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Preface

This book belongs to the series of textbooks in electronics and radiophysics writ-
ten at the Physics Department of Lomonosov Moscow State University. Similarly
to the other books of this series [Migulin (1978); Vinogradova (1979)], it is writ-
ten for undergraduate Physics students and aims at introducing the readers to the
most general concepts, rules, and theoretical methods. Themain focus is on the
three directions in physical optics that appeared after theadvent of lasers:nonsta-
tionary interactions between light and matter(Chapter 5),optical anharmonicity
of matter(Chapter 6) andquantum properties of light(Chapter 7). The first four
chapters describe the theoretical base of more traditionalparts of quantum elec-
tronics. The book starts with a short review of the history ofquantum electronics
with its main concepts, ideas, and terms. Further, basic methods for describing
the interaction of optical radiation with matter are considered, based on quantum
transition probabilities (Chapter 2), the density matrix formalism (Chapter 3), and
the linear dielectric susceptibility of matter (Chapter 4).

The author tried to combine a systematic approach with a moredetailed in-
sight into several interesting ideas and effects, such as, for instance,superradiance
(Sec. 5.3),phase conjugation(Sec. 6.5), andphoton antibunching(Sec. 7.6).

The reader is expected to know the basics of quantum mechanics and statistical
physics; however, much attention is paid to explaining the notations used in the
book. The author tried to gradually increase the presentation complexity within
each section as well as within the whole book. Each section orchapter starts with
a simplified qualitative picture of the phenomenon considered. More complicated
sections providing additional information are marked by circles.

The book uses the Gaussian system of units, which is most common in quan-
tum electronics; however, in the numerical estimates, energy and power are given
in Joules and Watts.

v
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vi Physical Foundations of Quantum Electronics

A large number of general guides in quantum electronics havealready
been published [Klimontovich (1966); Zhabotinsky (1969);Bertin (1971); Fain
(1972); Pantell (1969); Yariv (1989); Piekara (1973); Khanin (1975); Tarasov
(1976); Loudon (2000); Apanasevich (1977); Maitland (1969); Svelto (2010);
Strakhovskii (1979); Kaczmarek (1981); Tarasov (1981); Elyutin (1982)] at all
levels of presentation, from popular books [Klimontovich (1966); Zhabotinsky
(1969); Piekara (1973)] to fundamental monographs [Fain (1972); Khanin (1975);
Apanasevich (1977)], and in many cases the reader will be referred to them. For
instance, the present book does not consider the design and parameters of lasers
and masers as well as their various applications. The theoryof optical resonators
and waveguides is presented, in particular, in the University course of wave the-
ory [Vinogradova (1979)] (see also [Maitland (1969); Yariv(1976)]), while the
self-oscillation theory, dynamics, and classical statistics of laser systems can be
found in the textbooks on the oscillation theory [Migulin (1978)] and statistical
radiophysics [Akhmanov (1981)] (see also [Khanin (1975); Rabinovich (1989)]).

The book is based on the lecture course in quantum electronics taught by the
author to undergraduate students for 20 years. This course was started in 1960,
after a suggestion by S. D. Gvozdover, even before the appearance of lasers. At
first, the course was completely devoted to masers (paramagnetic amplifiers and
molecular generators) and radio-spectroscopy. The adventof lasers and the ‘laser
revolution’ in optics, spectroscopy and other fields of science made the author
move the ‘center of gravity’ of the course from the microwaverange to the op-
tical one and supply the course with new sections. However, one should keep in
mind that lasers and masers are based on common principles and that quantum
electronics originated from radio spectroscopy and radiophysics. The latter pro-
vided quantum electronics with one of its basic notions, thefeedback, and it is not
by chance that the founders of quantum electronics and nonlinear optics, such as
Basov, Bloembergen, Khokhlov, Prokhorov, Townes, and manyothers, worked in
radiophysics. Sometimes quantum electronics is called ‘quantum radiophysics’.

Both the ‘Quantum Electronics’ lecture course and this bookwere hugely
influenced by Rem Viktorovich Khokhlov whose advice and friendship are un-
forgettable. The author is indebted to P. V. Elyutin, A. M. Fedorchenko and
A. S. Chirkin, who have read the manuscript and helped to eliminate many flaws.
The author is also grateful to V. B. Braginsky who stimulatedthe writing of this
book.

D. N. Klyshko
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Foreword

Below, we present the translation of a book by David Klyshko (1929–2000),which
was originally published in 1986. This is a remarkable book by a remarkable per-
son whose insight into physics in general and quantum electronics in particular
was so deep that even now, after nearly 25 years, a lot of new ideas can still be
found in this book. The main advantage of the book is that it generalizes seem-
ingly unique effects and joins together seemingly different approaches. Because
it is mainly at the boundaries of the explored that one shouldlook for new ideas
and discoveries, this book will be helpful for both a researcher and an ambitious
student aiming at research in nonlinear optics, laser physics, quantum or atom
optics.

Although some parts of the book look very new even now, othersare definitely
outdated. This statement relates not to the sections or evensubsections of the
book; rather, it is about numerous references to the technology or parameters of
the equipment that were available when the book was written.This requires addi-
tional comments and explanations, which we have endeavoredto make throughout
the whole text, mostly as footnotes but sometimes as additional sections (Secs. 1.3,
7.2.10 and 7.5.7).

At the same time, we by no means think that the additional parts provide a
complete view at the modern state of quantum electronics. For this reason, we
have also included an additional list of references, containing books or review
articles that appeared after the original book had been published.

Maria Chekhova
Sergey Kulik
The Editors

vii
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List of Notation and Acronyms

a, transverse size, cm; photon annihilation operator
A, area, cm2; probability of spontaneous transition, s−1; vector potential,

(erg/cm)1/2

B, scaling coefficient between the stimulated transition probability and
the energy spectral density, cm3/(erg·s2)

c, state amplitude
d, dipole moment, (erg·cm3)1/2

D, electric induction, (erg/cm3)1/2

e, unit polarization vector
E, electric field, (erg/cm3)1/2

E, energy, erg
f , frequency, s−1, oscillator strength
F, photon flux density, cm−2·s−1; free energy, erg
g, degeneracy; form factor, s
G, transfer coefficient, Green’s function; field correlation function,

erg/cm3

H, magnetic field, (erg/cm3)1/2

H , Hamiltonian, erg
I , intensity of radiation, erg/(cm2·s); identity operator
j, current density, erg/(cm3·s2)1/2

k, wave vector, cm−1

l, length, cm
n, refractive index
N, density of molecules or photons, cm−3; number of photons per mode
Ni , population of a level, cm−3

N, mean number of photons per mode in equilibrium radiation
p, momentum, g·cm/s; pressure, erg/cm3

ix
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x Physical Foundations of Quantum Electronics

P, polarization, (erg/cm3)1/2; probability
P, power, erg/s
q, generalized coordinate
Q, quality factor; generating function
r, radius vector, cm
R, Bloch vector; reflectivity coefficient
s, angular momentum, erg·s
S, Poynting vector, erg/(cm2·s)
T, time interval, s; temperature, K
u, group velocity, cm/s

U, internal energy, erg; evolution operator
v, phase velocity, cm/s
V, volume, cm3

V, interaction energy, erg
w, relaxation transition probability per unit time, s−1

W, transition probability per unit time, s−1

Z, statistical sum
α, linear polarisability, cm3; absorption or amplification coefficient,

cm−1

β, quadratic polarisability, (cm9/erg)1/2

γ, cubic polarisability, cm6/erg; dissipation constant, s−1

∆, relative population difference
ε, dielectric permittivity
η, quantum efficiency
ϑ, angle or angle of precession, rad
θ, Heaviside step function
κ, Boltzmann’s constant, erg/K
λ, wavelength, cm;o = λ/2π
µ, magnetic dipole moment, (erg·cm3)1/2; Fermi level, erg
ν, polarization index; wavenumber, cm−1

