity interference observed using (a) Misbek interferometer and (b) Young’s in-
terferometer. Coincidences of photocounts are observetivm detectors registering photon pairs
emitted by sources separated in time (a) or space (b).

experiment at which the visibility of intensity interfecendecays by a factor of
two.

The principal dfference between this definition and the previous one is that
they relate the second-order coherence parameters to disioa emitters (or
different contributions into radiation) and detectors, resyelg. Note that it is
the second definition that is meant at the beginning of tliB@e (paragraph after
Eq. (7.82)), leading to the conclusion that for two-photight, o < o2 In
order to distinguish between these twéelient definitions, it is convenient to use
the terms ¢correlation timgcorrelation radius for the widths ofG®(ty, ry, to, r2)
inT =t —ty;andp = |r1 — ry|, respectively (Figs. 7.14(a) and 7.14(b)), and the
terms toherence timeoherence radiddor the widths of the intensity interfer-
ence patterns (Figs. 7.15(a) and 7.15(b)).

As an example, consider the two alternative definitions & ¢hse of two-
photon light generated via SPDC. Let us discuss only tenhpotzerence, and
suppose that the pump is a sequence of relatively long Reluriged pulses
of durationT,. The correlation time will then be determined by the length o
the nonlinear cryst@land be close to the first-order coherence time, which is
given by the inverse spectral widtkw of SPDC radiation [Goodman (1985)]:
Tcorr ~ r&}h = 2r/Aw. At the same time, according to the second definition,
Tg))h can be measured experimentally by observing two-photanfarence with
SPDC radiation fed into a Michelson interferometer (Fidl5{a)). Numerous
experiments on two-photon interference [Mandel (20043vslthat the visibil-
ity will be high as long as the time delay does not exceed thmgaoherence
time, which in the case considered here coincides WjthThus, for this example

@ - @ _ @
Tén® To and‘rCoh Teorr < T gy

NStrictly speaking, it is the minimal value of the correlatiome that is determined by the crystal
length; the correlation time can then be increased due tpribygagation of light through a dispersive
medium.
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The same reasoning will be valid for spatial coherence pat\anrspg;ﬁ).

7.3 Hamiltonian form of Maxwell’s equations

In this section, we will show that Maxwell’'s equations foettnansverse part of the
field, i.e., for the radiation field, can be reduced to a systémdependent equa-
tions for harmonic oscillators. These equations can bdyeapresented in the
form of classical Hamilton’s equations. This enables ones® the quantization
algorithm which defines the commutator of two operators imgeof Poisson’s

brackets for the corresponding classical values.

7.3.1 Maxwell's equations in the kt representation

Suppose that we are interested in the evolution of a radi&igtd within a certain
bounded space domain during a limited time intefivalmagine that all space is
divided in identical cubic cells with the linear site> cT,°, so that one of the
cells contains all the field that is measured during the fime

! £ | ﬁ £ l
;‘ [N ‘n \ | /] n l /n\ “ | |n‘ ' Z
AT 11117 AR R Ve i
9 - S >
L L L

Fig. 7.16 To the definition of the quantization lengthE(Z) is the real field andE(2) is the fictitious
field that is periodic in space.

Consider the dependence of some field component on one obthidinates,
for instance Ex(2), at a fixed time moment (Fig. 7.16). Let us define a spatially
periodic functionEx(z) by the conditionEx(z + nL) = E,(2), where-L/2 < z <
L/2,n = 0,+1,.... Within the observation interval-(/2, L/2), the fictitious
periodic fieldE coincides with the real on&; therefore E andE are physically
equivalent, and in future we will omit the tilde.

°This condition is assumed to be well satisfied, so that thd fiethe boundaries stays equal to zero
during all observation time.
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Fig. 7.17 The sino{ function in the cases of a discrete (points) and continu@ashed line)
arguments.

A field that is periodic irz can be represented as a sunspétial harmonics
(we omit thex index),

E(2 = i Emexplikm2), (7.4

kKm=2rm/L, m=0,+1,+2,...

For finding the amplitude of theith harmonic, we act on (7.94) from the left by
the operator
L/2

dzexp(ikn2),
-L/2

then
L/2
dzexp(ikn2E(2) = Z EnLsincfr(m—n)] = E,L. (7.95)
-L/2 ™
The last inequality follows from the fact that the functidiram integer value,

o dzexp[-i(km — kn)Z = Lsincfr(m—n)] = Lémn, (7.96)
/2

differs from zero only at a single poimt= n, where itis equal to unity (Fig. 7.17).
SinceE(2) is real, E_p, = Ej,.

At the final stages of the calculation, thaantization length Ican be usually
assumed to be infinite; in this case, the Fourier series b&bmes an integral,

E@@) = (L/27) f ) dkE(K)e*?, (7.97)
where

E(k) =L f wdzE(z)e’”‘Z. (7.98)
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In the derivation of (7.98), the following representatidriiee delta function was
used:

f ) dzd? = lim LsinckL/2) = 275(K). (7.99)

The factorL/2r is added to (7.97) for making the discrete Fourier companent
coincide al. — oo with the continuous one&,, —» E(ky,). Comparing (7.94) and
(7.97), we find the rule for passing from summation to intégra

Do (L/27r)fdk... (7.100)

m
The valuel/2r is called the density of modes (in the one-dimensional case
with a single polarization state). The inverse value/L2 is equal to the distance
between the neighboring modesm + 1 on thek axis.
By repeating this procedure for other components of the EgJ&, and for the
dependencies oxyy, we obtain a three-dimensional Fourier series for the field,

E(r,t) = Z Elmn(t)eZni(lx+my+nz)/L = Z Ek(t)ék'r, (7.101)

Imn k
Ex(t) = L3 f BrE(r, e’ " = E7 (1), (7.102)
|_3
k= 2r/L){l,mn}, Lmn=0,+1,+2 ... (7.103)

A similar series expansion can be written for the magnetid.fiBue to rep-
resenting an arbitrary field (7.101) as a sum of plane wavesnanuous spatial
distributionE,(r) is determined by a countable set of complex numBggs The
‘allowed’ vectorsk form a grating in thek space, which is divided in cells of
volume (2r/L)® due to the periodicity condition. Note that because of thetian
E_x = Ej, not all number&, are independent. The sum (7.101) can be written
in the following equivalent forms:

E= ReZ Exé*" = Re(E + iF) = ReZ(Ek +iF)EXT, (7.104)
k k

whereF(r, t) is an arbitrary real field anBy = F*, are its harmonics.

Expansion in spatial harmonics (7.101) enables the figld to be unam-
biguously separated in two components: the transverge) and the longitudinal
E,(r) (the argument is omitted),

E(N=) ) eEue",

k v=12

| (7.105)
E)(r) = ) exaEia€"",
K
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where the unity orthogonal vectoes, form a right-hand triple, anéys = k =
k/k. It follows from (7.105) that

divE = )" ik Exé*" = divE),
k

_ (7.106)
rotE = Zikx E€X" = rotE,
k

and similar relations are valid for the magnetic field. By stithting (7.106) into
Maxwell's equations (4.9)—(4.12) and assumiéng 1, we obtain

crotH, — E, = 4rj,, crotE, + H, =0, (7.107)
—Ej = 4rj;, Hy=0, (7.108)
divE; = 4np, divH, = 0. (7.109)

Hence, the longitudinal part of an alternating magnetidfiglequal to zero,
while the longitudinal part of the electric field is determihby the positions of the
charges at the same time moment, without retardation. Tdrerghe radiation
field in the vacuumwhich is of interest for opticds transverse, and it is deter-
mined by the dynamical equations (7.107) through the trarsgvpart of given
(external) currentg, = j. (Hereafter, we omit the. index.)

By substituting (7.105) into (7.107), we find the equatiohsotion for the
spatial harmonics,

Ex —ick x He = 47y, (7.110)
Hy +ick x Ex = 0, (7.111)

which, after excludindH, yields
Ex + w2Ex = —47j,. (7.112)

Here,wyx = ckand
(=L fL Il j(r.0e ™ = 40, (7.113)

with TIx being the projection tensor (see (4.20)). Thdsxwell's equations for
the transverse field in thie, t representation are reduced to a system on inhomo-
geneous equations for independent harmonic oscillafdote that the harmonics
Ex andE_i are always excited simultaneously sirfeg= E* .
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In the case of a free-space field, i.e., in the absence of misrie L3, the
spatial harmonics, according to (7.110)—(7.112), ogeillgithout damping with
the eigenfrequencies of the modeag

Ek(t) free = (Exoe 'Kt + Ej,€1)/2,

N . ) (7.114)
Hi(t) free = k X (Exoe™“ ! — Ejo€“")/2.

Here,Eyo is the initial amplitude of the plane wave propagating in thedirec-
tion, while E| is the independent amplitude of the backward wave, propapat
in the —k direction. The conditiorEx = E, yields Ej, = E*,,. Hence, by
summing over alk, we obtain

E(r,Ofree = Rez Ekoé(k'r_wkt),
k

) , (7.115)
H(r,O1ree = Re ) | k x Egd® 0.
k

Thus, the state of a free-space field at an arbitrary potris given by a set of
complex vectorg .

In the presence of external currentsli®y induced field is added to the free
one. The induced field is determined by thgt) functions according to the in-
homogeneous equation (7.112). For instance, a monochimplahe wave of
the current will ‘excite’ the induced field with its frequene, which may difer
from wi (compare (4.23)). In the general cagg(t) is certainly not a harmonic
function. The induced field can be also searched in the fortri6), by assuming
Eko to be slow functions of the coordinates in the case of statipourrents (see
Chapter 6 where we used the notatieg = Efj)(z)) or functions of the time in
the case of non-stationary problems, typical for the quarrhechanics.

Sometimes, it is convenient to describe the field using treovepotential
A(r,1). In the case of th€oulomb gaugehe fieldA is assumed to be transverse,
and it is unambiguously defined by the relations

rotA = H, divA = 0. (7.116)
By substituting roA for H into (7.107), we obtain rot€ + A) = 0, i.e.,
E=-A/c (7.117)

Hence, we find the relations between the spatial harmoniesreél field and its
potential,

Ax = —CEy, Ax =ik x Hi/K%, Hyi =ik x Ay (7.118)
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7.3.2 Canonical field variables

Equations (7.110)—(7.112) fddx and Ex resemble the Hamilton equations for
the canonical coordinates and momenta of a system of gtig) pi. The cur-
rents j, play the role of generalized forces. However, in experiment usu-
ally observes traveling waves in the far-field zone of therseuhaving a certain
propagation direction, for instance, alomdy; therefore, it is preferable that the
canonical variables with the inddxrelate only to the ‘forward’ wave.

The set of the four numbeks m n,v} = {k,v} = k defines a plane wave or
a mode(oscillation type) in free space. (In what follows, we willmerate the
modes by a single indek) In the presence of currents, the instantaneous state of
the field in two mode& andk = {—k, v} with the same linear polarizatioes, is
given by two complex scalars or four real ones,

Ex = Ex- 8 = B, +iE}, Hi=(kxey) Hc=H +iH,
Ex=Ex-6& = E,—iE/, Hi=(-kxey) -Hy=-H,+iH/. (7.119)

Instead of the magnetic field, one can use the vector poterdiecording to
(7.118) and (7.119),

Ac = A & = —iH/k = (HY —iH})/K,
A= (HY +iH))/K,
wherek denotes simultaneously the absolute value ofkhvector and the mode

index.

Let us form linear combinations,
Ok = (L3/47rw§)1/2(E|’(’ +HY),
(7.120)
Pk = —(L3/4n)1/2(E|’( +Hyp).

(the choice of the cdicients will be explained below, from (7.134).) With the
help of (7.119), we see that the variabtgspj for the backward mode are inde-
pendent ofy, px,

G~ B+ HE = B+ HG

Pk ~ —Eg— Hp = —E¢ + Hy.

It is convenient to join the real ‘coordinatgx and ‘momentumpy of a mode
in a single complex dimensionless variable,
a = (2hwi) (Wit + ipK) = (Ex + Hi)/2icy,

7.121
C = (2nhwe/L3)Y2, ( )
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The inverse transformations can be easily found as well,
Ex = ic(@ax — &) = (1/L%)"?[~px — P + iwk(ak — Gl 7.122)
Hic = ici(a + &%) = (1/L3) Y[~y + pc + ion(a + G- '

Note that in the case of a standing plane wayes a;, and therefore the variables
Ok, P« Scale as the magnetic and electric fields, respectively,

E(r.t) = —4(r/L3)Y2py(t) cosk - 1),

(7.123)
H(r,t) = —4(r/L3)Y 2wk (t) sin(k - r).
In the new variables, the plane-wave expansion takes the for
E(r,t) =i Z ca(t)eX" + c.c,
k
H(r,t) = ichRx a(t)e" + c.c, (7.124)
k

ANt =i Z(ck/k)ak(t)e‘k" +c.C,
k

where complex vectoray = Y, ex,ax, have been introduced.
After substituting (7.122) into (7.110)—(7.112), we fin@ thquations for the
new variables,

Gk = Pk — (4nL3/wi) 2, (7.125)
P = —wiok + (47L3)Y2j, (7.126)
A = —iway + (27 /6 k. (7.127)

The general solution to the last equation has the form

H t
ay(t) = ax(0)e " + ? f dt' =1 j(t). (7.128)
k JO

Expandingag(t) and jk(t) in Fourier frequency integrals, from (7.127) we im-
mediately find the induced part of the field in thew representation (compare
with (4.23)),

2 -1
a(w)ing = ————— (),
Wk — W — lyk
where we have added the dampipg> 0. Hence, it is clear that a4k <« wx, the
spectrumay(w) of the amplitudeay(t) mainly contains onlypositivefrequencies
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close to the eigenfrequenax. If we neglect the negative-frequency parggft),
i.e., assume that

a(t) ~ a() = fo ) dwe “a(w), (7.129)

then every term in the sum (7.124) describes a plane wavegating in therk
direction (in contrast to the sum (7.101)).
In a free-space field, this approximation, according to48)1is atj, = 0
valid rigorously,
a(t) free = a(0)e™, (7.130)

By comparing (7.114) and (7.122), we find the relatitg = 2ickax(0).
Hencethe positive-frequency part of the field is determineayft) functions
while the negative-frequency part, B(t) functions

EC(, 0 =i ) cadte*,
“ _ (7.131)
EO(r,t) = i Z ceas (e .
k

In the quantum theory, these functions become photon oreatid annihilation

operatorsay, — &, a, — &.