Π, operator of projection or summation over permutations
ρ, density operator or matrix; mass density, g/cm3; charge density,

(erg/cm5)1/2

σ, interaction cross-section, cm2; Pauli matrix
τ, relaxation or correlation time, s
ϕ, phase or azimuthal angle, rad; eigenfunctions of the energy operator

χ(n), n-th order susceptibility of the medium, (erg/cm3)(1−n)/2=(Hs)1−n

ψ,Ψ, wave function
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List of Notation and Acronyms xi

ω, circular frequency, rad/s
Ω, Rabi frequency, rad/s; solid angle, sr

CARS, coherent anti-Stokes Raman scattering
CF, correlation function

EPR, electronic paramagnetic resonance
FDT, fluctuation-dissipation theorem

IR, infrared
MBS, Mandelshtam-Brillouin scattering
MW, microwave

NMR, nuclear magnetic resonance
OPO, optical parametric oscillator

PC, phase conjugation
PDC, parametric down-conversion
PMT, photomultiplier tube
SHG, second harmonic generation

SIT, self-induced transparency
SPDC, spontaneous parametric down-conversion

SRS, spontaneous Raman scattering
StRS, stimulated Raman scattering

StPDC, stimulated parametric down-conversion
StTS, stimulated temperature scattering
SVA, slowly varying amplitude
UV, ultraviolet
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Chapter 1

Introduction

Quantum electronics studies the interaction of electromagnetic field with matter
in various wavelength ranges, from radio to X-rays and gammarays. Investigation
of the basic laws of this interaction led to the creation of lasers, sources of coher-
ent (i.e., monochromatic and directed) intense light. Optimization of the existing
lasers and the development of new laser types, as well as advances in experimental
technology, in their turn, stimulated further developmentof quantum electronics.
This avalanche process, typical for modern science, led to new directions in op-
tics (nonlinear and quantum optics, holography, optoelectronics) and spectroscopy
(nonlinear and coherent spectroscopy), to numerous applications of lasers in tech-
nology, communications, medicine. We are probably close tosolving the problem
of laser thermonuclear fusion and laser isotope separationon an industrial scale.a

Not so diverse but also important applications were found bythe ‘elder broth-
ers’ of lasers, masers, which operate in the radio range, at wavelengths on the order
of 0.1 – 10 cm, and are used as super-stable frequency etalons and super-sensitive
paramagnetic amplifiers.

The term ‘quantum electronics’ appeared as a counterpart ofclassical elec-
tronics, mainly dealing with free electrons, which have continuous energy spec-
trum and, as a rule, are well described by classical mechanics. However, some
essentially quantum devices, such as, for instance, the ones based on the Joseph-
son junction, are traditionally not considered as part of quantum electronics. The
other name, ‘quantum radiophysics’, is not quite appropriate either, since it does
not relate to the optical frequency range.

aEditors’ note: This opinion was quite common in the laser physics community at the time when the
book was written. However, further investigations reducedthe optimism in this field, and we are now
still witnessing new attempts towards laser thermonuclearfusion (inertial confinement fusion).

1
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2 Physical Foundations of Quantum Electronics

1.1 Basic notions of quantum electronics

The operation of lasers and masers rests on ‘the three whales’, basic notions of
quantum electronics — namely,stimulated emission, population inversion, and
feedback.

1.1.1 Stimulated emission

Stimulated emission leads to the ‘multiplication’ of photons: a photon hitting an
excited atom or molecule causes, with a probabilityW12, the transition of the atom
to one of its lower levels (Fig. 1.1). The released energy,E2 − E1, is transferred
to the electromagnetic field in the form of the second photon.This other pho-
ton has the same parameters as the incident photon, i.e., energy ~ω = E2 − E1,
momentump = ~k and the same polarization type. Then, there are two indistin-
guishable photons, which can turn into four photons throughthe interaction with
other excited atoms. In the classical language, this picture corresponds to the ex-
ponential amplification of the amplitude of a classical plane electromagnetic wave
with frequencyω and wavevectork.b

Fig. 1.1 Amplification of light under stimulated transitions. A resonant photon hits an excited atom,
which then gives its stored energy to the field. As a result, the field contains two indistinguishable
photons.

1.1.2 Population inversion

Interaction with atoms that are at the lower level, with the energyE1, occurs
through the absorption of photons, i.e., attenuation of theelectromagnetic wave.
It is important that the probabilityW21 of this process (per one atom) is exactly

bSee Editors’ note in Sec. 2.5.3.
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(a) (b)

Fig. 1.2 Obtaining population inversion through optical pumping: (a) initial Boltzmann’s population
distribution; (b) strong resonant radiation balances the populations of levels 1 and 3, so thatN2 > N1.

equal to the probability of stimulated emission,W21 = W12, and therefore the
overall effect depends on the difference of numbers of atoms at the levels 1 and 2,
∆N ≡ N1−N2. Usually,populations Nm of the levels are defined per unit volume.

If the matter is at thermodynamic equilibrium with a temperatureT, then, ac-
cording to Boltzmann’s distribution,Nm ∝ exp(−Em/κT), with κ being the Boltz-
mann constant. Therefore, ifE2 > E1, thenN2 < N1 (Fig. 1.2(a)). As a result,
stimulated ‘up’ transitions occur more frequently than stimulated ‘down’ transi-
tions, and external electromagnetic radiation in equilibrium medium is attenuated.
Thus, in order to amplify field, the medium should be in a non-equilibrium state,
with N2 > N1. One says that such a state has population inversion, or negative
temperature.

A lot of methods have been developed for achieving population inversion.
The most important ones are pumping the medium (Fig. 1.2(b))with auxiliary
radiation (used for solid and liquid doped dielectrics), electric discharge in gases
and injection in semiconductors.

1.1.3 Feedback and the lasing condition

In order to turn an amplifier into an oscillator, one should providepositive feed-
back, which can be realized using a pair of plane or concave spherical mirrors. (In
masers, the active medium is placed into a microwave cavity.)

Amplification (or attenuation) can be quantitatively described as follows. Let
F [s−1·cm−2] be the flux density of photons propagating along thez axis. The
increment ofF scales as the product of the stimulated transition probability per
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unit time,W, and the number ofactive particles, ∆N:

dF/dz= −W∆N. (1.1)

In its turn, the stimulated transition probability scales as F,

W = σF, (1.2)

whereσ [cm2] is the probability of a transition per unit time for a photonflux with
unit density. It is called theinteraction cross-section. As a result,

dF/dz= −σ∆NF ≡ −αF, (1.3)

which leads to exponential intensity variation for a plane wave in matter (for
α > 0, it is called theBouguer law):

F(z) = F(0)e−αz, α ≡ σ∆N. (1.4)

The parameterα is calledabsorption(atα > 0) or amplification(atα < 0) coef-
ficient. Its inverse,α−1, has the meaning of the mean free walk of a photon. The
interaction cross sectionσ, in principle, can be as large as 3λ2/2π (λ = 2πc/ω is
the wavelength), so that in the optical range, whereλ ∝ 10−4 cm, it is sometimes
sufficient to have∆N ∝ 109 cm−3 for noticeable amplification at a length of 1 cm.

Let the active medium of lengthl be placed between two mirrors (a Fabry–
Perot interferometer) with reflection coefficientsR1,R2. Then, from (1.4), the
threshold condition of lasing is

R1R2e
−2αl = 1. (1.5)

For mirrors with dielectric coating, one can easily haveR & 0.99, and for lasing
with l = 10 cm it is sufficient to haveα = (ln R)/l = −0.001 cm−1. Usually,
the radiation is fed out from the laser by making one of the mirrors have lower
reflection coefficient.