7.3.3 °Hamiltonian of the field and the matter

From Maxwell's equations, it follows (see, for instance2() that the instanta-
neous energy of the field is

&(t) = (1/8n) fL ] d3r(E? + H?) = Ho. (7.132)

Let us accept this expression as the Hamilton function ofréwm-field transverse
part. By substituting here the plane-wave expansion (j.46d taking into ac-
count the orthogonality condition (7.96), we obtain a diz@ajuadratic form,

Ho = (L%/8r) > (IEk? + IHi?). (7.133)
k
According to (7.114), aj = 0, Hp does not depend danWith the help of (7.124),

we find that

Ho= ) (P +wigD)/2 =1 wiad? (7.134)
k k
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One can easily verify that the Hamilton equations,
Ok = OH /0pk, Pk = —0H [0k, (7.135)

atH = Hy lead to the oscillator equations fqg, p«, ax following from (7.125—
7.127) atj = 0. This confirms that (7.132) was chosen correctly.

The joint Hamiltonian of the field and the system of chargediglas inside
the volumeL2 in the non-relativistic case (see Ref. [Landau (1973)]) is

H =Ho+ ) (P — e A/Cf/2m + H,

(7.136)
A= AR(D).1), Ho= ) ae/IRi - Ryl
i<j

whereH. is the energy of the Coulomb (longitudinal-field) interactibetween
the particles andR;, P; are the canonical variables of thk particle whose charge
and mass are, m.

Egs. (7.135) and (7.136) lead to the relation between theetid’ and canoni-
cal momenta of the particles,

mVi =P —eAi/c, (7.137)

whereV; = R, is thei-th particle velocity. Hence, the Hamiltonian (7.136) can b
represented in a simple form,

H=Ho+ Z mV?/2 + H,. (7.138)
i

According to (7.136), the Hamiltonian of the interactiomvaeen the particles and
the transverse field is

€
q,zzi](_%pi.Ai+mAz], (7.139)

In the case of particles with internal magnetic momgntone should add the
energy of the spin interactioru - H;.

Let us show that (7.135), (7.136) lead to the usual Newtogisadons with
the Lorentz force for the particles and to Maxwell’s equasiovith the external
currents (7.107) for the field. In order to obtain Newton’siaiipns, let us dfer-
entiate (7.137) in time. Taking into account that, accagdon(7.135), (7.136),

Pie = (&/€)Vis dA5/0R, (7.140)
we find that
> . a aAia aAW a
mRi, = Pi, — E( s aRwViﬁ) =B, + E[Vi X Hila- (7.141)
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Recall that the fields are taken at the point of the partiatation, therefore,
dA;/dt # 0A; /0t = —CE;.

The field equations can be found byffdrentiating the total Hamiltonian
(7.136) w.r.t. the canonical variablgs, g¢ of the field. Then the ‘forces’ act-
ing on the field from the particles are determined by the sg¢d¢erm in (7.138).
Let us first diferentiate it inA;, with the help of (7.137):

d mV?2 Y e d ([ &
- =m iﬁ_lﬁ =-=Vig = —(——Vi : Ai).

A, 2 0A c 0Ai, \ C

It follows that the Hamiltonian of the interaction betwebe transverse field and

non-relativistic spin-free particles can be represeriteiead of (7.139), as

, e 1 .
V==Y v A :—Efd3rJ-A, (7.143)
I

(7.142)

where j(r,t) is the external current density determined by the cootdsand
velocities of the particles,

.9 =) avit)sr - Riw). (7.144)

and the prime reminds that, according to (7.142), the Hami#in (7.143) pro-
vides an exact description only for the perturbation of tle&dfby the particles
and not vice versa.

Hamilton’s equations (7.135) immediately lead to the eiguatof motion for
an arbitrary function of canonical coordinatéég, p«, t),

df/dt=af/at + {f, H)}, (7.145)

of 69 g 6f)
f,ol = — - 7.146
tho Z(3QK6P|< Ak Ik ( )

k

One can easily verify that after the linear transformatid?21) fromgg, px to
the new independent variablas a;, the Poisson bracket7.146) takes the form

1 of oag dg of
if.gl=— (— - = ) (7.147)
in Zk: day da;  dax day

Assumingf = a, with the help of (7.134) and (7.143) we obtain

_loH . [ 3. OA

= 72 = —iwkak + hcfd rj 3, (7.148)
With an account for (7.124) and (7.144), this equation ddieewith Eq. (7.127),
which was obtained from Maxwell’s equations with externairents.
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Thus, we have written the equations for the field and the metthe canon-
ical form (7.135) with the Hamiltonian (7.136). Before ugithis result for the
gquantization of the field equations, let us consider the@ut#gon Hamiltonian in
the dipole approximation.

7.3.4 °Dipole approximation

In quantum electronics, it is often possible to use apprations instead of the
exact expressions for the perturbation energy (7.139)4@). In the case of a
plane free monochromatic wavd,= E. Therefore, in the first order i¥;/c, one
can neglect the magnetic part of the Lorentz force in the Wewquation,

mR; ~ 6 E(R;,1). (7.149)

Further, let the particles occupy a restricted space artrathe linear sizea
much less than the scale of the field variatids; ¢/w. Then the field can be writ-
ten as a series expansionky and only the first few terms should be taken into
account. In this case, (7.139) leads to the multi-field egjzamof the perturbation
Hamiltonian for the particles in powers 8/1. In the zeroth (dipole) approxi-
mation, A(R)) ~ A(rg) = Ao, Whererg is some fixed point inside the system of
particles (for instance, the center of mass). Then, acogrti (7.140),P; = 0,
and (7.141) takes the form (compare with (7.149))

mR; = e Eo, (7.150)

whereEg = E(ro, t). This equation, according to (7.135), follows from theeint
action Hamiltonian of the form

Vaip = —d(t) - Eo, (7.151)
where

d(t) = Z e(Ri(t) - ro), IR —rol < 1. (7.152)

Here, in contrast to (7.139), the field is a given externahpuater. Note also that
the dipole moment of a neutral system does not depend on thieschifr.

Let the matter consist ON separate motionless molecules with the dipole
momentsd; and centers at;. Then the energy of the matter in the external field,
according to (7.151) is (compare with (4.28))

N
Vidip = — Z d;(t) - E(rj,t) = - fd3rP(r,t) - E(r, 1), (7.153)
=1
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N
P(r.1) = > 6P (r 1)), (7.154)
=1

The interaction Hamiltoniafor the fieldin the dipole approximation follows
from (7.143) after replacingy by Ao,

Viip = d Ap=-d-Ep- ——(d Ao). (7.155)

If we restrict the consideration to the case of quasi-mormoiatic currents and
fields, thend - Ag contains two components: a constant one and one oscillating
with the double frequency. As a result, only the first term7rlp5), coinciding
with (7.151), provides an accumulating interaction,

Viip * Vaip = —d - Eo. (7.156)

Thus,the dipole Hamiltoniar 4, can be also used for calculating the emitted
field in ‘single-frequency’ problemét follows from (7.156) that
et i = 1 9Vuip

AT OS  "oa

wheredy = d - &. The same result can be obtained from the exact equation
(7.127) in the case of a neutral system, after taking intoaet(7.144), replacing
expEik- Ry) by expEik - rg), and replacing/; by —iwkR;.

Often, instead of (7.139), one uses the approximation

_ %dkexp(—ik o), (7.157)

Va —ZaPi~Ai/mc, (7.158)
i

i.e., neglects the term that is quadraticelA (Note that in the case of a single
electron in a harmonic field, this term is on the ordea)zEfZ wherea = A?rqis the
polarisability of a free electron (6.36).) This approxiiatis only valid in the first
order of the perturbation theory, i.e., in the calculatibsiaogle-quantum #ects.
Eq. (7.158) also follows from (7.143) if the canonical andetic momentums are
assumed to be the same. Eq. (7.158) leads to the followinatieguof motion for
the particle:
& dA

R=-—2—' 7.1

which ata <« 1 coincides with (7.150).
For bonded electrons in atoms and small molecales10-8 cm, and the con-
dition for the validity of the dipole approximation (7.151Y.155) is satisfied up



Statistical Optics 285

to the X-ray range. Recall that magnetic moments relategditoand orbital mo-
tion are on the order of thBohr magneton, which is two orders of magnitude
as small as one Debye,
2up = eh/mc= el; ~ eay/137. (7.160)

However, despite the relatively small value of multi-fieltieets, their mani-
festation in the optical range is important and can be eabibgrved: for instance,
in the efect of the optical activity (polarization rotation) and hetappearance of
forbidden lines in spectra.

A free electronin a harmonic field, according to (7.149), oscillates with th
amplitudea; = eE;/mw? and the velocityayw; therefore, the conditions < 1
andV < c have the same form,

E:. < m&/et~ 1R G. (7.161)
This estimate was made fdr= 1u and corresponds to a practically impossible
intensity 138 W/cn?. Nevertheless, by taking into account the magnetic-field

effect in a light wave (Sec. 6.2) one can calculate the quadvatarisability of a
free electron and observable nonlinefieets.

7.4 Quantization of the field

Thus, we have represented the field equations in the form wiilttan’s equations
for the spatial harmonicsgk(t), Hk(t) (or their linear combinations, Pk, a).
Now, we can pass to the main stage of the quantum descripttunoh is finding
the commutation rules for the dynamical field variables.

7.4.1 Commutation relations

After passing to the quantum description, all canonicailddesqy, px and their
functions f(qgx, px) become linear operatotk, Pk, fk acting according to certain
rules on the state vector of the system. Thiedénce between the actions of
the operator producttg andg fP can be defined in terms of the Poisson brackets
(7.146),

fg—gf =[f,qg] = in{f,g}. (7.162)
Here, all variables are considered at the same time monreparticular, we find
that

[qks pk’] = ihék,k’s [qk9 QK'] = [pks pk'] = os (7163)

PThe ‘hat’ sign over the operators will be only used where ssagy.
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[a. 8] = ok, [acac] =[a].a}]=0, (7.164)
[f,a] = df/da, [a. f] =af/oa), (7.165)
[Ex, Hk] = =262 je» [Exs Ex] = [Hk, He] = 0, (7.166)
where
2 = 2nhan /L3, k = {k, v}, k= {-k,v}. (7.167)

From (7.166), using the linear relations (7.124), one cao fihd the commutators
for the fieldsE(r, t), H(r,t).

The classical complex variabl is put into correspondence with tho-
ton creation operator b which is Hermite conjugated to thehoton annihilation
operator &. The Hermitian operatcmlak = (aiiak)T = N is called thephoton-
number operatgrand most often, it is this operator that corresponds tacapti
observables. For instance, the spectral brightness caxpbbessed in terms ok
as

lua(K, v) = REA3(Ny). (7.168)

This expression, in contrast to (7.19), contains averagigg the wave function
or the density operataer.

Often, in addition tdN, other operators can be of interest. For instance, the
mean value oalak/ characterizes the statistical coupling between méadesik’.
One can show that the rate of anquantum stimulated transition scales as the
mean value of the operata;f“a{(“ =: N7 :. Here, colons denoteormal ordering
i.e., putting allay operators on the right @‘l The mean values of these operators,

G = ¢ NIy = (&™al, (7.169)

are calledhormal (normally ordered, factoriglmoments of ordem for modek.
The relation between the factorial mome@&’ and the usual oned™) can be
easily found from the operator identities following from82) or (7.164),

[a™, N] = md", [N,a™ = ma™.
Hence,
“N™:= N(N - 1)...(N - m+ 1). (7.170)

(Hereafter, we omit the subscribtvhenever a single mode is considered.)

In the Heisenberg picture, the wave function and the demsétrix are con-
stant, while the operators depend on time according to theeHberg equations,
which can be obtained from (7.145) and (7.162),

df/dt = af /ot + [f, H]/ih. (7.171)
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For instance, assuminfg= ax and using (7.124), (7.134), (7.143) and (7.165), we
obtain the Heisenberg equation for the annihilation openatthe form (7.127).
Similarly, all other relations from Sec. 7.3 remain valiteatthanging the classical
dynamical variables to operators in the Heisenberg reptasen. It is important
that the operator products are written in the symmetrizeah féor instance,

la? — (a’a+aa’)/2=a'a+1/2=aa - 1/2, (7.172)

where we used (7.165) for obtaining the last equalities.eNloat in the operator
identities similar to (7.172), /2 is understood a§/2, wherel is the unity, or
identity, operator] ¥ = .

Spatial harmonics of a free field depend on time harmoniaaitk the fre-
guencywy = ck Hence, we find thewo-timecommutators,

[a(®), &, ()] free = Ok €Xpl-icwi(t - t')], (7.173)

and similar relations for other field variables. In the preseof external currents,
(7.173) can be replaced by a more complicated dependenteawodt’, but it
should turn into (7.164) at = t’. This conservation of commutation relations
follows from the unitarity of the operators time evolution.

7.4.2 Quantization of macroscopic field in matter

Macroscopic field in a non-magnetic material is describelaywell's equations
with the phenomenological dielectric functier{in the linear approximation). In
the transparency windows; (w) ~ 0, and the energy of the free field is preserved,
so that we can again use the Hamiltonian formalism and quattie field vari-
ables. If we also neglect the dispersigfw), then the procedure will be similar
to the one of Sec. 7.3, with the only changes in the speed lof (@g— c/n) and

in the orientation of the polarization unit vectags(in the case of an anisotropic
medium).

One can show [Klyshko (1980)] that with an account for lindiapersion, the
relation between the macroscopic fiélr, t) and the photon creation and annihi-
lation operatorai, a in a transparent medium has the form (7.124) provided that
thec, codticients are multiplied by a factor of

P -1
& = lZw(—wze- € e)
ow

wherevk = wy/k = ¢/ng anduyg = dwy/dk cospk are the phase and group veloci-
ties, respectively anek is the angle between the ray and wave vectors. The spatial
harmonics of the magnetic field in (7.124) should be theniplidd by ny.

1/2

1/2
uv 1
= ( 5 ) ~—, (7.174)
‘ C%Cosp J, Nk
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7.4.3 Quantization of the field in a cavity

The field in a closed cavity with ideally reflecting walls cam fepresented as a
sum of real orthogonal eigenfunctiongr), vk(r) of the corresponding boundary
problem,

E =" pue(n), H =" ara®w(r), (7.175)
k k

wherewy are the cavity eigenfrequencies.

For instance, free field in a rectangular cavity is a supeétipasof stand-
ing plane waves. (The field is not transverse in this case[lseelau (1982)])
The allowed values of the wavevector are determined by tkigycdimensions
L., @ = Xy, z(compare with (7.103)),

|l m n
k= ——, — | =0,12,... 7.176
n{u,w,h},,mn ,1,2, ( )

A standing plane wave is a superposition of two counter-agaging waves
with the equal amplitudesy = a; in this case, according to (7.123, ~
px coskzandH ~ w0k sinkz (The scaling coicient can be found from (7.134)
atL® = LyL,L, and is on the order of (26 L3)*2.) Hence, taking into account the
uncertainty relatiol\gAp > 7/2, one comes to the conclusion that the accuracy
of a simultaneous measurementiff, t) andH(r, t) inside the cavity is limited.

Sometimes, the free-space field is also expanded in stan@wves of the form
cosk-r, sink-r, but then the amplitudes of the standing waves do not hauveetdi
relation to the values observed in experiment. Indeed diecting the plane wave
+k, the detector should be placed in the far-field zone of thétemivhere the
—k wave is absent. The relation between the far field andatheperators is
considered in [Klyshko (1980)].

7.5 °States of the field and their properties

Next, we consider the various states of the field, both pucenaixed ones, and
their properties, as well as the mean values and distribsitdd the observables in
these states. It is convenient to use sdrasisset of wave functions, so that an
arbitrary state can be represented as an expansion oveiagis This procedure
is similar to expanding an arbitrary vector over the set df uectors of some
frame of reference in real space. We will consider the bastis generated by
various operators: energhf, coordinateq, momentump, photon annihilation
a ~ w(q + ip, as well as relations between these bases. In this consatera
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we will use compact Dirac’s notation, which will be brieflysteibed in the next
subsection.

7.5.1 Dirac’s notation

An arbitrary instantaneous state of a quantum system isestefig the wave func-
tiony(X) = (Xly), wherexis some set of variables, discrete or continuous, that are
suficient for thecomplete descriptionf the system. A complete description of a
‘one-dimensional’ spinless particle, in particular, of@stillator or a field mode,

is given by a single variable: the coordinate= g), the momentumx = p), or

the energyx = &).9

The functiorKX|y) is called thex-representation of the system. The state itself,
without specifying the representation, is denotedihyor| ), or|t). The complex
conjugated functiony*(x), is denoted byy|x) = (Xjy)*, i.e., one can writ¢ )" =
CLCr=1).

In the x-representation, the state is given by a set (discrete or continuous)
of numbers(xs| ) = ¢1,{(X| ) = Co,..., which can be naturally considered as
the components of some vector in a multi-dimensional sp@ben,(x,| ) is an
analogue of the inner product of the unit vec{gf| and the state vecton, i.e.,
the projection of ) onto then-th axis. Any vector can be represented as a sum of
the unit vectors multiplied by the, codficients,

1) =D Gabxa) = D )%l ), (7.177)
or, in more compact notation,
)= Imn). (7.178)
Similarly, ”
(1= ¢ Inxn. (7.179)

In the case of a continuous variable, summation in (7.17d odimer similar equa-
tions is replaced by integration,

| )= fd>4X><X| ). (7.180)

The vectorg | and| ) are called, respectively, thea- andketvectors (being parts
of abracke).

9Recall that in classical mechanics, the state is given bytinebers gp, while in quantum mechanics,
by the functiony(a) (or ¢(p), ¥(&). - ..).
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Projections of dferent unity vectors onto one another are equal to zero (in the
case of an orthogonal system),

NN’y = 8nry, (XIX) = 6(X—=X). (7.181)

One says that a frame of reference (a basis) is complete ifvaotor can be
represented in the form (7.177). The completeness can bessqd in the form
of a tensor equation

M= Z Iny(n. (7.182)

Here,l is a unit tensorR| Y = 1)), and|a){b| denotes a dyadic tensor, or the outer
product of the vectorg) and(b|. The action of a dyadic on the vectors is obvious
from its notation,

{la(bl}| ) = [a) (bl ) = <b| )la),

( Hla)bl} = { [a)b] = <bi( |a).
The tensottay(al = P, with (ala) = 1 is called aprojector since its action on a
vector| ) selects the component of this vector algag Pal ) = |aXal ) = cala).

Theexpansion of the unitf7.182) provides an easy way for forming various
representationsf scalargalb), vectorg ), tensors (operators)

(7.183)

@b) = (alllby = > (@n)nib), (7.184)
1y =11)= " Inxnl), (7.185)
f=1fl = Z fre NNV, (7.186)

nr

with f,y = (n/f|n") in the last equation.

An operatorf can act on the right on a ket vector and on the left on a bra
vector, creating new vector§la) = |b) and(alf = (c|, with other directions and
lengths. (The length or, more precisely, thmm of a vectorja) is defined as the
number(aa)’/2.) If it is only the length of a vector that is changed, the veds
called the eigenvector (right or left) for this operatoilisitonvenient to denote an
operator and its eigenvectors and eigenvalues by the saanaatér,

fIfa) = fal fo). (7.187)

The set of eigenvectof$,) usually forms a basis, not necessarily orthogonal. The
operatorf’, Hermite conjugated té, is defined by the equation

fflay = {(alf}", (7.188)
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or (fNap = (foa)*. If 7 = f, f is anHermitian operator and fap = f7,, fn =
fr, (falfy) =0 (atfy # ).
In quantum mechanics, it is postulated that the probalidiggribution P(ft)
for the observabld at a timet for an ensemble of systems being in the same
quantum stat@t) is determined by the projections [pf onto the eigenvectoi$)
of the operatoff,

P(flt) = CKF[t)® = C(tIPrIt), (7.189)

whereC™! is the normalization sum or integraC (= 1 for normalized vectors).
If the observabld has a continuous spectrum, thieff) has dimensionality Af
and is the probability distribution density. The distrilout (7.189) is defined in
terms of the Schrodinger variables. In the Heisenbergesatation, it has the
form

P(f[t) = C(tolPt(Dlto), (7.190)
Pe(t) = IT@)XFO)I. (7.191)

In the case of a mixed state, the opera®grshould be averaged with the
density operator. For instance, in the Schrodinger remtesion,

P(fIt) = Tr{i X flo(®)} = (Flo(®)I ), (7.192)

i.e.,the distribution of an observable f is defined by the diag@heients of the
density matrix in the f-representation (the populations)

According the postulate of the wave functi@duction when some value (for
instance, energy) is measured by means of a classical dé¢lEeneasurement
brings the system from the initial staft¢ into the statd&;), where&; is deter-
mined by the reading of the detector. Thasneasurement is simultaneously the
preparation of a system with a known wave functilmnorder to prepare a system
in a given statéS;), one has to measure the energy of fiisiently large number
of systems in dferent initial states until a necessary readiings achieved. When
a classical device shows a readihthis means it has brought the system into the
stateP¢| ) = |f); the back-actionof the device on the state is described by the
projectorP; = | f)(f].

7.5.2 Energy states

Usually, it is the energy that is measured in quantum opticg;espondingly, as
the basis one usually chooses the set of the eigenstates eh#ngy operator for
separate modes of the free field, i.e., the harmonic-otmilldamiltonian,

Ho = (p? + 0’ /2 = hw(N + 1/2), (7.193)
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whereN = a'ais the photon-number operator for the chosen mode.Klihdex
will be omitted, as a rule, whenever we consider only a singdele. By definition,
the eigenvalues and eigenfunctions satisfy the equality

HolN) = EnIN). (7.194)

According to (7.193), the energy stat®$) or, in short, theN-states also
known asFock statesare also eigenstates for théa operator, I = N)|N) = 0,
whereN = E/hw — 1/2.

The Hy operator is Hermitian; therefore, the vectfds form a complete or-
thogonal normalized ‘frame of reference’,

(NIN'Y = 6w, D INXNI =1, (7.195)
N
)= D INKNE), £ =" funINXN'L (7.196)
N NN
Using the commutation rul@[a’] = I, itis not difficult to show (see [Klyshko

(1980)]) thatN are integers,
En=(N+1/20iw, N=0,1,2,... (7.197)

Thus,the energy of a single mode can only take a set of discretalistamt
values djfering by#w, the energy of a photorA mode has the smallest possible
energy ifN = 0, which corresponds to the vacuum st@pe while the states with
N > 0 are calledN-photon states

It is also easy to find out how tlega’ operators act ol — states

alN) = NY?|N - 1), (7.198)
a’|Ny = (N + 1)Y3N + 1). (7.199)

These relations explain wiay a' are called photon annihilation and creation oper-
ators; they also show thai-states are not eigenstates for the operaippsa, a'.
Hence,if the field is in some N-state (including the vacuum stated,mheasure-
ment of the electric field will reveal quantum fluctuatiomkis conclusion imme-
diately follows from the fact that{y does not commute witg, p.

According to (7.199), thé\-state can be obtained by actihgtimes on the
vacuum state by the operaiar,

INY = (N1)~Y2(@")N|0). (7.200)

However, in practice it is very éficult to bring some free-field or cavity mode into
a pureN state (except the vacuum one), especiallyNos 2. Usually, the actual
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state of a mode is an incoherent mixture of a few iNstates, while the state of
an ideal laser is a coherent mixture of manstates.

All considerations given above related to a fixed time momehhe time
dependence of the state vector of a single free-field modessribed in the
Schrodinger representation by the equation

ind|ty/dt = Holt), (7.201)
and if at timet = 0 the mode was in aN-photon state, then, according to (7.194),
[t = INye ™t = |N, t), (7.202)

wherew = ck. Hence, in an N-state, the mean values, moments, and disbriisu
of all observables, including, g, are stationary An arbitrary pure state of a mode
depends on the time as

[t = > onIN, 1) = Col0) + CreT 1y + ..., (7.203)
N

wherecy = (N[tg). In the presence of currents, the flogents in this expansion
are time-dependent, although this dependence is usuallycsimpared to the one
of exp-iwt).

So far, we have been discussing the state of a single modehelnase of
independent modes, the energy wave function of the total fiebbtained by
simply multiplying the energy wavefunctions for the modeathvdefinite photon
numbers,

{Ni}) = IT|Nidk = INg, No, ... ), (7.204)

Nk, ) = HNK) expEigt/h), E=h ) New. (7.205)
k

Thus, an energy state is fixed by giving the photon numfgsin all modes
(occupation numbejswhile an arbitrary state can be represented as a superposi
tion of states with all possible combinatiofis},

1ty = > NN, T). (7.206)

{Nk}

In the presence of external currents, the state amplitc(didg}) become time-
dependent, and can be only determined by applying the jpation theory (com-
pare with Sec. 2.1).
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7.5.3 Coherent states

As it was shown by Glauber, another convenient basis is fdinydhe eigenstates
of the non-Hermitian photon annihilation operator,

alz) = 72). (7.207)

The state$z) are calleccoherent statesSincea ~ wq+ip, one can expect that the
spectrum ofa is continuous and complex, i.e.= Z +iz” is an arbitrary complex
number.

From the definition (7.207), it follows that the action of ambitrary operator
function f (&) on the vectofz) is reduced to a simple multiplication of this vector
by a usual ¢-numbej function f (2),

f(@)2 = f(22. (7.208)
The equation conjugated to (7.207) has the form
(a" = 7(2, (7.209)

i.e., ket-vectorgz are left-hand eigenvectors for thé operator.
Using (7.207), (7.208), (7.209), we immediately find the meamber of pho-
tons in a coherent sta®,

(N); = (ZN[2) = |Z% (7.210)

In the case of a coherent state, all factorial moments of loégm number are
also calculated in a simple way (see (7.170)),

G = (7 : N"M: |2) = [42™ = (N). (7.211)

This equality shows that the moments &aetorable

In (7.211), we have used the notatiolN™ :=: a'a...a'a := a™a™ Gen-
erally, the colons denote the operatiomairmal ordering which means placing
all a operators on the right of afi’ operators. This operation ignores the non-
commutativity of the operators, i.e., between the coloesfherators can be writ-
tenin any order. Note that: - : is a nonlinear operation; for instance, the operator
caa' :=:a'a+ | := a'ais not equal to the operatoria: +1 = a’a+ 1.

From (7.207), (7.209), (7.208), it follows that

¢ f@',a) ), = f(z,2). (7.212)

For finding the mean value of an arbitrary operat(a’, a) in a coherent state, it
is sufficient to represent this operator, using the equality= a’a + |, as a sum
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of normally ordered operators, and then replacky z* anda by z. Often, normal
ordering can be performed through the series expansion,

f(ah,a) = > cnd™a",
mn
(7.213)
<f(a’ s a)>z = Z Cmnz\krnzn-
mn

For instance,
(@al), = (@'a+ 1), =12+ 1,
N?=a'aa'a=a'(a’a+1)a=: N?: +N, (7.214)
(N?), = 2% + 127
Using the last equality, one can write the second momentanrianc€ AN?) =
(N?) — (N)? in terms of the first moment,
(N?), = (N),((N), + 1), (AN?), = (N),. (7.215)

This relation is typical for &oissoniarrandom variable (see below).

In the general case, ‘normal ordering’ of an arbitrary ofmres not a simple
task (see examples in Ref. [Louisell (1964)]). Sometimes following operator
identity is helpful [Klauder (1968)]:

expa’ + na) = Cexpa’) exp@a) = C L exp(a) exppa’), (7.216)

whereC = exp(un/2). Atn = —u*, the operator in (7.216) is called tlésplace-
ment operatoand is denoted a3(u),

D(u) = exppa’ — u*a). (7.217)
From (7.200), (7.217), and the equality obtained below22), it follows that
D(210) = 2. (7.218)

One can show [Bloembergen (1965)] tlaatlassical external current, jconverts
a mode from a vacuum stati@), into a coherent ongg), i.e., its action can be
described by the displacement operatdihe amplitudez coincides in this case
with the classical amplitude found from (7.128).

Let us show that an oscillator in a coherent state will indesage a Poissonian
distribution of the energy, i.e., that in a coherent statetphs behave, in a sense,
like a chaotic flow of sand grains. For this, we will find thenséormation matrix
(N|2) relating the baseN) and|z). Let us left-multiply (7.207) byN|, which
yields

(Nial2) = ZN[2). (7.219)
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Hence, taking into account (7.188) and (7.199), we obtain
(N + D)Y%N + 112) = ZN[2).
From this recurrent relation, we find
(N[2) = (N)"Y22N(02). (7.220)

The remaining unknown factg0|z) can be assumed to be real; then it can be
found from the normalization condition,

(@2) = ) KNI = (012)* explz? = 1. (7.221)
N
Hence, the expansion of a coherent state over Fock statew$ol
2= > INXNI2), (7.222)
N
(N|2) = (N) V2N exp(-|z2/2). (7.223)

Recall that{(N|2) is the N-representation of a coherent wave function, while
(ZN) = (N|2)* is thezrepresentation of a number-state wave function. Theeefor
the probability of measuriny photons per mode in a coherent state is determined
by a Poissonian distribution with the parametdy = |22,

P(N|2) = (N)N exp(=(N))/N! (7.224)

With the help of (7.223), one can easily verify thaffdientzvectors are not
orthogonal to each other (in contrastNevectors),

(@lz) = Y (@INXNIZ2) = expl-la - z:/2 + iIm(Z 2], (7.225)
N

(zi|2)? = expl-|z — z2). (7.226)

This fact does not cancel the completeness property (aseircdke of a usual
oblique-coordinate reference system): any arbitraryorect diadic tensor can
be still expanded over the set|af vectors 01z; )(z,| diadic tensors, respectively.
Indeed, it follows from (7.222) that

zMZN

M
(2 = e %“ T MO (7.227)

Let us sum these diadic tensors overzaHl pe?,

© 2n
f 222 = " IMXNI(MINY) 2 f dpe’ pM N+t f deN-Me
MN 0 0
(7.228)
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whered?z = dZdz’ = pdp de. The integral inp yields 2ty v, while the integral
in p is equal toN!/2. Hence, taking into account (7.195), we obtain zttiadic
expansion of the operator unity, i.e., the completenesdition, in the form

| =nt f d’2z)(z. (7.229)
Hence, an arbitrary vector can be represented as
|y=n" f d*227 ). (7.230)
In particular,
z0) =7 f &*22)(@z). (7.231)

This relation, together with (7.225), shows that the basistars|z) can be ex-
pressed in terms of each other, i.e., #H#asis isover-complete Roughly speak-
ing, it means that the number of coordinates exceeds thendimeality of the
space.