1.1.4 Saturation and relaxation

Let us consider some other important notions of quantum electronics.Saturation
occurs when the populations of some pair of levels become equal (N1 = N2) due
to stimulated transitions in a sufficiently intense external radiation. This effect re-
stricts and stabilizes the intensity of quantum oscillators and the gain coefficient
of quantum amplifiers.Relaxationprocesses counteract saturation and tend to re-
store the equilibrium Boltzmann distribution of populations, which is determined
by the temperature of the thermostat. Relaxation processesdetermine the lifetimes
of particles at different levels and the spectral linewidths.
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Even in the absence of incident radiation or other external influence, an excited
molecule can make a transition into one of the lower-energy states by emitting
a photon. This kind of emission is calledspontaneous. Spontaneous emission
plays the role of a ‘seed’ for self-oscillations in quantum oscillators, restricts their
stability, and creates noise in quantum amplifiers. Spontaneous and stimulated
transitions in equilibrium matter lead to thermal radiation, which is described by
Planck’s formula and Kirchhoff’s law.

It is important that while stimulated effects can be rather well calculated in
the framework of classical electrodynamics with deterministic field amplitudes
E,H, spontaneous effects are consistently described only by the laws of quantum
statistical optics, whereE andH are random values or operators.

The above-mentioned terms and notions relate to different fields of theoretical
physics: quantum mechanics (energy levels, transition probabilities), statistical
physics (relaxation, populations, fluctuations), oscillation theory (feedback, self-
oscillations). Quantum electronics, as a field of physics, is remarkable and attrac-
tive because it uses theoretical and experimental tools from a diversity of fields,
and also because it poses new problems for these fields and provides them with
new experimental methods.

1.2 History of quantum electronics

Quantum electronics can be considered as a new chapter in thetheory of light
and, more generally, in the theory of the interaction between electromagnetic field
and matter. The earliest chapters of this theory were devoted to the empirical
description of normal dispersion of light in the transparency ranges of the matter,
which was studied by Newton and his contemporaries more than300 years ago.
The next steps, made in the 19th century, were the study of anomalous dispersion
within the absorption bands and the classical dispersion theory by Lorentz. The
quantum era in optics and generally in physics started at thebeginning of the
20th century from Planck’s theory of equilibrium radiation, which led Einstein to
the notion of photon, and from Bohr’s postulates. Quantum theory of dispersion
was formulated in the 1920s by Kramers and Heisenberg. Meanwhile, Dirac,
Heisenberg, and Pauli developed quantum electrodynamics.

The history of quantum electronics, in its turn, is quite interesting and instruc-
tive [Dunskaya (1974)]. In principle, at the beginning of the 20th century the level
of laboratory technique was high enough for building, for instance, a gas laser.
However, this could not happen before the discovery of certain concepts and laws,
which form the base of a quantum generator.
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1.2.1 First steps

The first step along this way, which took several decades, wasmade in 1916
by A. Einstein who introduced the notions of stimulated emission and absorp-
tion. A quantitative theory of these effects was developed about ten years later by
P. Dirac. From the theory, it followed that the photons generated via stimulated
emission have all their parameters (energy, propagation direction, and polariza-
tion) the same as the ones of the incident photons. This property is called the
coherenceof stimulated emission.

The first experiments demonstrating stimulated emission were reported in
1928 by Ladenburg and Kopfermann. These experiments studied the refractive
index dispersion for neon excited by electric discharge. (Note that in the first gas
laser, which was built only 33 years later, neon was used as well.) In their paper,
Ladenburg and Kopfermann have accurately formulated the condition of popula-
tion inversion and the resulting necessity to selectively excite the atomic levels. In
1940, V. A. Fabrikant has pointed out, for the first time, thatthe intensity of light
in a medium with population inversion should increase. (He considered this effect
only as a proof for the existence of stimulated emission but not as a phenomenon
that can have useful applications.) Unfortunately, this paper, as well as an applica-
tion for an invention filed by V. A. Fabrikant and his colleagues in 1951, was not
properly published in time and therefore did not influence further development of
quantum electronics.

1.2.2 Radio spectroscopy

The first devices of quantum electronics, masers, which werelater used in ap-
plications such as generation and amplification of waves in the centimeter range,
were developed only in the middle of the 1950s. Remarkably, quantum electronics
has first conquered the radio range; lasers appeared at the beginning of the 1960s.
This is partly because in usual optics experiments,N1 � N2, and therefore stim-
ulated emission, as a rule, plays no role. At the same time, inradio spectroscopy,
N1 ≈ N2 � |N1 − N2|, and the observed absorption of radio waves is caused by
the stimulated absorption slightly exceeding the stimulated emission.

An important role was also played by the advanced development of radio spec-
troscopy in the 1940s, in both theory and experiment. (Experimental base for
microwave radio spectroscopy was provided by the development of radar tech-
nique.) By that time, the theory of radio waves interaction with gas molecules
was developed, the structure of rotational spectra was calculated in detail, the role
of relaxation and saturation was understood. Of considerable importance were
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investigations with beam radio spectroscopes, which had been started as early as
in the 1930s. Probably, it was also important that radio spectroscopists, in contrast
to opticians, understood very well the operating principles of MW generators and
amplifiers based on free-electron beams (klystrons, magnetrons, traveling-wave
and backward-wave tubes), they were familiar with the notions of negative resis-
tance and positive feedback, and had practical experience with high-quality MW
cavities.

Among the works directly preceding the advent of masers, oneshould mention
the ones by Kastler (France), who developed in 1950 the optical pumping method
for increasing the population inversion of close levels in gases. Besides gas and
beam radio spectroscopy, an important role was also played by magnetic radio
spectroscopy, a direction that was started in the 1940s and studied the interac-
tion of radio waves with ferromagnetics and nuclear or electronic paramagnetics
(E. K. Zavoisky, 1944). These are namely the achievements inthe theory and
technique of magnetic resonance that led to the developmentof paramagnetic am-
plifiers, which have an extremely small level of noise. Population inversion has
been first obtained in a system of nuclear spins placed into magnetic field (Parcell
and Pound, 1951).

1.2.3 Masers

The idea of using stimulated emission in a medium with population inversion for
the amplification and generation of MW electromagnetic waves was suggested
at several different conferences at the beginning of the 1950s by N. G. Basov
and A. M. Prokhorov (Lebedev Physics Institute, Academy of Sciences, USSR),
C. H. Townes (Columbia University, USA), and J. Weber (University of Mary-
land, USA). The first quantitative theory of a quantum generator was published
by Basov and Prokhorov in 1954. They have found the thresholdpopulation dif-
ference necessary for self-excitation and suggested a method for obtaining popula-
tion inversion in a molecular beam using inhomogeneous electrostatic field. Later,
Basov, Prokhorov, and Townes were awarded a Nobel Prize for their contributions
to the development of quantum electronics.

In 1954, description of the first operating maser was published by Gordon,
Zeiger, and Townes. The active medium was ammonium molecular beam, focused
with the help of electric field. Nowadays, beam masers are used in the national
standards of frequency and time.