The time dependence of a coherent state can be easily fousdhdsyituting
(7.202) into (7.222),

2ty = > INXNe ™! = [ze7) = [A1)). (7.232)

Thus, free evolution does not turn a coherent state into some dijp of
state, similarly to the case of an energy state (see (7.208%))in contrast to the
cases ofy- andp-states (see below).

If all modes are in coherent states, then the state vectbiedfald will be

{zh) = 1znlz)e - =17, 22, . ). (7.233)

According to (7.131), this vector is the eigenvector for gusitive-frequency
field operatoé(+)(r, t) with the eigenvalue

EON(r,t) =i chekzk exp(k - 1 — iwgt). (7.234)
k

The mean value of the field in a coherent state is equal to thepaat of this
expression,

UzIE(r, Dl{zd) = 2REM(r, 1). (7.235)

Further, according to (7.212), all normally ordered fieldnsmts (correlation
functions),

G(”)

0= (ED . EDED . ED), (7.236)
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which usually determine the readings of optical detectarsfactorablein the
case of a coherent state, i.e., can be expressed in terms pifdducts of the first
moments,

G, (1) = EY . ES). (7.237)

Here, the eigenvalues of the fielB§” = E, (r;, ;) are determined by the sgk}
according to Eq. (7.234).

7.5.4 Coordinate and momentum states

By definition, the eigenvectoig) of the coordinate operataysatisfy the condi-
tion

aa) = da). (7.238)

Fromq' = @, it follows thatgq* = q and(ql§ = g{gl. Similarly, one can define
the eigenvectorfp) of the momentum operatop|p) = p|p). The spectrum of

g is continuous; therefore, thegrepresentation of an arbitrary state vector, the
orthonormality condition and the completeness conditiavelthe form

)= f dgjaal ). (7.239)
g’ =d(q-qa), (7.240)
M= f dgay(a. (7.241)

According to (7.240)¢g-vectors have infinite norn{g|q) = oo, which leads to
certain dificulties. As an example, let us find, using the general rule8@), the
probability density for the coordinate of a system in a state |g1):

P(dlar) = CKalgu)? = Cla(q - )] (7.242)

cl- f da(alanP? = f defs(q - qu)]>. (7.243)

The squared delta-function has a meaning provided that bite Kepresen-
tations with a finite widthAq is used. In this cas&(0) = 1/Aq (see (6.139)),
and one can replae¥q)? by 6(g)/Ag. The widthAq is chosen from the physical
considerations: it should be much less than the interval bicltwthe functions
that are multiplied by the delta function before the intéigravary considerably.
In this example, howevenq is canceled sinc€ = Aq,

P(dlqr) = 6(q - qu). (7.244)
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Sometimes, it is more convenient to use discoga|d p representations with
the usual normalizatiod@m|gn) = {PmlPn) = dmn- FOr passing to discrete spectra
{gn} and{pn}, the wave functiong(q) = (q| ) or their Fourier transformg(p) =
(pl )y should be considered either periodic offeliing from zero only within finite
intervals,L andzK, respectively (compare with the discretization procedare
wavenumbers in Sec. 7.3). This restriction is equivalertheassumption that
(), ¥(p) vary very little on the intervalaq = 1/K,Ap = #/L, and is always
valid for suficiently largeL andK.

Further, let us find the transformation functi@gp), i.e., theg-representation
of a p-state, by assuming

d
p=-in—(ql 7.245
@p=-in q<q| ( )
In this relationgis a continuous parameter of the vedigjr and the diferentiation

operator acts on this parameter. Multiplying (7.245)fy we obtain the equation

9
—|h6—q<q|p> = p(alp), (7.246)

whose solution, evidently, is
(qlp) = (2rh)~Y2dParn, (7.247)

The normalization constant here was found by substitutitm(i7.240) the diadic
expansion of a unity,

f dpaip)Xpla’y = 6(a-q).

According to (7.247)in a g-state, all momentums are equally probable, while in
a p-state, all coordinates are equally probable

P(pla) ~ Kplay* = 1/2xt,

P(alp) ~ Kalp)I? = 1/2rh.

Similarly, one can find a function of two variablé&gz) = v,(q), whose square
determines the probability density distributiB(g|z) for the coordinate in astate.
(Note that the symbdP(Zq) is meaningless since the non-Hermitian operator
does not correspond to any physical observable.) From 1y d2d (7.245), we
obtain that

(7.248)

(qla= (g +d/da)ql/ V2, (7.249)

whered'= (mw/%)Y?q and we have introduced the mae®f an equivalent oscil-
lator. Multiplication by|z) with an account for (7.207), (7.209) yields

(0/08 + 6 — V22)(q)2) = 0. (7.250)
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This equation is satisfied by the function

(@l2) = C1(2) exp[-(d - V22)?/2]. (7.251)
Similarly,

(Pl2) = C2(2) expl=(p +i V22 /2], (7.252)

wherep = p/(hwm)*2. The normalization constants are defined here only up to
the phase factors,

C1 = (mw/nh)Y* expl-z"? + i1(2)],

Cy, = (nhwm) Y4 exp[-z2 + ig.(2)]. (7.233)
According to the definition (7.121),
g=(a+a)/ V2, p=(a-a’)/iV2 (7.254)
hence it follows from (7.207), (7.209) that
(@), = (@) = V27, (p). = V27’ (7.255)

As a result, the distributions following from (7.251), (32 can be represented
in the form

P(d12) = n~/2 exp[=(d - (@)1,
P(Bl2) = 7~ exp[-(p — (P))?].

Thus,for an oscillator in a coherent state, the coordinate and &tage have
Gaussian distributions with the variances

(AG?) = 1i/2mw, (Ap?) = hom/2, (AF?) = (AP?) = 1/2 (7.257)

(7.256)

and the minimal possible product of uncertainfies
AQAp = /2. (7.258)

The distributions of the coordinate and momentunz & O differ from the
vacuum one only by the displacement of the center of referdrycv2z and
V2z’; their variances are not increased, in contrast to the gnemance (see
(7.215)). The relative widths of the distributiosy}/(q) andAp/{p), are inversely
proportional toz andz”.

It follows from (7.232) that the evolution of an oscillator & coherent state
is described by changingto ze . Letz = z; = do/ V2, then, according to
(7.255), one should set in (7.256)

(@) = gocoswt, (P) = —gpSinwt. (7.259)

"Here, as usual\x denotes two dferent values, the operatar (x) and the numbef(x — (x))2)/2.
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Fig. 7.18 Distribution of the coordinate for an oscillatora Fock state (top) and a coherent state
(bottom) with the same mean photon numbers, equal to 5. Tolicateq is in V7i/mw units.

As a result, the distributions shift without changing treiapes (Fig. 7.18),

P(diz t) = 7~/ exp[-(§ - qo coswt)?],
) (7.260)
P(Plz t) = 7~ Y2 exp[-(P + go Sinwt)?].

Thus, the mean coordinate and momentum in the case of a calstate de-
pend on time the same way as the corresponding values of sicahsscillator.
As |zo| increases, the relative fluctuations are reduced and a wumanscillator
becomes more and more similar to a classical one.

Note that the wave function (7.251) with the substitutipre z(t) = ze*!
should satisfy the Schrodinger equation in ¢hepresentation,

(2i a 0

_ _— 2 —
w at + aqz q )‘J’z(qa t) Oa

(7.261)
Y29, t) = (qz).

(Here and below, we use dimensionless variaflesd, p = p.) This condition
allows one to find the phase in (7.253). As a result, the ‘camewave function
can be represented as

Ua 1) = n Y4 expl-(q - V22)?%/2 - 47 +i(ZZ’ - wt/2)]
= Y expl—(a - (a)?/2 +i[(a - (a)/2)Xpr) — wt/2]}). (7.262)

Above, we have found the matrices of transitions from ghrepresentation
to p- andzrepresentations. Similarly, one can find the functiihig)) = ¥n(0Q)
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determining the coordinate distribution in Fock statesthiedohoton-number dis-
tribution in g-states. These functions satisfy Eq. 7.261 wiihydt replaced by
—iNwy; they are equal to the Hermite polynomials multiplied bywheuum func-
tion (0|g) = exp(-g?/2). They are obtained if one multiplies (7.200) &y and
replaceggla’ with 2-Y/%(q — d/dag)(q,

(qIN) = (2"NIxY2)~2(q - d/dg)N exp(-?/2). (7.263)

7.5.5 Squeezed states

One should keep in mind that in the case of all states excepenlergy (Fock)
ones, the distributions and moments are time-dependaen({s259), (7.260) for
a coherent state). For instance, one can showdistates periodically become
p-states and vice versa (Fig. 7.20).

Consider the evolution of variances for the coordinate anchentum in the
case of an arbitrary initial state. Solutions to the Heisezglequations for the
coordinate and momentum operators have the ‘classicati,for

q(t) = gcosr + psint, P(t) = pcosr — gsint, (7.264)

wherer = wt, §= §(0), p= p(0).
In the general case, from (7.264) we can find the time depeaedeithe co-
ordinate and momentum variances,

Dq(7) = Dp(7 — 71/2) = D COS 7 + Dy Sir? 7 + Dgp Sin 2r. (7.265)
Here, the following notation was introduced:

Di(t) = ([AX(®]?), AX(t) = X(t) - (X(1)), Dx = D(0),
Dyp(t) = (A(AP(Y) + Ap(t)Aq(t))/2
= (a(t)* - a'(t)*)/2i - (@) pb);
the averaging runs over the initial state of the oscilléig)r Thus,the variances

of the coordinate and momentum oscillate anti-phased Witirequencyw, and
their sum is an integral of motign

Dq(t) + Dp(7) = Dy + Dp = 2(N) — (@")(@)) + 1 = 2D (7.266)

According to (7.265), the variances are constant only utideecondition that
Dq = Dp andDy = 0. Using (7.254), one can verify that this is the case for Fock
states Dq = Dp = N + 1/2) and coherent stateBg = D, = 1/2).
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©)

Fig. 7.19 Coherent (a) and squeezed (b,c) states of anatscillThe figure shows the time depen-
dencies of the mean coordinate and the coordinate undgrtaime dependencies are calculated using
Eq. (7.265) withgo = 5, Dgp = 0, AgAp = 1/2 andAq = 1/ V2 (a), 02 (b), 25 (c).

Recently, it was proposed to generate and measure the Isd-sgueezed
states[Walls (1983)], for whichDg <« 1/2 (or D, <« 1/2) andDy4D, = 1/4
(Fig. 7.19)% For a mechanical oscillator or electromagnetic field in sachate,
repeated stroboscopic measurements with an appropriasephill reveal fluc-
tuations reduced with respect to the zero-point vacuum,og2g2mw. Thus, in
principle, zero-point vacuum fluctuations do not restrict the limitaxcuracy of
the coordinate or momentum measurem&ufueezed states can be of interest for
the information transmission and for the measurementypftirces caused, for in-
stance, by gravitational waves [Braginsky (1980)]. Nota thp to now, attention

SEditors’ note: About the same time as the book was publiskqdgezed states were produced in
experiment, first through four-wave mixing and then via pegtric amplification, see [Bachor (2004);
Walls (1994)]. Amplitude squeezing of photocurrent wa® albserved using a negative feedback
loop [Yamamoto (1999)].
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Fig. 7.20 Various states of a quantum oscillator shown ompltase plane. The horizontal and verti-
cal sizes of the figures correspond to the uncertaintieseicdordinate and momentum, respectively;
the sizes along the radius and the azimuth correspond,atésgg to the amplitude and phase un-
certainties. 1, the vacuum state; 2, a coherent state; 3pmlioate state; 4, a squeezed state; 5, a
momentum state; 6, a photon-number state; 7, a phase state.

is attracted to certain questions in the quantum measuretimeory [Braginsky
(1975, 1980)L.

We have considered four types of states generated by thatopss® + o2, p+
id, p, q, as well as the relations between these states. Similamycan construct
a lot of other states. Worth mentioning are the eigenstdtéiseophase opera-
tor [Fain (1972); Loudon (2000)], which are most close toassical oscillation
with a fixed phase.

It is convenient to show various states on a phase diagyaf) &5 figures of
different shapes whose linear dimensions are equal to the aimti3Ag, AP in
these states (Fig. 7.20). The area of each figure cannotbehkes about a unity.
A classical state of an oscillator is shown by a poiit £1), a coherent state, by a
circle of a unity diameter and the center at poipt §1); an N-photon state, by a
thin circle with the diamete+ 1/2)"/? centered at the origin;@state, by a thin

'Editors’ note: nowadays, squeezed states still attraceatgittention in connection with fiérent
applications. We refer to the following ones:

e optical communication and optical measurements, due téattiehat weaker signals can be trans-
mitted with the same signal-to-noise ratio and the same figtver;

gravitational-wave detection;

precise measurement of spatial displacements with mutinsgjueezed states; super-resolution;
quantum imaging with surpassing the quantum noise limit;

one-way quantum computing with cluster states based oregqdestates;

quantum memory based on squeezed-light interaction waitimiatensembles and single atoms;
research in fundamental quantum physics.



Statistical Optics 305

vertical straight line; go-state, by a thin horizontal straight lifeHowever, one

should keep in mind that these figures have only qualitatieamng; strictly, they

do not correspond to any joint distributioRé&g, p), which do not exist in quantum
mechanics.

Similar to the states themselves, the figures depicting threthe phase plane
change in time due to the natural evolution (described byStterodinger equa-
tion) or due to thereductionas a result of the measurement back-action. For
instance, after an accurate measuremeny, @ coherent circle in Fig. 7.20 will
turn into a vertical line. The evolution due to free oscitias is described by the
counter-clockwise rotation of the figure around the origiith the angular rate
w, or, alternatively, the clockwise rotation of the frame efflarencey; .

7.5.6 Mixed states

If the field is interacting (or has interacted) with anotheagtum object, for in-
stance, with an atom, then, by definition, there are no sépavave functions
for the field,y(xg, t), and the atomy(xa, t); one can only speak of the joint wave
function,y/(xg, Xa, t). Similarly, one cannot speak of the state ve¢qrof a given
modek if it is coupled with another modk’, or several modes. For instance, a
classical point-like source with the frequenagxcites a spherical wave, in which
case all plane waves witk| = w/c are coupled. Similar coupling of modes with
the same frequency (‘transverse’ modes) occurs due to tfraation. Modes
with different frequencies (‘longitudinal’ modes) can be couplegltdithe matter
anharmonicity [Klyshko (1980)].

In all cases where the system is described by a non-competd gariables,
one says that it is in eixedstate (Sec. 3.1). Then, instead of a state vectpr
the system is characterized by a ceri@gperatorp, called thedensity operatarin
the special case of a pure state, the density opegpasoa projectorppure = | ) |,
while for a mixed statey is given by a sum of projectors (see (7.186)).

The density operator, like any other field operator, can bittemrin vari-
ous bases (representations), in terms of the density reatotthe formonyy =

UEditors’ note: Probably one should add squeezed vacuumate generated at the output of an
unseeded optical parametric amplifier. In the diagram, lithd shown by an ’ellipse’ at the origin,
with the area being the same as for a coherent state [Bachod)2Walls (1994)].

VEditors’ note: Note that the description of a compositeaystonsisting of two or several interacting
sub-systems (or sub-systems having interacted in the giastfly relates to the concept of entangled
states ([Peres (1993); Nielsen (2000); Bouwmeester (2086¢. 7.5.7). This family of states was not
considered in the original book at all, partly due to the thet in 1986, entangled states were not as
popular as nowadays. At the same time the author put a Idtat&to avoid using vague terms while
describing physical phenomena ([Klyshko (1994)]).
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(NIpIN"), pqq. pzz and so on. In most cases, the density operator of the field is
written in theN-basis, but in some cases théasis is more convenient. For a
single modep can be written in terms dfl- andz-projectors as (the mode index

k is omitted)

p= INXN| (7.267)
NN
= f d?zP(2)|2)(2. (7.268)

Note that here, thdiagonal zrepresentation is used, which is possible in many
cases and is provided by the over-completeness of-hesis. Equation (7.268)
is called theGlauber-Sudarshan representationthe P-representation. The nor-
malization and Hermiticity conditions @fare

ZPNN =1 pnn = Pans
N

f d’zP@2) =1, P(2 = P(2.

The mean value of any field operatbcan be expressed in termswéccord-
ing to the relation f) = Tr(pf) (Sec. 3.2), or according to (7.267), (7.268),

(H = puwun = [ P2REEf2. (7.269)

NN

Hence, with the help of (7.212), we find

¢ f@,ay:y = fdzzP(z)f(z*,z). (7.270)

Thus, theP(2) function provides an easy way to calculate the mean valfies o
normally ordered operators. In particular, the normallgesed moments can be
found as

G" = f d’zP(2)|2*". (7.271)

Equations (7.269), (7.270) show that the weighting func®§z) plays the
role of the probability for the oscillator to have a compleritudez, i.e.,§ =
V2Z, B = V2Z’. However,P(2) can take negative values; besides, even with
P(2) = 69 (z-2z), i.e., in the case of a pure coherent stgtendhave zero-point
fluctuations? ThereforeP(2) is called aquasi-probability

WEditors’ note: also called shot-noise fluctuations.
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Moreover, the quasi-probability of a coherent stafg allows one to find the
probability distributionP(f) of an arbitrary observablé. For this, one should
replacef in (7.269) by the projectde(f) = |f)(f],

P(f)=fdzZP(Z)I(ZIf)I2=fdzzP(flz)P(z). (7.272)

The two-dimensional Fourier-transform of the quasi-pholitst P(2) is called
the normally orderedharacteristic function

Y ) = (€@ @y = f d’zP(z)e* +2, (7.273)

This definition yields a usual (not generalized) functiondd states, in contrast
to P(2).* From the definition o, it follows thatG™ can be calculated by means
of differentiation, instead of more complicated integration,

d a
m_[(_2
© ( O opr

Thus,a mixed state of a mode can be described bythe matrix, or one of

the functions B2), x(u, u*).
A mixed state of a multi-mode field is given by the density rxatr

(N1, Na, ... [pINg, N, ... ) = ({NHpl{Ngh,

or by the quasi-probability’({z}), or by its Fourier transformy ({u, 4}). In
the case of independent modes, these values are factdraflggible’. It should
be stressed that with the help of the quasi-probability fion¢ the operation of
guantum averaging of normally ordered operators (whictuatally of interest)
takes the ‘classical’ form (7.270), which is also maintainethe case of a multi-
mode field. For instance, the correlation functions (7.286)found by averaging
their mean values in a coherent state (7.237) with the quadiability,

G = f f PGP (12 [ | 2 (7.275)
k

Recall that herez, = z(k, v) has the meaning of the amplitude (iog2inits) of
the plane wavéy, propagating in thd direction and having polarizatica.
Further, let us consider some examples of mixed states ditide
In the case of atationaryfield, the density operator does not depend on time,
i.e., [o, H] = 0, which in theN-representation yields

ANGHOHNG) > (N = N = O.
k

) X 1) Ju=0 - (7.274)

XFor instanceP(2) for N states contains the\zh-order derivative of the delta function [Perina (1972)].
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Hencea stationary density matrix is diagonal in the occupatiomters of modes
with different frequencieslhe functionP({z}) depends then only on the absolute
valuesz, sincez(t) ~ et

In a stationary state, all simultaneous mome¢it®(t)), and correlation func-
tions,(f(t)g(t+17)...), are independent ¢f Usually, one assumes that the system
is ergodig i.e., that the ensemble meaffs coincide with the values measured
in experiment,fex(t), and averaged over time, and that the observed variations
(fluctuations) offex(t) in time are caused by the uncertaintyfoih a pure quan-
tum or mixed ensemble. An important role is also played bypgbgodically
non-stationary statesvhich include, in particular, coherent states.

Often, one can use the approximation of statistically irshejent modeg; =
[Tk k- Then, the diagonal elemetitl|ox|N«) has the meaning of the population
(occupation number) of thith modeN-photon state. In the case of a stationary
field with independent modes, populations fully charaggethe properties of the
field. In particular, the mean photon number per mode, whitbrthines the main
photometry parameter, the spectral brightness, is

(N = Tr(jap) = > N(NJodN), (7.276)
N=0

In anequilibrium state the density operator is determined by the Gibbs dis-
tribution, px ~ expHy/«T), whereT is the thermostat temperature (Sec. 3.2).
In an equilibrium state, the population of &hphoton level, i.e., the probability
to find simultaneousIWN photons in one mode, or the probability for the mode
energy to take the valueu(N + 1/2), depends ol exponentially,

Pr(N) = Ce™™, (7.277)
where
C=P00)=1-€* x=hw/«T.

Equation (7.277) is called tHeélanck’s or geometric, distributiopas it forms
a geometric sequence, or tBese-Einstein distributianBy substituting (7.277)
into (7.276), we find the mean number of photons per mode,cled the de-
generacy factor of the photon ‘gas’,

(Nyy = (& -1)yt=N=6 (7.278)

This equality enablesto be used instead afas the parameter of the distribution;
then (7.277) takes the form

Pr(N) = P(0)/(1+ 1/6)N, P(0) = 1/(1 +¢). (7.279)
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In a non-equilibrium field, the modes can also have expoaketiergy distri-
bution, provided that they are chaotically excited by mardependent sources.
This is the case for thermal radiation, fluorescence, orrflupeescence (in the
linear regime, see Sec. 7.1). Then, the dependengdiofon |k| = w/c de-
termines the frequency spectrum of the radiation, whiledbpendence on the
direction, k/k, determines the angular spectrum and the direction of iereott
radiation. Recall that in non-laser light, usually@k) < 1. For instance, for the
green part of the sunlight spectruriNy) ~ 1072, hence the probabilities to find
0, 1, and 2 photons in one mode are approximately equab®, 002, and 104

One can show [Glauber (1965)] that the quasi-probabilit ohaotically ex-
cited mode is a two-dimensional Gaussian function with tméance(N)/2,

Pr(2) = exp(-12/(N)) /n(N). (7.280)
Hence, taking into account (7.273),
X, 1) = expeup’(N)) (7.281)
and, according to (7.274), only even symmetric moments anzero,
G = (: N™ 2y = mi(N)™ (7.282)

It follows from (7.282) and (7.211) than m-quantum transition is mimes as
probable in a thermal field than in a coherent field with the s&h) (see (6.212)),
which is due to the long ‘tail’ of the thermal distribution.t# = 2, (7.282)
describegphoton bunchingSecs. 7.2, 7.6).

By substituting (7.280) into (7.272), one can see that tls&itution of the
coordinate and momentum for a thermal state are Gaussiarelyswith zero
mean values and the variances determined by the rekitipa1/2 = (p* + §%)/2,
ie.,

(AF)T = (APP)T = (N)T + 1/2 = (1/2) cothf/2). (7.283)

Note that additive multi-mode parameters of the field, s lica instance, the
electric field amplitudé&, at point ¢, t), will have Gaussian distribution regardless
of the states of separate modes (provided that they areendept), by virtue of
the central limit theorem.

As we have already mentioned, a pure coherent state doeloigato the
class of stationary states, sirg® = p expiwt+ip). However, one can construct
a ‘stationary coherent state’ by forming a mixture of colnéstates with the same
amplitudes and random phases Such a state, apparently, is described by the
quasi-probability of the form [Glauber (1965)]

P@) = (12 - p)/2rp = (4% - p?)/, (7.284)
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which describes an ensemble of ideal lasers with uncertzéisgs. It is easy to
check, with the help of (7.272), (7.224), that the energyrithstion for such an
ensemble will be still Poissonian, withNy = p?.

7.5.7 Entangled states (added by the Editors)

There is an important class of quantum states, naamégingled stateswvhich at
the time when the book was published were only starting toissidsed, mainly
in connection with the experiments on Bell tests. Now, thetates form the base
for such important branches of modern science as quantummiation and quan-
tum communications. The details can be found in many bedlifoks and re-
view articles [Peres (1993); Scully (1997); Nielsen (20BHuwmeester (2000);
Bachor (2004); Bruss (2002)]. Below, we present just a lveeiew of their prop-
erties.

For the first time the entangled state was introduced bydglthgér in 1935,
who mentioned thathe best possible knowledge of the whole does notinclude the
best possible knowledge of its paftSchrodinger (1935)]. One can interpret this
statement as follows: it is impossible to describe the sstiesysA, B, . . ., forming
a composite system, in terms of wave functions while the whktidte does possess
a wave functionA pure state of a bipartite system is called separable if amigt 0
if it can be written as

[¥s) = [¥a) ®[¥s); (7.285)

otherwise it is entangled.

In the simplest case of two qubitd!;) = @1]01) + B1|11) and|¥2) = @2|02) +
B2112), their joint state belongs to thex22 = 4-dimensional Hilbert space and, in
the general case, is not separable,

4
[¥12) = €1]01)|02) + C201)112) + C3|11)|02) + Cal11)[12), Z Ile2 =1; (7.286)
j=1
apparently|¥12) # [¥1) ® [¥2).

However, definition (7.285) does not tell us whether a giviertesis more
entangled or less entangled. Fprantifying entanglementhere is a simple pa-
rameter introduced by Wootters, thencurrence Cwhich indicates how much
entanglementis stored in a composite state of two qubits:

0<C=2cics—Cocgl < 1. (7.287)

If the state is separable, théh= 0. An example of maximally entangled two-
qubit states@ = 1) are theBell stateswhich form a complete basis for two-qubit
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systems:
. 1
¥ = 1001 = 1102, (7.288)
4 1
0f) = 51109102 = [Ly/12)] (7.289)

The statei’(l‘z) is calledthe singlet stat@and plays a special role due to its remark-
able symmetry properties. The other three states forntripket. For instance
the singlet state is invariant with respect to choice of ©1abhe Bell states are an
important tool in modern quantum optics but probably theyranst famous for
violating the Bell inequality [Klyshko (1998); Grynbergq20)]

Another way to quantify entanglement is through the soeceichmidt de-
compositionwhich exists for any bipartite composite system:

D D
Was = D VIV, D=1, (7.290)
j=1 j=1

wherelu;) and|v;) are bases for subsystersindB, both having dimensionality
D. The degree of entanglement can be estimated with the Sthomuaber,

D

-1
1<K= [Z /112] <D, (7.291)

i=1

which can be interpreted as the number of nonzero Schmidemiodthe expan-
sion (7.290). Itis easy to calculate the Schmidt numbetfeBell states (7.288),
(7.289):K = 2. A state is separable if and onlyKf = 1. The Schmidt decom-
position is a very useful approach from the physical viewpes it allows one to
interpret the natural eigenmodes) and|v;) of the system under study (called the
Schmidt modésn terms of entanglement [Mandel (2004)].

Another closely related measure of entanglement is the \wmidnn entropy,

D
S= _Z 1j10g, 1j = S(pa) = S(os). (7.292)
=1

whereS(poag) = Trpapas is the reduced density matrix for subsystén(B).
This definition returns us to the initial meaning of entanggat introduced by
Schrodinger. Indeed, the notion of the entropy relatehéouncertainty in the
(sub)system. For a pure state the von Neumann entropy epgras while for
completely mixed states it takes the maximal value.
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The definition (7.285) can be also formulated for mixed statslamely,a
mixed state is called separable if and only if it can be wnitées

ps = ) PIFAXTL) ® WENPL), (7.293)
j

where 3, pj = 1, 0 < p; < 1. Otherwise, the statgy is entangled.
As an example let us consider the so-calléeiner states

pw = XETET 1=} (P + [FINET] + [DTKOT| + [0 NDT)). (7.294)

It turns out that the state (7.294) is separablexfer1/3.

Let us mention that sometimes one falsely associates dataagt with the
violation of the Bell inequalities. In this connection, tiierner states (7.294)
represent an important example: @81 x < 1/ V2 they are not separable (and
hence are entangled) but do not violate the Bell inequalitie

It is worth noting that the concept of entangled states wéigedg developed
in quantum information science and formally relates toeayst of quantum bits
(qubitg or quantum dits dudity which are rather abstract notions. Nowadays
there are several physical systems that play the role otgjghich as polarization
states of single photons, two-level atoms or ions in trajgs,Real physical qubits
need to be carefully specified to avoid a contradiction withformal description.
For instance, the well-known permutation property of idaitparticles leads to
entanglement since their wave function should be symneatrizence the singlet
state of two spin-A2 particles takes the form

1
P = — - . 7.295
\/z[I DIL=1TLIMI ( )

However, this sort of states can not serve as a resource ofuquanformation
since it is impossible to perform local operations over thlesystems and there
is no possibility to change the cfigients in the coherent superposition (7.295).
This fact was discussed by Zanardi and Peres [Peres (1983)$img systems of
identical particles in the protocols of quantum informatand quantum commu-
nication seems to be still an open question.