The second basic maser type, paramagnetic amplifier, was created in 1957
by Scovill, Feher, and Seidel who followed a suggestion by Bloembergen. In
paramagnetic amplifiers, population inversion is created with the help of auxiliary
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radiation, thepump, which saturates the populations of levels 1 and 3 (Fig. 1.2).
As a result, levels 1 and 2 (or 2 and 3) get population inversion. The idea of pump-
ing a three-level system, which was later widely used in solid-state and liquid
lasers, belongs to Basov and Prokhorov (1955). The active medium of paramag-
netic amplifiers, which is a diamagnetic crystal doped with asmall amount (on the
order of 10−3) of paramagnetic atoms, i.e., atoms with odd electron numbers, is
cooled down to helium temperatures. Cooling is necessary for reducing the noise
and slowing down the relaxation processes, which counteract the population in-
version. (In paramagnetics, relaxation of populations is caused by the interaction
between crystal lattice vibrations and the magnetic moments of non-compensated
electrons.)

1.2.4 Lasers

Transition from radio to the optical frequencies took aboutfive years: the first
operating laser emitting coherent red light was described by Maiman in 1960. As
the active medium, the laser used a pink ruby crystal (aluminium oxide doped
with chrome) and population inversion was achieved using blue and green light
from a pulsed flash lamp. An important step was realizing thata Fabry-Perot
interferometer, i.e., two parallel plane mirrors, is a high-quality resonator, i.e., an
oscillation system for light waves (Prokhorov, Dicke, 1958).

The laser era of physics started. Soon after the appearance of solid-state lasers
with optical pumping, a number of other laser types was developed: gas discharge
lasers (1961), semiconductor lasers based onp−n transitions (1962), liquid lasers
based on the solutions of organic dyes (1966). Rather quickly, the wavelength
range from far infrared (IR) to far ultraviolet (UV) was covered. The parameters
of the lasers (power, monochromaticity, directivity, stability, tunability) were con-
tinuously improving; their field of application rapidly broadened. An important
role was played by the invention of methods to shorten the duration of laser light
pulses (q-switching and mode locking).

First experiments on light frequency doubling (Franken et al., 1961) started the
explosive development of nonlinear optics, which studies and uses the nonlinear-
ity of the matter at optical frequencies. Holography and optical spectroscopy had
their second birth; new fields appeared, such as optoelectronics, coherent spec-
troscopy, and quantum optics. X-ray and gamma-ray lasers are to arrive soon.c

It should be stressed once again that the rapid development of quantum elec-
tronics was provided by a large amount of ideas and information stored by the

cEditors’ note: While X-ray lasers have been indeed constructed in the end of the 20th century [Svelto
(2010)], making a gamma-ray laser is still a challenge.
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beginning of the 1950s in the fields of radio and optical spectroscopy. Such di-
rections of physics as magnetic resonance or molecular-beam spectroscopy, seem-
ingly far from practical applications, led to a ‘laser revolution’ in many fields of
science and technology.

1.3 Recent progress in quantum electronics (added by the Editors)

This textbook was published in 1987, almost a quarter century ago. At that time, it
was a very modern book; it reflected the latest events in quantum electronics and
provided a complete picture of its directions and tendencies. Since then, many
changes took place in this field. New technologies appeared,new laser sources
were developed, and new effects were discovered. In this section, we will try to
briefly review the advances in quantum electronics that happened after the book
had been published.

1.3.1 Physics of lasers

During the last two decades, important progress has been achieved in laser tech-
nology, and all parameters of lasers have been considerablyimproved. Mean pow-
ers of laser radiation achieved at present amount to hundreds of kW, while peak
powers reach thepetawatt(1015 W) range. Such radiation provides the values
of electric and magnetic fields comparable to atomic ones andthrefore opens a
perspective for observing principally new effects in optics and particle physics.
The ultra-fast laser technology is now capable of producingpulses as short as tens
of attoseconds, containing onlyfew optical cycles. The spectral range covered
by modern commercial laser systems, in particular, achieved by continuous fre-
quency tuning, is from vacuum UV (about 100 nm) to mid-IR (tens of microns).

These achievements became possible due to both the development of existing
methods, such as frequency conversion, generation of higher optical harmonics,
mode locking etc., and the discovery of new technologies. Inparticular, dye-laser
systems were gradually replaced by solid-state ones. The most famous among
them aretitanium-sapphire lasersand similar systems, providing ultra-short pulse
generation, as well asoptical combs, via mode locking. Huge progress has been
achieved in the development of semiconductor lasers. A totally novel step in laser
technology, with respect to the 1980s, was the invention offibre laser systems,
which can have extremely high efficiency and therefore provide record output
powers.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

10 Physical Foundations of Quantum Electronics

Apparently, lasers became widely used devices which penetrate into all fields
of human activity starting from toys up to the high technologies and medicine.

1.3.2 Laser physics

Laser physics, or research in physics essentially based on the use of lasers, under-
went considerable progress as well. Modern laser physics covers several branches
of science and various applications like nonlinear and quantum optics, fiber op-
tics, optical pulse shaping, optoelectronics (including integrated optics), optical
communications, different aspects of general optics etc. New directions appeared,
such as, for instance,high resolution spectroscopyor atom optics. Some of the
new directions will be discussed in more detail below; the rest will be briefly men-
tioned here. Application of laser methods tometrologyresulted in the develop-
ment ofcaesium atomic clockto a high-technology level; recently, this device has
been made on a chip and is now available as a consumer product.Laser methods
became extremely helpful in the manipulation with microscopic and nanoscopic
objects; in particular, the technique oflaser tweezersenables trapping and dis-
placing small particles, including biological objects. Laser cooling of atoms and
molecules is another example of progress in laser physics. Finally, lasers are now
widely used in the technique ofscanning near-field optical microscopy (SNOM),
which successfully complemented the existing methods of scanning tunnel mi-
croscopy and atomic-force microscopy.

1.3.3 New trends in nonlinear optics

Huge progress in nonlinear optics is due to the development of the material sci-
ence, which led to the production of new nonlinear optical materials. Among
them, there were newly synthesized crystals with high nonlinear susceptibilities
and broad transparency range, such as BBO, LBO, KTP, and manyothers. Further
opportunities in realizing various types of phase matchingwere provided by the
use of spatially inhomogeneous structures such asperiodically and aperiodically
poled crystals, photonic crystalsand microstructured fibres(photonic-crystal
fibres). The opportunities offered by such structures are: making use of new com-
ponents of nonlinear susceptibility tensors,non-critical phase matchingand si-
multaneous phase matching for different nonlinear processes, as well as processes
in different frequency ranges.

One of the novel trends is development ofintegrated nonlinear optics. Due
to the miniaturization of optical elements, involving fibreoptics andwaveguide
structures, it became possible to realize most of nonlinear optical processes on
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a chip. Optical fibres are now used not only for light transmission, but also for
beam splitting, polarization transformations, as nonlinear elements and as active
elements [Agrawal (2007)].Nonlinear waveguides, based on KTP and lithium
niobate crystals, and sometimes on semiconductor layers, are used as extremely
efficient and compact elements for frequency conversion, requiring very low pump
powers and allowing for relatively easy control. Integrated optics also uses plas-
monic structures, which form convenient interfaces between free space or di-
electrics and metal surfaces.

We now witness a certain shift of interest to novel frequencyranges. Among
them, attention is drawn to the terahertz (1012 Hz) range of frequencies, which is
important for spectroscopic studies in biology, for astronomy, and for the security
applications (detection of explosive materials and weapons). For more details
on the recent developments in nonlinear optics, one can see,for instance, [Boyd
(2008)].

1.3.4 Atom optics

A completely novel direction that appeared in the end of the 20th century is atom
optics, i.e., manipulation of individual atoms by means of laser beams. It is worth
noticing that manipulating single quantum objects characterizes the modern devel-
opment of quantum electronics and, probably, physics in general compared with
the last century when the ensemble approach dominated.

Forces acting on atoms due to the gradients of light intensity turn a standing
wave into a scatterer for atomic beams, causing diffraction, interference, and trap-
ping. Trapping of ions and atoms enables one to address thesequantum objects,
single ones or in an array, and control their quantum state. In particular, it is possi-
ble to organize the interaction between single material quantum objects and single
photons. This is extremely important both in fundamental research and for various
applications like quantum information.

Furthermore, the effect of Bose-Einstein condensation, predicted as early as
in 1925, has been observed in 1995. ABose-Einstein condensate (BEC), a large
group of atoms described by a single wave function, is one of the few examples
of a macroscopic object manifesting quantum behavior. Similarly to single atoms
and ions, a BEC can be manipulated by means of laser beams.

1.3.5 Optics of nonclassical light

Quantum optics, started by the famous Hanbury Brown–Twiss experiment
(Sec. 7.2) in 1956, had ‘explosive’ development in the end ofthe last century. New
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types of nonclassical light have been generated. In addition to single-photon and
two-photon Fock states in superposition with the vacuum (Sec. 7.5), higher-order
Fock states can be conditionally prepared now by using spontaneous parametric
down-conversion [Bouwmeester (2000); Mandel (2004)]. Thespectral and spa-
tial structure of such states has been studied in detail, as well as their polarization
properties. The concept of squeezed states (Sec. 7.5), which were first observed
about the same time as the book was published, and the idea of shot-noise sup-
pression [Yamamoto (1999)], were since then considerably developed. Squeezed
states became one of the main instruments of experimental quantum optics [Ba-
chor (2004); Walls (1994)], together with the two-photon states (photon pairs).
The phenomenon ofpolarization squeezingwas observed and studied. Finally,
various types ofentangled states[Scully (1997); Mandel (2004); Bouwmeester
(2000)], both faint (few-photon) and bright ones, based on quadrature squeezing,
were generated, and numerous experiments on testing Bell’sinequalities [Gryn-
berg (2010); Scully (1997); Mandel (2004); Klyshko (1998)]were carried out.

New sources of nonclassical light were discovered. Since the beginning of
the 21st century, optical fibres have been used as a very reliable and efficient
source of both squeezed states and photon pairs. This sourceis based on thecubic
susceptibility(Kerr nonlinearity), and the corresponding nonlinear optical effect
is spontaneous four-wave mixing(originally calledhyper-parametric scattering,
Sec. 6.5). By applying fibres with specially tailored dispersion dependence, which
can be achieved by modifying the structure, by doping, or by tapering, one can
fully control the phase matching and provide its new types [Agrawal (2007)].
Photon pairs and squeezed light are also generated in waveguide structures having
high efficiency, compact sizes, and controllable properties. In addition, modern
sources of nonclassical light include nano- and micro-emitters such asquantum
dots, vacancies and color centers in diamond, and others. These sources are in a
sense similar to single atoms, which were used for generating nonclassical light in
the 1960s and the 1970s; however, an important advantage of solid-state emitters
is much easier handling, including preparation and control.

Huge progress has been made in the development of the detection tech-
niques [Leonhardt (1997)]. The only type of photon-counting detector mentioned
in the book is aphotomultiplier tube (PMT); nowadays, much more common for
single-photon counting areavalanche photodiodes (APDs)operating in the Geiger
mode. Such detectors provide quantum efficiencies of up to 60% and time reso-
lution of about 50 ps in the visible (Si-based APDs) and near-IR (InGaAs- or
Ge-based APDs) ranges while having relatively low dark noise (up to tens of pA).
Other types of single-photon detectors appeared quite recently, namely,super-
conducting photodetectors, which can operate in the IR and even terahertz range,
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andtransition-edge sensors (TES), capable of photon-number resolution. The lat-
ter possibility, nearly impossible at the time when this book was written, is also
achieved by combining single-photon counting with time or space multiplexing.
Finally, the technique of homodyne detection, which is hardly mentioned in the
book, has been hugely developed during the last two decades.Using this tech-
nique, it is possible not only to measure the distributions of coordinate and mo-
mentum for various quantum states (Sec. 7.5), but also to reconstruct the quasi-
probability distributions, such as Wigner or Husimi functions [Schleich (2001);
Bachor (2004)].

Probably the most important event in the development of quantum optics is
its application toquantum information, a field that emerged in the end of the 20th
century at the boundary of quantum mechanics, mathematics,and information sci-
ence [Nielsen (2000)]. Along with the quantum metrology, which is briefly men-
tioned in the book, quantum information and quantum communication technolo-
gies became a real practical output of quantum optics, whichat first looked like
nothing but a collection of beautiful fundamental experiments. In quantum metrol-
ogy, in addition to theabsolute calibrationmethods (Sec. 7.6), which were devel-
oped in the 1980s, there appeared the techniques ofsuper-resolutionandprecise
positioning[Bachor (2004)] based on squeezed light or high-order Fock states. A
lot of experimental techniques, developed earlier in quantum optics for nonclas-
sical state generation, transformation and measurement, were simply transferred
to quantum communication. In quantum communication, various states of light
are used as information carriers, fromqubits(quantum information bits), qutrits,
ququarts, and high-dimensionalqudits to entangled states formed by these ele-
mentary carriers [Bouwmeester (2000); Nielsen (2000)]. Transformations of these
states by linear optical elements, as well as interactions between these states, can
form the basis forquantum gates, which, in their turn, may in the nearest fu-
ture become the key elements of aquantum computer[Nielsen (2000)]. Different
approaches to the measurement of quantum states serve as a powerful tool for
quantum state tomography and quantum process tomography. Finally, the most
advanced branch of quantum information isquantum key distribution, in which
a secret encryption key is distributed between several communicating parties in
such a way that eavesdropping is not possible due to the fundamental laws of
quantum physics.d

dThis is true provided that the unavoidably introduced errorrate exceeds some critical level, depending
on the specific type ofprotocolused.
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Chapter 2

Stimulated Quantum Transitions

The most important notion in quantum electronics is the probability for an electron
in an atom or a molecule to make a quantum transition from one level to another.
In this chapter, we will first give the general expression forthe probability of a
quantum transition in the first order of the perturbation theory (Sec. 2.1), then
calculate the probability of a transition due to monochromatic radiation (Sec. 2.2)
and find the interaction cross-section and the absorption coefficient (Sec. 2.3).
Further, we will consider stimulated transitions under fluctuating (noise) radiation
with a broad spectrum (Sec. 2.4). Noise radiation surrounding an atom can play
the role of a thermostat and cause relaxation (Sec. 2.5).

A consistent theory of electromagnetic processes should describe both the
matter and the field based on the principles of quantum mechanics. However,
most part of quantum electronics effects are sufficiently well described by the so-
called semiclassical theory of radiation, in which only the motion of particles
is quantized while the electromagnetic field is considered in terms of classical
Maxwell’s equations. By avoiding quantum electrodynamics, one gets the the-
ory considerably simplified but, at the same time, loses the chance to consistently
describe fluctuations of the electromagnetic field and, in particular, spontaneous
emission and the noise of quantum amplifiers. The present book mainly considers
stimulated effects in a classical deterministic field and therefore uses the semi-
classical theory of radiation. Quantization of the field andspontaneous effects are
considered in Chapter 7.

2.1 Amplitude and probability of a transition

In the simplest model of quantum electronics, matter is assumed to consist of sep-
arate non-interacting motionless atoms or molecules in external electromagnetic
field. Our first task is to find out what happens with a given atomin a given al-

15
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ternating fieldE(t). (Usually the effect of the magnetic field is much weaker than
the one of the electric field.) At the second stage, we will findthe back action of
the atoms on the field. The self-consistent solution to the two systems of equa-
tions describing the response of the matter to the field and the response of the field
to a given motion of charges, under certain simplifying conditions, is the main
problem in the theory of interaction between radiation and matter.