Starting with the pioneering experiments performed by Fry imdependently
by Aspect [Grynberg (2010)] with two-photon fluorescencawmims, entangled
states were actively studied in quantum optics. In paiicihe most popular
object was the two-photon stateighotor) [Klyshko (1998)] created via sponta-
neous parametric down conversion (see Secs. 6.5 and 7v@x.abg/pes of bipar-
tite entangled states were suggested depending on thalaeailegrees of free-
dom under consideration: entanglement between polasizatid momentum, po-
larization and frequency, energy and time, frequency anchemtum. The partic-
ular type of entanglement is determined by the phase-nragaunditions anr
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further transformations performed over the biphotons.ifstance, polarization-
momentum entangled state can be achieved by choosing theatiorear degen-
erate regime of SPDC when two photons with the same freqesmebpagate
along diterent direction®, 8’ and carry orthogonal polarizatio$ (horizontal)
orV (vertical):
%“HHNVH’) +€%Vy)Hy)]. (7.296)
Sometimes the entangled state can be created by means afgbedion, i.e.
by taking into account only part of the state, for instancegi® coincidence
circuit, which measures only events corresponding to iringmhotons coincid-
ing in time. Such a scheme exploiting energy-time entangtgmas suggested
by Franson. The scheme contained unbalanced Mach-Zemedderometers in
both signal and idler channels, which introduced delaygeding the coherence
length (see Sec. 7.2) of each photon,

Y =

& 1/2
lcoh = CTeonh = C(@ lwp/2 |) ) (7.297)

wherel is the length of the crystal generating biphotons agds the pump laser
frequency. Starting with a separable state of two photdresgame frequency but
different angles of propagations),

Y = %nsg + %Ly ® %[ISN +€91Ly] = Ys® ¥, (7.298)

and using post-selection technique by picking up only ph®passing through the
long (L) or short ) paths simultaneously, the final state (after the renozatdin
caused by the non-unitary operation of post-selectionyimes an entangled one,

1 .
W= —[|S)e|S)i + d@sH|LY¢|L)i], 7.299
\/E[I>|>+ [L)sIL)i] ( )

wheregs; are the phase delays introduced in the signal and idler eélanBy
varying the phase delays one can observe the second-otdderence in the
coincidence counts, while there is no modulation in therisitées both for the
signal and idler channels. Note that sigH’ in the phase of (7.299) is typical for
two-photon interference experiments (compare with thegisign “—" observed
for usual classical interference experiments).

Many other types of entangled states have been studied. Wi wke to
specially mention some important cases, hamely:

¢ bipartite multidimensional systems and the so-called Fead® ratio, which
serves as an operational entanglement quantifier;
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e bright-light entanglement and, in particular, quadratumd polarization entan-
gled states [Bachor (2004)];
e multi-particle entanglement likeHZ andW-states

A special class of entangled statedster statesattracts a great attention
due to one-way quantum computation scheme suggested bg&tumst, Browne,
and Briegel in 2003. Also, a special classgoéph stateseems to be useful for
guantum computation, quantum error correction, and otpgli@tions of multi-
particle entangled states.

Perhaps one of the most stupendous applications of enthsigies relates to
quantum key distributignwhere entangled photon pairs are used for establishing
a secret key between remote parties both in free space angd sisigle-mode
fibres. Another field under an unquenchable intereststng the foundations of
the quantum theorywhere the use of multidimensional entangled systems gives
unexpected results with respect to the case of bipartitess

7.6 °Statistics of photons and photoelectrons

Let us consider in more detail the statistics of the photomimer N (see also
Ref. [Loudon (2000)]). For simplicity, we will mostly cordgr a single mode.
Below, we will show that the distributioR(N) = pnn Or the momentgN™) =

> N™P(N) can be experimentally obtained from the statistics of thmier of
photocounts, i.e., the number of electrons released byfligin the photocathode
of a PMT during some sample tinfe Such methods form the base for the optical
mixing spectroscopy [Cummins (1974)] where the traditi@pectral analysis of
light is replaced by thetatistical analysis of photocurreat the PMT output.

7.6.1 Photon statistics

The distributionP(N) at a fixed time moment for an arbitrary instantaneous state
of the mode is determined by the general rule,

P(N) = Tr{pIN)}(NI}, (7.300)

where|N)N| = B(N) is the projection operator. Assuming in (7.27R)x N =
a'a, we obtain the-representation fosyn,

P(N) = f d?zP(2)|zNe ™ NI (7.301)



Statistical Optics 315

Further, using (7.270), one can wrRéN) as an infinite series of normally ordered
moments of orderm > N,

. ®© vk
P(N) = %c NNe N 1y = % ; ( k? G, (7.302)
Thus,the photon-number distribution has the form of a PoissooiaeuNe™* /N!,
with the random parameter = N, which requires additional quantum averaging
with normal ordering.

Above, we have considered two exampledP0) distributions: the Poisso-
nian one, (7.224), for a coherent state, and the geometeiq@r279), for a chaotic
(thermal) state. These are single-parameter distribsitithey are fully character-
ized by, for instance, the first momerf\). One can show (see, for instance,
Ref. [Loudon (2000)]) that for a single-mode laser much a&bthe oscillation
threshold P(N) is Poissonian and for a laser below the threshold, it is gaom
Near the threshold, the distribution has a shape that ism@eéiate between these
two limiting cases. This distribution, in the simplest misdés determined by two
parameters, for instancé\l) and the excess inversion above the threshold.

It is useful to consider another type of states, namely, aohiarent mixture
of the vacuum|0), and theK-photon statgK). Then,P(N) differs from zero only
at two points,

P(N) = P(0)dno + P(K)dnk- (7.303)

Hence(N) = KP(K), and all values can be expressed in terms of a single param-
eter, the mean photon number,

P(K) = (N)/K, P(0) = 1- P(K), (7.304)
(N™ = K™P(K) = K™X(N), 0 N 2 K. (7.305)

In the limiting case(N) = K, we obtain a pure energy state with photons;
however, it is interesting to consider the more realistieg¢hl) <« K. Such states
can be generated viaké-photon decay of a single excited atom into one mode.
Repetition of this process in time leads to the appearanc&gghoton light’,
radiation consisting oK-photon groups. Two-photon light can be also generated
via the spontaneougN) <« 1) parametric down-conversion of ‘usual’ light, in
which photons have Poissonian or Bose-Einstein distobuti

Figure 7.21 shows the plots of all three distributions weehawonsidered.
Below, it will be shown that the termination of th€-photon distribution at
N > K leads to the fect of photon anti-bunchindor (N) > K — 1, while at
K> 1,(N) < K-1, itleads to theect of super-bunching. (Conventionally, the
Poissonian distribution is considered as having no bumchin
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Fig. 7.21 Typical photon-number distributions: (a) geamse{b) Poissonian; (c) two-photon mixed.
The dashed line shows a Gaussian function with the mean 9aiugee (7.320)).

Often, calculations and interpretation of the experimanésmuch simplified
by passing, from usual momenrfd™), to factorial moments
GM =N =(N(N=1)...(N=m+1)), (7.306)

and their generating functions,
Q(X) = Z(1+ NNP(N) = ¢ &Ny, (7.307)
N=0

The last equality follows from (7.302). Note th@(x) differs from the(e\)
function, whose derivatives yield usual momentsQ() is known, the factorial
moments and the distributioR(N) can be easily found by flerentiating it at
pointsx = 0 andx = —1. Indeed, it follows from the definitions that

GM = QM (0), (7.308)
P(N) = QN (=1)/N!, (7.309)

where
QM(x) = d™Q(x)/dx™ (7.310)
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By substituting into (7.307) one-by-one the distributiqfis224), (7.279),
(7.303), we find the generating functions for the three atersid types of os-
cillator states,

Q(¥) = eV, (7.311)
Qr(¥) = 1/(1 - x(N)), (7.312)
Q(¥) = 1+ (NY[(1 + X)X - 1]/K. (7.313)

Hence, according to the rule (7.308), we immediately obtain
G = ()™ G = m(N)™,

- (7.314)
G = (N)K —1)...(K-m+1), 1<mzK.

An important property of the generating functions (GFsldek from the def-
inition (7.307): the GFQ(x) of a sumN = > N; of independent integeny; is
equal to the product of the GFs for these integers,

QX = ﬂ Q(X). (7.315)

For instance, let a set & similar atoms independenilgmit K-photon light;
then, using (7.313) and (7.315), we find

M
QM) = [ [+ NDIA + % - 1]/K} ~ expldN)[(2 + %X - 11/K),  (7.316)

i=1
where we assumelll — oo and({N;) — 0 with a finite(N) = Y(N;). In the case
K =1, (7.316) becomes (7.311), i.e., weak single-photon tiadidrom a large
number of independent atoms results in a Poissonian ditisib(in the absence
of interference). AK > 1, (7.316) describes Poissonian distribution for groups of
K photons. For instance, in the case of two-photon radiation,

Q(X) = expu(2x+ x3)], u=(N)/2,

(7.317)
P(N) = pNe#/N!, P(2N + 1) = 0.

Apparently, this example also includes the case wihdiis the number of inde-
pendent modes ar is the total number of photons in these modes.

Consider another example of applying the composition rald15). Let us
focus on the total photon numbbrin M independent modes with the geomet-
ric distributions and the same mean photon numb@gy = (N)/M = 6 (the

YHere we neglect interference, which one can do in the caseulifF-mode detectors with a large
detection volume (Sec. 7.2).
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degeneracy factor). The generating function, accordir{@.@l2) and (7.315), is

M
Q) = [ [ 1/ - x(Nw) = 1/ - xo)™. (7.318)
k=1

Hence, atM > 1, x§ <« 1, with finite (N) we once again obtain a Poissonian
distribution,

QX)) ~ &N (M > 1). (7.319)

Thus, the total number of photons in a large number of independertas
with geometric distributions tends to a Poissonian disttibn. Note that afN) >
1, a discrete Poissonian distribution can be approximatedriormal distribution
(Fig. 7.21(b)) with the first moment and variance coinciding

P(N) ~ expi—(N — (N))?/2(N)}/ v/2(N). (7.320)
Relative fluctuations become smallfts 1,
AN/(NY = (NY™Y2 = (w/(EY)Y? <« 1. (7.321)

Thus,for high mean energy and large mode number we have obtainediasan
distribution, according to the central limit theorem andssical thermodynamics.
In the general case, (7.318) leads to the Pascal distriputio
k+M-1)! 1 k-1
K — (7 k _ k il S -
G M=)l 0" =(N) (1+M)...(1+ M )
(N+M-1)! sN
NI(M — 1) (1+)MN"
Hence, assuming k 2, we find that the relative fluctuations decrease with the
growth of the number of modes,

SN

N T\ M

(7.322)

P(N) =

(7.323)

7.6.2 Photon bunching and anti-bunching

Among various types of instantaneous states of a quantuitfat@g the coherent
ones are special because, in a certain sense, they are wssstalthe state of a
classical oscillator with fixed coordinate and velocity.caading to (7.224), the
distribution of the photon numbét for a coherent state is Poissonian, so that the
variance coincides with the mean photon number,

(AN?); = (N) = |7, (7.324)
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Thus, theN distribution for a coherent quantum ensemble coincidels thig
distribution of chaotically scattered classical parsobeer a set of cells, either in
space or in time. For an arbitrary state, the varia@idsd?) can certainly dfer
from (N); in this case, fokAN?) > (N) one speaks ophoton bunchingwhile
for (AN?)y < (N), of photon anti-bunching These fects can be quantitatively
described in terms of the normalized second factorial mamen

(N2 (N2 —(N) 1 (AN?) —(N)
= -1+ ——
(N)? (N)? (N2
For a Poissonian distributiog, = 1, in the case of bunching > 1, and in
the case of anti-bunching < 1. Because the rate of a stimulated two-photon
transition scales as N2 :), g determines the ratio dafvo-photon gicienciesfor
a given field and for a coherent field with the same mean enérgie that if we

ignore the normal ordering in the definition gf(7.325), therg will be always
greater than a unity,

g (7.325)

Oolass = (N?)/(NY? = 1+ (AN /(N)? > 1. (7.326)

In a chaotic (thermal) state, there is always bunching,esimccording to
(7.314), for the geometric distribution,

(AN?)T = (NY(L + (N)), (7.327)

andgr = 2. The variance is abo@l) due to the relatively slow decay of the ge-
ometric (‘exponential’) distribution (Fig. 7.21), whichakes ‘groups’ ofN pho-
tons withN # (N) occur more often than in the case of a Poissonian distributio
As a result, relative fluctuations of the photon number ineartial state tend at
(N) > 1 to the unity (and not to zero, as for a coherent state),

(AN/(NY)T = (1/(N) + 1)¥2 — 1. (7.328)

Sometimes one says that the first and the second terms irvjaga (7.328)
correspond, respectively, to the corpuscular and waves sidthe wave-particle
duality of a photon, and that the bunchingeet (i.e., the second term) confirms
that the photons have a tendency to joining in groups. Thigit®logy masks
the fact that the variance of some observableharacterizes the state, and not
the properties off. This approach also ignores the presence of states with anti
bunching, i.e., with the relative fluctuations less than/IN} and with two-photon
efficiency less than the one for a coherent state with the same emeagy.

An evident example of an anti-bunched state are photon-eusthtes. In a
K-photon state, the fluctuationsidfare absen®(N) = Snk, so thakN™) = (NY™
andg=1-K!<1.
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Fig. 7.22 A typical distribution of 10 photons in time in thases of (a) chaotic light (bunching);
(b) coherent light; (c) single-photon light (anti-bunatpin(d) two-photon light (super-bunching).

The above-considered mixture of the vacuum andkhghoton state (7.303)
also manifests anti-bunching under the conditibiy > K — 1. Indeed, it follows
from (7.305) that

gk = (K=1)/(N). (7.329)

Hence, single-photon decay of separate atoms turns therfteldn anti-bunched
state,g = 0, which was observed in the resonance fluorescence (S¢cof5.2
sodium atomic beam [Paul (1977)]. Certainly, in experiméstaveraging runs
not over the ensemble of experimental setups but over time.

This dfect can be explicitly explained by the fact that the decay single
atom cannot create two photons; therefore, the emittecbpsare always sepa-
rated by a certain time intervakequired for a second excitation and de-excitation
of the same atom or the next atom in the beam (Fig. 7.22(c)ralRthat our
‘'single-mode’ theory relates only to time intervdlanuch less tham; therefore,
P(N) =0forN > 1.