The behavior of material particles in given external fields is described by the
Schrödinger equation,

(i~∂/∂t −H)Ψ(r , t) = 0. (2.1)

Here,Ψ is the wave function, whose arguments are the set of coordinates r =
{r1, r2, ...} and the time;H is the energy operator consisting of the non-perturbed
part,H0, and the alternating energy of the particles in the externalfield,V(t),

H(t) = H0 +V(t). (2.2)

The non-perturbed energy, in its turn, includes the kineticenergy of the particles
and the energy of their interactionV0. (The latter also includes the energy of the
particles in external static fields).

2.1.1 Unperturbed atom

In the absence of the alternating field, the wave function canbe represented as

Ψ(0)(r , t) =
∑

n

c(0)
n Φn(r , t), (2.3)

Φn(r , t) = ϕn(r )exp(−iEnt/~), (2.4)

whereEn andϕn(r ) are the eigenvalues and the eigenfunctions ofH0, satisfying
the stationary Schrödinger equation,

(H0 − En)ϕn = 0. (2.5)

The indexn numerates the energy levels. (We assume that the particles move
within a bounded space domain and therefore the levels are discrete; we also as-
sume the levels to be non-degenerate.) The set of functions{ϕn} is assumed to be
orthogonal and normalized,

∫

drϕ∗nϕm = δnm, (2.6)

so that
∫

dr |Ψ|2 =
∑

n

|cn|2 = 1. (2.7)
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Thecn coefficient in the expansion (2.3) gives the relative population|cn|2 of
the leveln, i.e., the probability to measure the energyEn or, as one says, the
probability to find the system ‘at the level’n. Indeed, according to the rule of
calculating mean values in quantum mechanics, the mean energy of the system,
with an account for Eqs. (2.3)–(2.6), is

E ≡ 〈H0〉 ≡
∫

drΨ∗H0Ψ =
∑

n

|cn|2En. (2.8)

Note that, according to (2.3), in the general case the atom isnot necessarily in
a stationary state with a definite energyEn (even in the absence of the alternating
force,V(t) = 0). For instance, let only two coefficientscn of the superposition
(2.3) be nonzero:c1 = c2 = 1/

√
2; then the mean ensemble energy of the atom is

(E1 + E2)/2 but single energy measurements will give eitherE1 or E2. Then the
electron ‘cloud’, i.e., the probability density to find the electron at point (r , t), will
oscillate withthe Bohr frequency,ω21 ≡ ω2 − ω1 ≡ (E2 − E1)/~ (Fig. 2.1):

P(r , t) = |Ψ(r , t)|2 = |ϕ1(r ) + ϕ2(r )exp(−iω21t)|2/2
= ϕ2

1/2+ ϕ
2
2/2+ ϕ1ϕ2 cos(ω21t). (2.9)

(We assume thatϕn = ϕ∗n.) Such nonstationary states are calledcoherentones.
This term is often used in the case where many identical atomsare in a non-

(a) (b)

Fig. 2.1 Electron cloud of an atom that is in a coherent (non-stationary) state given by a superposition
of two stationary statesϕ1 andϕ2 with different symmetries oscillates with the transition frequency
ω21: (a) dependencies of the wave functions on one of the space coordinates; (b) corresponding con-
figurations of the electron cloud.
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stationary state with the same phase. Then, electrons oscillate synchronously
and the system of atoms has a macroscopic dipole moment emitting intense light
with the frequencyω21. This effect, calledsuperradiance, will be considered in
Sec. 5.3.

In the presence of external alternating fieldE(t), eigenoscillations of the elec-
tron cloud with the frequenciesωmn will be accompanied by stimulated oscilla-
tions with the frequency of the fieldω.

2.1.2 Atom in an alternating field

Consider now the effect of an alternating field on the wave functionΨ(r , t) of
an atom or a molecule. AtV(t) , 0, the function (2.3) does not satisfy the
Schrödinger equation (2.1) any more, but the expansion canbe kept in the form
(2.3) if the coefficientscn are considered as time-dependent,

Ψ(r , t) =
∑

n

cn(t)Φn(r , t). (2.10)

(This possibility follows from thecompletenessof the eigenfunctions setϕn(r ).)
Thus, due to the effect of the incident light, the relative populations|cn(t)|2 of

the levels are redistributed (with the normalization condition (2.7) maintained). In
other words, the atom makes stimulatedtransitionsbetween the levels. Let us find
the probability of such transitions.

From the Schrrödinger equation (2.1) for the wave function, we will pass to
equations forcn(t). For this purpose, let us substitute expansion (2.10) in (2.1) and
take into account that, according to (2.5),i~Φ̇n = H0Φn:

∑

n

(i~ċn − cnV)Φn = 0. (2.11)

Left-multiplying this equality by one of the functionsΦ∗m and integrating w.r.t.r ,
we obtain

∑

n

(i~ċn

∫

drΦ∗mΦn − cn

∫

drΦ∗mVΦn) = 0. (2.12)

Let us take into account the orthogonality (2.6) of the eigenfunctions and introduce
the following notation for the matrix elements of the perturbation operator:

V′mn ≡
∫

drΦ∗mVΦn = Vmnexp(iωmnt),Vmn ≡
∫

drϕ∗mVϕn. (2.13)

As a result, we find the system of equations for the coefficientscn(t), which is
equivalent to the initial Schrödinger equation:

i~dcm/dt =
∑

n

V′mncn. (2.14)
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Note that the coefficientscn form a function of a discrete argument (energy),
cn ≡ Ψ̃(En), which can be considered as the wavefunction of the systemin the
energy representation(while Ψ(r ) is the wave functionin the coordinate repre-
sentation). Correspondingly, (2.14) is the Schrödinger equation inthe energy rep-
resentation. The functions̃Ψ andΨ are related through a linear transformation
and provide the same information. The inverse of transformation (2.10) can be
obtained by left-multiplying it by the integral operator

∫

drΦ∗m:

cm =

∫

drΦ∗mΨ. (2.15)

The change of representation,Ψ → Ψ̃, is similar to the change of the basis in
vector algebra, where the components of a vector are also linearly transformed.

The relation between different representations is most clearly manifested in
Dirac’s notation (Sec. 7.5). In this notation, the Schrödinger equation (2.1) is
written in the invariant form (without specifying the representation) as

i~d|t〉/dt = H|t〉. (2.16)

In order to pass to the energy representation, let us left-multiply (2.16) by them-th
eigenvector ofH0,

i~
d
dt
〈m|t〉 = 〈m|H|t〉 =

∑

n

〈m|H|n〉〈n|t〉. (2.17)

The last equation was obtained using the expansion of the unity, I =
∑ |n〉〈n|. Let

us denote〈m|V|n〉 ≡ Vmn and use (2.2) and (2.5), then

i~
d
dt
〈m|t〉 = Em〈m|t〉 +

∑

n

Vmn〈n|t〉.

Finally, if we separate the slowly varying part of the〈m|t〉 factor,

〈m|t〉 ≡ cm(t)exp(−iEmt/~),

we once again obtain (2.14).

2.1.3 Perturbation theory

In the general case, the solution to the system (2.14) can be found using the pertur-
bation theory, as a series expansion in the external force. Alternatively, the system
can be solved without the perturbation theory, using the so-called two-level ap-
proximation, which will be considered below, in Sec. 4.3.
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Thus, we look for the solution to (2.14) in the form of the sum

cn = c(0)
n + c(1)

n + · · · =
∑

s

c(s)
n , (2.18)

in which the s-th term is proportional to thes-th power of the external force,
c(s)

n ∝ Vs. Substituting (2.18) in (2.14) and setting equality between the terms of
the same order inV, we find

ċ(0)
m = 0, (2.19)

i~ċ(1)
m =

∑

n

V′mnc
(0)
n , (2.20)

i~ċ(s)
m =

∑

n

V′mnc
(s−1)
n . (2.21)

The set of zero-order coefficientsc(0)
m provides the initial conditions for equations

(2.14).

2.1.4 Linear approximation

Usually, it is assumed that only one of the coefficients, for instance,c(0)
1 , is

nonzero, so that at timet0 the system is in a state with a given energy,

cn(t0) = c(0)
n = δn1. (2.22)

In this case, the system of equations (2.20) for the first-order coefficients gets
‘decoupled’,

ċ(1)
m = V′m1/i~. (2.23)

Hence, it follows that in the linear approximation, the response of a quantum
system that is initially at level 1, to an external perturbation is given by the formula

c(1)
m (t) =

1
i~

∫ t

t0

dt′Vm1(t′)exp(iωm1t′). (2.24)

Thus, at large time delays after the perturbation has been switched on (t− t0→
∞), thec2 coefficient, which determines the perturbed population of the level with
the energyE2, scales as the Fourier transform of the external force at theBohr
frequencyω21 = (E2 − E1)/~. In other words,in the first-order perturbation
theory, a quantum system behaves as a set of linear oscillators and responds only
to the resonant harmonics of the external force. If there is noω21 harmonic in the
perturbation spectrum, or its amplitude is small, then level 2 will not be populated.
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2.1.5 Probability of a single-quantum transition

Given the initial conditionc(0)
m = δmn, the dimensionless complex numbercm is

called theamplitude of the transitionfrom leveln to levelm. (Often, the second
subscript is added to specify the initial condition,cm ≡ cmn.a) The squared mod-
ulus of the transition amplitude,|cmn(t)|2, is equal to the conditional probability
of finding the system at the levelm at timet provided that at timet0 it was at the
leveln. In the linear (single-photon) approximation, this probability, according to
(2.24), is

P(1)
mn ≡ P(1)(m, t|n, t0) = ~−2|

∫ t

t0

dt′Vmn(t′)exp(iωmnt
′)|2. (2.25)

From (2.25), an important property of quantum systems follows: the proba-
bility of forward and backward transitions are equal:

P(1)
mn = P(1)

nm. (2.26)

Indeed, theV operator corresponds to an observable quantity, the energy, and
therefore its mean values are real,〈V〉 = 〈V〉∗. Hence, this operator is Hermi-
tian (self-conjugate),V = V†. Matrix elements of Hermitian operators have the
propertyVmn = V∗nm; therefore, (2.25) leads to (2.26).

Note that for the transitionn→ m to be enabled, it is necessary, in addition to
the resonance condition, that its matrix element is nonzero,

Vmn =

∫

drϕ∗mVϕn , 0.

This requirement, providing theselection rules, ‘forbids’ some transitions for
high-symmetry systems. For instance, ifϕn(−r ) = ±ϕn(r ) (central symmetry)
andV ∼ r (dipole approximation), then transitions between states with the same
parity are forbidden (since the integrand is odd in this case). If Vmn , 0, one says
that the perturbation ‘couples’ or ‘mixes’ the statesm andn.

2.2 Transitions in monochromatic field

2.2.1 Dipole approximation

Let us apply the general formula (2.25) to the case of a harmonic perturbation.
Most problems of quantum electronics allow the dipole approximation for the
energy of the interaction between charges and field (Sec. 7.3),

V = −d · E = −d · (E0e−iωt + E∗0eiωt)/2. (2.27)

aRecall that in quantum mechanics, the subscripts are often read from right to left; therefore,cmn is
the amplitude of the transitionn→ m.
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Here, the amplitudeE0 of the electromagnetic wave is assumed constant within
the system considered, an atom or a molecule, since in the optical frequency range
λ ∼ 10−4cm� a0 ∼ 10−8cm, wherea0 is the Bohr radius.

In the case of a single-electron atom, the dipole moment operatord is equal
to the product of the electron charge and its radius vector,d = −er , so that the
matrix elements are

Vmn = −dmn · (E0e−iωt + c.c.)/2, (2.28)

dmn = −e
∫

d3rrϕ∗mϕn, (2.29)

where c.c. means the complex conjugated expression. For allowed transitions, the
integral in (2.29) is on the order of the atom sizea0, so that

dmn ∼ ea0 ∼ 10−18CGS≡ 1D. (2.30)

In the case of magneto-dipole transitions, which are used, in particular, in param-
agnetic amplifiers, the electric fieldE0 in (2.28) should be replaced by the mag-
netic fieldH0 andd should be replaced by the magnetic dipole momentµ whose
absolute value is on the order ofBohr’s magneton,

µmn ∼ µ0 ≡ e~/2mc≈ 0.9 · 10−20CGS. (2.31)

2.2.2 Transition probability

Substituting (2.28) in (2.25), fort0 = 0 we find

Pmn =
1

4~2

∣

∣

∣

∣

∣

dmn · E0
exp[i(ωmn− ω)t] − 1

ωmn− ω
+ dmn · E∗0

exp[i(ωmn+ ω)t] − 1
ωmn+ ω

∣

∣

∣

∣

∣

2

.

(2.32)

Further, let us consider stimulated transitions up (ωmn > 0) or down (ωmn < 0)
under the condition that the frequency of the field (ω > 0) is resonant to the
transition:

ω ∼ |ωmn| � |ω − |ωmn||. (2.33)

Then, one of the terms in (2.32) is much larger than the other one, so that the latter
can be neglected (the so-calledrotating-wave approximationb). For instance, stim-
ulated absorption is mainly determined by the first term, which is proportional to
thepositive-frequency partof the fieldE0e−iωt/2, while for stimulated emission,
it is the second term that matters, proportional to thenegative-frequency part,
E∗0eiωt/2. Note that in quantum electrodynamics, the amplitudesE0,E∗0 are oper-
ators scaling as the photon annihilation and creation operators,a, a†, see Sec. 7.4.

bThe title comes from the fact that in the complex plane, thee−iωt vector is rotating, in contrast to the
vector cosωt, which oscillates.
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Fig. 2.2 ProbabilityPmn of a stimulated transition as a function of the field frequency ω and the
interaction timet.

Thus, in the first-order perturbation theory, the probability to find the atom at
levelm at timet, under the initial conditioncn(0) = 1, is

Pmn =

∣

∣

∣

∣

∣

dmn · E0

2~

∣

∣

∣

∣

∣

2 [

sin(ω̃t/2)
ω̃/2

]2

, (2.34)

whereω̃ ≡ ω − |ωmn|. According to this formula, the dependence of the transition
probability on the external field frequency is resonant, andthe sharpness of the
resonance increases with time(Fig. 2.2). As a result, in the limitt → ∞, the
transition probability is given by Dirac’s delta function,

lim
t→∞

[

sin(ω̃t/2)
ω̃/2

]2

= 2πtδ(ω̃). (2.35)

The factor by the delta function is verified by integrating both parts of (2.35) in ˜ω.
Because the transition probability scales as the time duration t of the pertur-

bation, one can introduce thetransition probability per unit time, also called the
transition rate,

Wmn ≡ Pmn/t = 2π|dmn · E0/2~|2δ(ω̃). (2.36)

Thus, the transition rate scales as the square of the field, i.e., the intensity of the
wave. The presence in (2.36) of the delta function, which differs from zero only at
exact resonance, can be understood from the photon viewpoint: according to the
energy conservation law, the change in the atom energy by thevalueEm − En ≡
~ωmn should be accompanied by the absorption or emission of a photon with the
energy~ω.
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2.2.3 Finite level widths