Radiation with anti-bunching (‘single-photon light’) cafso emerge as a re-
sult of multi-photon absorption (Sec. 6.4) of ‘usual’ (ctiamr coherent) radia-
tion. The reason is thdt-photon absorption, apparently, influences only the ‘tail’
of theP(N) distribution atN > K, which leads to the rarefication of photon groups
and the reduction of fluctuations in the initial radiatiom e contrary, the sat-
uration dfect in single-photon absorption (Sec. 4.3) makes fluctnatinore pro-
nounced, i.e., leads to photon bunching. This forms the barsa method of
obtaining very short (picosecorfdjulses in mode-locked lasers.

In the case of weak multi-photon ligh > 1, (N) < K -1, Eq. (7.329)
yieldsg > 1 (Fig. 7.23). This fect can be called ‘photon super-bunching’. It

ZEditors’ note: at present, tens of femtoseconds are achieve
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Fig. 7.23 The bunching parametgras a function of the mean photon numbbl) in the cases of
single-photon light (1), two-photon light (2), three-pbitlight (3), coherent light (4), and chaotic
light (5). In range I, there is photon anti-bunching, in rarlg bunching, in range Ill, super-bunching.

can be explained by the existence of regular groupk ghotons separated by
large time intervals (Fig. 7.22(d)). A convenient way ofaihtng directed two-

photon light is parametric down-conversion (Sec. 6.5) iezpelectric crystals.
Below, it will be shown (see (7.356)) that super-bunching ba used for the

absolute (reference-free) measurement of the quantlicieacy of photodetec-
tors [Klyshko (1980)].

States of field with anti-bunching and the above-mentiompatezed states
attract much attention nowadays, similarly to the way thedhing défect was very
popular soon after its discovery by Hanbury Brown and Twis$955. The anti-
bunching é&ect, observed in 1977, is considered as disproving the skssical
radiation theory (see (7.326)). Indeed, according to théoty, a single-mode
laser with stabilized intensity should create photocurrth minimal possible
fluctuations, which, similarly to the shot noise, should lmésBonian due to the
equivalence of all time moments. Thus, it seems to be implest create a more
uniform time distribution of photoelectrons than a Poisanrone. In contrary,
from the photon viewpoint, a flux of photons that are equadisin time (obtained,
for instance, via a periodic excitation of a single atom) w@use an equidistant
flux of photoelectrons, provided that the quantuiiiceencyn is high enough.

It is typical that in states witly < 1, for instance K-photon ones, quasi-
probabilitiesP(z) have huge singularities or take negative values [Glaut#87);
Perina (1972)], which allows one to consider such statessaengially non-
classical, i.e., having no classical analogues.
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Consider now the quantum interpretation of interferenqeeerents like the
Young one and the Hanbury Brown—Twiss one (Sec. 7.2). Whikntzing the
field, it is now convenient to expand it not over plane wavesdwer orthogonal
eigenfunctionau,(r) of the corresponding boundary problem, which takes into
account the existence of screens with slits and semi-temaspmirrors. In the
simplest case of a monochromatic field and single-mode teteall field can be
represented as a single mode,

E(r,t) = u(r)a(t) + u*(r)a’(t) = E® + EO), (7.330)

wherea(t) = ae“! is the photon annihilation operator in this mode.
The counting rate of a single-photon detector placed attpgiacales as the
mean intensity,

G = (EVEWY) = ju ANy, (7.331)

where the subscript 1 substitutes the argumgtl = a'a, and the averaging runs
over the initial state of the field. We stress thét) is the solution to the classical
wave equation, it describes the propagation of classicatsydheir dffraction and
interference. Thus, theoncepts of a photon and a wave by no means contradict
each other and here we do not need to speak about the wave-particl@gydual
The operators, a’, N do not depend on the coordinate; therefore, a photon is an
elementary excitation of the@holefield and the question ‘which slit did the photon
go through?’ is meaningless. The space structure of thei§ieldtermined by the
functionu(r), its square gives the probability to discover a photon adriitrary
pointr; therefore, it plays the role of the wavefunction of a photon

The corpuscular properties of a photon are only revealezlithr detection,
when the energy of the whole fieltlw (in the caseéty) = |1)), ‘gets focused’ at
a single ‘point’. This is manifested most clearly while ohsgeg flashes on the
screen of an image intensifier. Note that the duality of waekpts, discussed
quite often, is not typical for only quantum mechanics; thme property is pos-
sessed by classical waves.

Further, correlation of the counts wfsingle-photon detectors placed at points
ri,...,mscales as the normally ordered moment of order

G = (ED LEQPEY .. EY) = up.. . um: N™ ). (7.332)

The first factor here describes the influence of the spatgitipas of the detectors.
For the casen = 2, this result was obtained in Sec. 7.2 from a simple model
assuming the binomial distribution of photons at points.

Let, for instance, two-photon light be incident on an intgnmterferometer
(Fig. 7.13); then, according to (7.314), the readings ofcibreelator will scale as

GY = JutlX(N),
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while the mean counting rate will scale@é”. Hence, the relative correlation is
gi3 = G3/GIVGS = 1/(N). (7.333)

In the case of a pure two-photon statd) = 2, and the so-called negative corre-
lation, or anti-correlation, takes place, wgf&) < 1 (Fig. 7.12).

Above, for simplicity we discussed the statistics of a singlode; however,
many conclusions can be generalized to the case of a mutterfield. Indeed, in
spontaneous two-photon emission (Sec. 6.2) and in spamtamarametric down-
conversion (Sec. 6.5), photons in pairs usually belong ftemint modesk; and
ko, which differ both in frequency and in direction. Then, a small contidyu
from the stat¢l);|1), is added to the vacuum, which provides the equality between
the moments,

(N1N2) = (N1) = (N2).

As a result, aN;) < 1, the probability of discovering two photons is much
greater than the product of single-photon probabilities,

O(k1, ko) = (N1N2) /(N1 ){(N2) = 1/(N;) > 1. (7.334)

This inequality, which can also be interpreted asghper-bunchingect (com-
pare with (7.329) aK = 2), was experimentally confirmed by measuring the rate
of coincidences between two PMTSs.

7.6.3 Statistics of photoelectrons

LetVget < Veoh, then the radiation incident on a PMT photocathode can bsidon
ered as single-mode (Sec. 7.2). Following Scully [Arec@®if4)], from explicit
combinatorics considerations we will now show (see alsasRébudon (2000);
Klauder (1968); Glauber (1965); Perina (1972)]) that thenbitel formula (7.71)
maintains its form even in the framework of the quantum théoe! is replaced
by nN, wherer is the PMT quantumféciency ancN is the operator of the photon
number in the detection volume (equal to the operator of tiwgn number in
one mode times the fact®yet/Veon).

Consider first a field in a pure Fock state with the photon nurhbimcident
on a photodetector (PMT). Let the probability of registgransingle photon bg
(0 2 n = 1), then the probability of registering amy photons out of their total
numberN s m, apparently, is determined by the Bernoulli binomial disition
(Fig. 7.24),

P(mIN) = Cly™(1 - p)N-"™. (7.335)
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Fig. 7.24 Distributions of the photon numb&(N), and the photoelectron numb&(m), in the case
of the detector ficiency 03 and the field being in a four-photon Fock state.

Hence, in the case of an arbitrary state of the field, we finddlation between
the distribution of photon$2(N) = pnn, and the distribution of photoelectrons (or,
in other wordsphotocounty

P(m) = > P(MIN)P(N). (7.336)

N=m

In the case; = 1, we haveP(m|N) = 6N, and the distributions of electrons and
photons coincide. Ay < 1, the binomial transformation (7.336) adds additional
stochasticity, distort®P(N) and complicates solving the inverse problem, which is
the determination of the field statistics from the measuteatqrount statistics.
(Using (7.346), one can show thB{N) can be formally expressed in terms of
P(m) through a relation similar to (7.336) but wittreplaced by 1r.)

Note that ifp is understood as the probability of a photon ‘survival’ afight
passing a layer of matter with single-photon absorptioanth has the meaning
of the photon number at the output of the layer, whilds the input number
of photons. Theny = e, wherea is the absorption cdicient andl is the
layer thickness. Thus, Eg. (7.336) and all its corollariesadso applicable to the
transformation of the field statistics caused by linear gtigan of the field by
cold matter.

Let us pass from th&l-representation to therepresentation using (7.301).
As a result, (7.336) leads to the quantum analogue of the Bldatnula (7.71),
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which gives the photoelectron distribution in terms of thesj-probabilityP(2)
of azstate,

P(m) = f 2P (i) "e " (7.337)

This relation, after taking into account (7.270), can begepnted in an invariant
form,

P(m) = ¢ (aN)"e™™ 1y/m, (7.338)

whereN = a'a. Thus, the distribution of photoelectrons is of a Poissofitam
but has additional quantum averaging including the opamaif normal ordering.
Note that the obtained expressioftdis from the photon distribution (7.302) only
by the replacement dfl by nN.

The integral transformation (7.337)can be easily realfpedhe cases of co-
herent and chaotic states. Then, it turns out that the fomatiforms of the dis-
tributions for photons and photoelectrons in these two saséncide. Indeed,
assuming in (7.3379(2) = 6@(z - z;), we find

P,(m) = (m)™e™™ /mi; (7.339)
further, it follows from (7.337) and (7.280) that
Pr(m) = (m)™/(1+ (m)™*, (7.340)

where(m) = n{N).

Recall that?(m) can be also understood as the photon distribution at thrubut
of a cold layer with single-photon absorption£ e'). Thus, linear absorption at
T = OK does not change the form of the photon distribution in tes of chaotic
and coherent incident radiation (in contrastMephoton absorption, se@?).
Absorption or amplification al # +0 is accompanied by chaotic spontaneous
emission, which changes the shape of the distribution.

The obtained relations (7.336), (7.337), (7.338) betwéendistributions of
photons and photoelectrons are rather complicated. Tla¢ioes between the
generating functions and the factorial moments are muchlsim

m® = PkN®), (7.341)
where
m® = (mm-1)...(m-k+ 1)), (7.342)

NO = ¢ NK:y = (N(N-1)...(N-Kk+1)). (7.343)
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Here, the functions afn are averaged using the discrete distributgm),

00

(Fm) = > F(mP(m), (7.344)

m=0

The gquantum mean valu€f,(N)), has a similar form in thé&l representation.
Equation (7.341) can be easily obtained using the formab$menerating
functions for photonsQpno(X) (see (7.307)), and electrons,

Qel(¥) = > (1 + X)™P(m). (7.345)
m=0

By substituting (7.338), we find
Qei(X) = Qpnot(nx) = (: € 2). (7.346)

Hence, with an account for (7.308), we come to (7.341).
From (7.341), we easily obtain relations between usual nmsne

(my = n({N), (7.347)
(mP) = (N + ?((N?) = (N)), (7.348)

and between the variances (compare with (7.78)),
AP = (m)(1 — ) + n?(AN?). (7.349)

Thus, to the usual shot noise of the photocurrémy, ‘photon noise’ (AN?),
is added with the weighj? (which seems natural), but simultaneously, the term
17(N) is subtracted (which is surprising for semi-classical tigoln the case of
photon anti-bunching AN?) < (N), so that the photocurrent noise is less than the
Poissonian, i.e., electrons appear with some regularégifise’ each other.

Note that, according to (7.341he bunching parameters (as well as all nor-
malized factorial moments) of photons and electrons cd#ci

g=m?/m? = N@/(N)2.

If N is understood in these equations as the total number of psatoM
independent modes, then the equations will describe thistsia of anM-mode
detector. For instance, in (7.315) and (7.346) we find that

M
Qui) = [ | Q) (7.350)
k=1

whereQx(X) is the generating function for tHeh mode.
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In the case of modes with a geometric (thermal) distributddrphotons,
(7.312) leads to (compare with (7.318))

Qei(¥) = 1/(1 - xpo)™, (7.351)
wheres = (N)/M is the mean number of photons in one mode.
At M > 1 andxné < 1, this function tends to (compare with (7.319))
Qel(X) ~ €M = gXm (7.352)

Hencea multi-mode detector registering a thermal field produdestpcounts
with Poissonian statistics and does not manifest buncfsirgilarly to a multi-
mode field, see (7.319)).

For a finite number of modesl, from (7.351) we find the distribution and
factorial moments that coincide with (7.322) after the agpiment of by né, or
(N) by (m). In particular, from (7.323) we find relative fluctuations,

Am/(my = (1/(m) + 1/M)V2, (7.353)

Similarly, replacingx by nx in (7.317), we find the generating function for a
multi-mode detector registering two-photon light,

Qei(X) = expkm)(x + nx%/2)]. (7.354)

It is important that aty # 1, this function difers from (7.317), which opens an
interesting possibility of absolute (reference-free) surament of the PMT quan-
tum dficiencyn. Indeed, from (7.354) we find that

(mPy = (Mymy + 1+ 1), (7.355)
or
n = (AMPY/(m) — 1 = (m)(g - 1). (7.356)

Thus,by measuring the mean value and variance (or the bunchingmater)
of the photocounts one can find the quantyficiency.

7.7 °Interaction of an atom with quantized field

So far, we have been calculating the probabilities of quantansitions in the
framework of the semiclassical approach, where the spentaitransitions were
described not rigorously, with the help of additional rubegnalogies introduced
without suficient justification. In the present section, we will fill thgap. It will
be shown that the interaction between two stationary quasyistems can be con-
veniently described phenomenologically in terms of notynahd anti-normally



328 Physical Foundations of Quantum Electronics

ordered correlation functions (CFs). These functions hraeee direct relation
to the energy exchange than the symmetrized CFs that are aoipnsed. We
will also consider the symmetry of CFs, the relations betwdi€erent CFs, and
the dependence of CFs on the microscopic parameters of stensy and their
Green’s functions, i.e., response to coherent pertunbsitio

7.7.1 Absorption and emission probabilities

Consider the interaction of a single atom with quantizedifiélet the atom and
the field be independent at the initial time mométg},= [M)|i) = |mi), where/m),
liy are the initial states of the atom and the field, respectivigiythe first order
of the perturbation theory, the amplitudg:(t) of the transition into some state
Inf) is determined by the matrix element of the interaction ofoerén f|V|mi)
(Sec. 2.1). In the dipole approximation,
t
Cnf = —% dt'(nfld(t") - E(t")|mi), (7.357)

to
where the operators are considered in the interactionngicte., without the ac-
count for the perturbation.

Let us split these operators into the positive- and negditeguency parts. At
t—to =T > 1/w, fast oscillating (with approximately twice the mean freqay
w) productsd™ . E® andd™ - EC) have no contribution into the integral (7.357);
therefore, one can write

—V(t) ~ dOt) - ED() + dD (1) - EO(t). (7.358)

This is the rotating-wave approximation, which we alreatbgdssed in Sec. 2.2.

Further, assume that the initial and final states of the atndfoathe field
are energy ones, then the first term in (7.358) gives a noraerwibution only
for a quantum transmitted from the field to the atom, whiledbeond one, only
for a quantum transmitted from the atom to the field. Henoe ptiobability of a
transition with absorption is

t
Pr(nfimi) =772 [ dtdr’d$)(@)dRAe)ES () ED ), (7.359)
to
where we have used the equalit§) = (f{;))* and assumed, for simplicity, that
the vectorsd and E are parallel. In the case of emission, apparently, the super
scripts @) and ) in (7.359) should be interchanged. Note that the approtiima
(7.358) does not influence the transition probability in ¢thee where one of the
interacting systems is in an energy state, since the prediidhe form féTn) frﬁrn)
are zero then.
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If we are not interested in the final state of the system, @.3bould be
summed over all possible stated). These states form a complete set; therefore,
the total probability of the transition ‘up’ will be (compawith (2.82))

t
Py =h2 f drdt’FO, )G, 1), (7.360)
to

where
FOW,t”) = dD)dO ")), GO, 1) = (EQE)ED (")) (7.361)

are, respectively, the anti-normally ordered CF for the@iipnoment of the atom
and the normally ordered CF for the field at the initial stati¢h, apparently,
can be mixed as well).

Similarly, the probability of the emission of a quantum igeteined by the
square of (7.357) with only the second term in (7.358) takémaccount,

t
P =h2 | dtdt’FO,t")GO(,t"). (7.362)
to
Thus, the probability of an energy quantum transfer from one quemsys-
tem to another one is determined by the product of the ungmtlcorrelation
functions, the normal one for the emitting system and thierearinal one for the
absorbing systertprovided that the initial states are independent and at twze
of them is not coherent). The last condition is to excludeeceht interactions,
which depend on the phases of the states.
The mean variation of the total photon number within tifhein the second
order of the perturbation theory, is equal to th&atience between (7.362) and
(7.360),

t
AN =772 | dtdt’(FPGE) - FOGH), (7.363)
to

In the ground states, normal CFs are equal to zero; therefoeespontaneous
emission of an atom is determined BY" (this conclusion was already used in
Chapter 5), while the probability of a cold detector regisig a photon is deter-
mined byG(*) (Secs. 7.2, 7.6).

Note that the obtained result (7.363) is valid for any systarith the interac-
tion energy of the forn}; fig;.

7.7.2 Spontaneous emission

According to (7.362), the probability of a spontaneousditéon is

t
Psp=%"2 | dtdt’Ft)Ge (7.364)

to
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where G¥®° is the anti-normally ordered CF of the field in the vacuumestat
According to (7.131),

GY(t',t") = ) CieGie(Olaue( )ak,,(t”)|0>—2c g0, (7.365)

Kk~
wherec? = 2w/ L3. Note that regardless of the state of the field,
GO, t”) = GH ", t) + G4, t"). (7.366)
If only two levels are taken into account (see (5.30)),
d®(t) = dootZe'eot, dO(t) = dio?leert, (7.367)
wheredy = dip, 011 = dop = 0, wo = woy > 0, o2 = (?H) = |1)(2). Since

o™ = 0 (™ = pams (7.368)
it follows that
FOUt, 1) = |dol?€“® )0,
FOW,17) = [dol’e™ " pys.
Thus,the correlation functions of a two-level atom scale as thpytations
of the two levels: the normally ordered one, as the uppestipopulation, the

anti-normally ordered one, as the lower-level population.
With an account for (7.365) and (7.369), Eq. (7.364) takeddinm

= n7?|dolp22 Z c2 sin® g f dt dt’d(@ewot’ =)
k
wherevy is the angle betweek anddp. Attty — +o0, the integral yields

[276(wk — wo)]? = 27T 8(wk — wo). (7.370)
Passing to integration over modes (see (7.100)), we obtain

(7.369)

P |dof? Pzz
T =

The integral of siAdy over aII directions equals®@3; as aresult, at;; = 1 we
again obtain the familiar equation for the probability ofpestaneous transition
of an excited two-level atom,

Wsp = (4k3/37)Idol?, (7.372)

Wsp =

f d3kewy Sir? 9o (wk — wo). (7.371)

wherekg = wp/cC.

Spontaneous emission from a three-level system has besadglconsidered
in Sec. 5.2, where it was shown thia,(T) oscillates with the frequenays,
corresponding to the splitting between the two upper lefidls quantum beats
gffectwith the coherent initial state of the atom). Also, recadittthe spontaneous
emission ofN two-level atoms leads to tteuperradiance gectin which W, is
increased by a factor ™2 (Sec. 5.3).
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7.7.3 Interaction of stationary systems

If the initial unperturbed states of both interacting systeare stationary, then all
CFsin (7.363) depend only on thdi@girence of the integration variablés;-t” =
7. (This assumption excludes from consideration the quatesats, see Sec. 5.2,
and the coherent states, see Sec. 7.5.) If, in addition tbereation time—ty = T
is much greater than the correlation times of the atom anfidlik then the double
integral in (7.363) scales &, and one can introduce time-independent rates of
‘up’ and ‘down’ transitionsW = P/T.
Let us define the correlation functions of a single variable,
F® = FO(t, t + 1) = (dP(0)dD (1)) = F&*

-7

) (7.373)
G™ = Gt t+ 1) = (EP(0)EM (7)) = G,
then (7.363) becomes
T
AN =172 f do(T = )[FHGH) - FOGH + (r - —1)]. (7.374)
0

If T is much greater than the correlation time of the atom and #ié, fthen it
follows from (7.374) that

W=hr2 f de(FYGH — FOGM), (7.375)

whereW = (P, —P;)/T and the sign ofV determines the direction of the quantum
transfer (from the atom to the field &t > 0).

Our initial model describes the time evolution of the staiethe atom and
the field. Angle brackets in (7.373) denote averaging oveetisemble of experi-
ments with the same initial conditions andfdientr. If, however, we assume that
both systems are in contact with their thermostats (Figh)7\&hich continuously
restore and maintain the initial stationary states, wealitain an ergodic model.
Then, (7.375) describes a continuous flux of energy quaatetnitted from one
thermostat to the other one through the ‘atom-field’ system.

|

el Atom Freld ==
1

N

Fig. 7.25 Stationary interaction between an atom and a fiele atom-field coupling is often the
‘bottleneck’ for the energy exchange between the therno$ia To.
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Let us now write the CF (7.373) in terms of the microscopi@paeters of the
systems. Averaging with the help of stationary density roasr (not necessarily
equilibrium ones) yields

G = " GR(Nwe™,
k

GO = 3" (N + 1)g,

“ _ (7.376)
F£+) = Z |dmn|2,0m _lwmnT,
m>n

Fﬁ_) = Z |dmn|2pnneiwmnr,
m>n

where(N)y = <af<ak> are mean photon numbers in the modes @pcare relative
populations of the atomic levels. After substituting (&3ihto (7.375), the rate
of quantum exchange takes the form

W =202 3 ldmnl*(wk ~ wmd[((N) + Dpmm = (Nl (7.377)
k,m>n
The three terms of the last factor correspond to the threestg transitions be-
tween each pair of levels according to Einstein (Chapter 2).
By inserting into (7.377) the energy of a quanthay, apparently, we find the
power of emission or absorption,

P = (2L D" fldl?8(wk — @) (omm— Aam(NO), (7.378)
k,m>n
whereAnm = pnn — Pmm iS the population dference. This equation &) = 0
describes the spontaneous emission of an atom into the maand atoym = O,
the radiation heating of a cold atom.

Note that the normally and anti-normally ordered CFs inticetl by (7.373)
are notreal and do not possess a certain parity (in contrakigsical CFs). How-
ever, one can construct even (symmetrized) and odd (amiivgtrized) combina-
tions,

FO = ReF, = 2(dod + dydo) = FY,

2
(7.379)

Fga) = ImF; = %<d0dr —d.do) = _F(a)

-7

and similar function@ﬁs), G(Ta) for the field. Here, we have also introduced the
‘total’ CF F,, equal to the sum of normally and anti-normally ordered CFs,

Fr = (dod,) = (d$dW + dPdO)y = FO) + FO = F~ . (7.380)
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In order to find the inverse transformation (exprEé@ in terms ofF,), it is nec-
essary to use the spectral expansion.

Often, it is only the symmetric combinatid?ﬁs) that is used, and it is called
the CF. Below, it will be shown that the antisymmetric conation Ff") is closely
connected with the response of the system to a coherentipatitan, i.e., with
its susceptibility or the Green’s function. Note that in ekmental optics, one
usually deals with non-coherent systems, so that, acoptdir(7.375), CFF®
provide a more direct description of the observédas.

From the definitions (7.379) and (7.376), we find the micrpsctormulas,

GY = Z C2(2(N) + 1) cosfukT), (7.381)
k
G® =} cEsin(wir) = IMGY™, (7.382)
k
ng) = Z |dmn|2(Pmm + Pnn) COSWMAT), (7.383)
m>n
F@ = " [t AnmSin(ima). (7.384)

m>n

Below, it will be shown (see (7.390), (7.394)) that in theeca$a linear or equi-
librium system, the only dierence between various types of CFs is théedent
contributions of zero-point fluctuations into these fuaos.

7.7.4 Spectral representation

The Fourier transforms of stationary CFs are catleglspectral densitie®f the
fluctuations of the corresponding observables, such asns$tance, the electric
field or the dipole moment of an atom). It is clear from defons (7.373) that
the Fourier transforn{" of the normally ordered CF{" is nonzero only at
w > 0, while the Fourier transform of the anti-normally orde@fg only atw < 0.
Therefore, they can be combined into a single funckgnthe Fourier transform
of F,

Fo,= deéMF,/zn, Fo=F, =FO+iF@=F® +F) s,
(7.385)

F® = Fob(zw), FO = (Fy + F_,)/2, F@ = (F, - F_,)/2i,

and similarly for the field CFSE. Here, we have also introduced the Fourier
transforms of symmetric and anti-symmetric real CFs, wiiabte the following
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properties:
FO=FO = FO @ - _F@ - _g@ (7.386)

Substituting into (7.375) the inverse transformation,
F® = fo ) dwe™“TF,,, (7.387)
with the factoriw, we obtain the spectral expansion of the power,
P = %ﬂ fow dww(F,G_, — F-,G,) = %ﬂ 1: dwwF,G,, (7.388)

where all spectral CFs are positive. Thus, we have sepapatgtive and nega-
tive terms, corresponding to emission and absorption. Ipags to the Fourier
transforms of symmetric and anti-symmetric CFs, (7.388)dahe form

4 )
p= fo dww(FIGE — FOGY), (7.389)

where such separation is absent.

The explicit expressions for the spectral CFs in terms oftiiteroscopic pa-
rameters can be easily found through the Fourier transfiomaf (7.376) and
(7.381)—(7.384),

GE) = > GNos(w - w),
k

GO = D7 RN + 1)o(w + @),
k

G = 37 (Mo + 3 0t - )+ 60+
k

G = L3 o~ w) - 6w + i)l
k

(7.390)
Ft(:) = Z |dmn|2pmm§(w — Wmn),
m>n

Fi;_) = Z |dmn|2,0nn6(w + Wmn),

m>n

1
FS = 2 Z |l (omm + prn)S (@ + wimn).
mn

1
FO == > oA (@ + wm).
mn
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Comparing the last expression with Eq. (4.57) for the lirsesceptibility (polaris-
ability) a,, of a single atom ay = 0, one can see that the anti-symmetric spectral
CF of a stationary system coincides (up to the factefi with the imaginary
part of the susceptibility of the system with respect to aereht excitation,

a! = (2r/in)F@, (7.391)

The response functian and its Fourier transform are called tie¢arded part
of the Green’s functionf the system. Note that in order to determine the suscep-
tibility of matter, experimentally or theoretically, onequires the field to be in a
coherent quantum state (Sec. 7.5). And vice versa, the tiefiraf the suscepti-
bility of the vacuum (Sec. 4.1) is based on the coherent sfatee matter. From
the comparison between (7.390) and (7.365), it follows@ﬁt: (ImGY29,,, i.e.,
the role ofa in the case of the field is played by the anti-normally ordeZ&dof
the vacuum.

Recall thate/), in its turn, unambiguously determine$, (Sec. 4.1). Thus,
the kinetic parameters of a stationary system are in onere-correspondence
with its unperturbed fluctuation characteristitdln the case of equilibrium sys-
tems, this relation can be inverted, so that each one of the@&s of the system
determines the other ones.

7.7.5 Equilibrium systems. FDT

At thermodynamic equilibrium, we have Planck’s distriltior the photons and
Boltzmann’s distribution for the populations,

(N = N(wk), pmm= AnmN (0mn), (7.392)
where

-1
N(w) = [expi—f‘r) - 1] =N,. (7.393)

Due to thes functions in (7.390), the temperature factorg\d€an be removed
from the sum; as a result, all CFs can be expressed in termscbf@her or in
terms of the susceptibility imaginary part. For instanodhie case of an atom,

/]
F(+) = ; waggw’

h
PO = v, + al, = O exp™, (7.394)
T K

h 1
FO = - (Nw + —)a;;,
Vg 2

aaguch relations are called the Kubo formulas, see, for instaRef. [Zubarev (1971)].
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whered,, equals unity atv > 0 and zero atv < 0. The last equation in (7.394)
is called thefluctuation-dissipation theorem (FD®) theNyquist-Callen-Welton
theorem

Let the atom and the field be in equilibrium states with theperaturesr;
andT,, respectively. Then, according to (7.394) and similar éiqua for field
CFs, (7.388), (7.389) take the form

P = —4i f dwwa!/GB (N1 - N2), (7.395)
0

whereN, = [exp(iw/«T,) — 1]71. If the temperatures are close, the last factor
in (7.395) scales a$§; — T, then the ratig?/|T1 — T,| determines, through!’,

the ‘heat conductivity’ of the atom-field link, which prowd the heat exchange
between the two thermostats.

Here, we only considered single-quantum transitions arehli susceptibility,
which are described in the first orders of the perturbatienith. A similar consid-
eration can be performed for multi-quantum transitionglimear susceptibilities,
and higher-order CFs. The corresponding generalizatibted-DT, obtained by
Efremov and Stratonovich, are described in short in Refy$kko (1980)].

In conclusion, let us mention that the interaction betweeatam and a field
leads not only to the energy exchange but also to a certaihafhthe energy
levels. In the case of the vacuum state of the field, this &afis to a variation of
the eigenfrequencies by a value about #2 (for the hydrogen atom). Thigfect
is calledthe Lamb shif{see, for instance, Ref. [Allen (1975)]). If the field is in
an excited state, the shift is called tB&ark gfect in alternating field5.48). This
phenomenon has to be taken into account in many problemsefdpectroscopy.
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