In reality, however, there always exist additional perturbations, for instance, col-
lisions in the case of a gas. These perturbations broaden theenergy levels and, as
a result, even att → ∞ the resonance has a finite width∆ω. (In the case of colli-
sions,∆ω = 2/τ, whereτ is the mean time interval between the collisions.) The
finite width of the resonance is taken into account by changing the delta function
in (2.36) to aform factor g(ω), which describes the true shape of the spectral line
and is also normalized to unity:

Wmn = 2π|dmn · E0/2~|2g(ω̃), (2.37)

∫ ∞

−∞
dωg(ω) = 1. (2.38)

If the broadening is due to collisions, spectral lines have Lorentzian shapes
(Fig. 2.3, curve 1):

gL(ω̃) =
2/(π∆ω)

1+ (2ω̃/∆ω)2
. (2.39)

The transition probability is maximal atω = |ωmn|:

W0 = Ω
2/∆ω, (2.40)

whereΩ ≡ |dmn · E0|/~ is the Rabi frequency. It has the dimensionality of fre-
quency and characterizes the perturbation of an atom by resonant monochromatic
field.

Thus,the probability of a stimulated transition scales as the intensity of light,
squared matrix element of the dipole moment, and the inversewidth of the spectral
line.

This dependence on the spectral line width is typical not only for collision
broadening: from the normalization condition (2.38) it follows, in the general
case, thatg(0) ∼ 1/∆ω. For instance, in gases at low pressure∆ω is often deter-
mined by the Doppler effect, which results in a Gaussian line shape. Figure 2.3
shows the comparison of spectral line shapes due to collision broadening (2.39),
the Doppler effect,

gD(ω) =
2
∆ω

(

ln 2
π

)1/2

exp

[

4−
(

ω

∆ω

)2
ln 2

]

, (2.41)

and finite interaction timet (c.w. Eq. (2.34)),

gt(ω) =
0.886
∆ω

sinc2

(

2.78ω
∆ω

)

, ∆ω =
5.56

t
(2.42)
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Fig. 2.3 Spectral line shapes. Broadening due to collisionsor spontaneous radiation leads to a
Lorentzian line shape (1); the Doppler effect results in a Gaussian line shape (2), while limited in-
teraction timet causes a sinc2(ω̃t/2) shape (3).

where sincx ≡ (sinx/x) and∆ω is the full line width at level 1/2. It is clear from
Fig. 2.3 that the particular mechanism of broadening has a noticeable effect only
on the tails of the lines. Note that the amplitude ratio of thearea-normalized form
factors (2.39), (2.41), (2.42) at exact resonance and with the same∆ω is

2
π

:

(

4 ln 2
π

)1/2

:
5.56
2π
≈ 1 : 1.47 : 1.39. (2.43)

When deriving (2.37), we have replaced the function (2/ω)2 sin2(ωt/2), which
was obtained from the perturbation theory, by 2πt g(ω). (Here,ω is the frequency
mismatch between the field and the transition.) Let us explain this procedure using
the ‘strong collision’ model. According to this model, every collision instantly
brings the atom back to the initial level, after which the interaction between the
field and the atom starts anew. Then,t in (2.34) should be replaced byt − t0 ≡ ∆t,
wheret0 is the time instance of the last collision. In gas, the time interval∆t
between the last collision of an atom and some fixed timet is a random variable
with exponential distribution (see [Rytov (1976)]):

P(∆t) = exp(−∆t/τ)/τ, (2.44)

whereτ is the mean time interval between the collisions.
The power absorbed (or emitted) by the atom scales as the instant transition

rate at a given timet,

W(∆t) ≡ dP/dt = Ω2 sin(ω∆t)/2ω. (2.45)



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

26 Physical Foundations of Quantum Electronics

Here, we have used expression (2.34) for the transition probability P. The mean
transition rate is given by averaging (2.45) using (2.44),

W ≡
∫ ∞

0
d(∆t)P(∆t)W(∆t) =

Ω2τ/2
1+ ω2τ2

. (2.46)

The last expression is in agreement with (2.37) and (2.39) ifτ is replaced by the
inverse half-width of the line, 2/∆ω. The integral in (2.46) can be easily done by
replacing sinx with Im[exp(ix)].

2.3 Absorption cross-section and coefficient

2.3.1 Relation between intensity and field amplitude

In order to pass from the transition rateW to the transition cross-sectionσ =W/F
and the absorption (or amplification) coefficientα = σ∆N, we have to write the
squared field|E0|2 in terms of either the photon flux densityF [s−1 · cm−2] or
intensityI = ~ωF [W/cm2].

Let us first find the energyE of the wave. From Maxwell’s equations, it fol-
lows that the instant energy of the field contained in a volumeV of transparent
isotropic non-magnetic material with the dielectric constantε is

E(t) =
∫

V
d3r(εE2 + H2)/8π. (2.47)

In the case of a plane monochromatic wave,

E = (1/2)eE0e
i(k·r−ωt) + c.c., H = nk̂ × E. (2.48)

Here,e is the unity polarization vector,k = k̂nω/c is the wave vector,̂k is the
unity vector in the propagation direction,n =

√
ε is the refractive index. After

substituting (2.48) in (2.47) and time averaging, we get thefollowing relationship
between the time-averaged energy and the amplitude of the plane wave:

E ≡ E(t) = n2V|E0|2/8π. (2.49)

Intensity of the wave is obviously given by the product of theenergy density,
E/V, and the velocity of the wave,c/n,

I = cn|E0|2/8π. (2.50)

Note that this formula was derived without considering the frequency dispersion
of the medium,ε(ω). The dispersion can be taken into account by replacingε in
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(2.47) byd(ωε)/dω (see, for instance, Refs. [Landau (1982); Silin (1961)]). As a
result, (2.49), instead ofn2, will contain the expression

(1/2)[d(ωε)/dω+ ε] = c2/uv, (2.51)

wherev = c/n is the phase velocity andu = dω/dk, the group velocity. Now, the
energy density should be multiplied byu, which again leads to relationship (2.50).

2.3.2 Cross-section of resonance interaction

After replacing the squared field|E0|2 in the expression (2.37) for the transition
probabilityW with the photon flux densityF, we find the transition cross section,
which is, by definition, equal toW/F (we assumen = 1):

σmn = (4π2/~c)ωg(ω)|d(e)
mn|2, (2.52)

whered(e)
mn ≡ dmn · e.

The transition cross-section is maximal at exact resonance(ω = ωmn > 0); in
the case of a Lorentzian line shape (2.39),

σmn0 = 8πωmn|d(e)
mn|2/~c∆ω. (2.53)

One can imagineσ as the area of the ‘shadow’ made by the atom. Let us estimate
this area. The line width∆ω cannot be less than the so-callednatural width,
determined by spontaneous transitions. In what follows (Sec. 2.5), it will be shown
that

∆ωnat = 4ω3
mn|dmn|2/3~ c3 = 1/T1nat (2.54)

whereT1nat is the lifetime of an atom in the excited state, which is finitedue to
spontaneous transitions into the ground state. Letdmn ‖ e, then, after substituting
(2.54) in (2.53), we get

σ0 = (3/2π)(∆ωnat/∆ω)λ2. (2.55)

If dmn has random orientation, we have|dmn|2 = 3|d(e)
mn|2, hence a factor of 1/3

appears in (2.55).
Thus, if both collision and Doppler widths are much less thanthe natural one,

the ‘shadow’ of the atom with respect to resonance optical transitions has a size
on the order of the wavelength,λ ∼ 10−4cm, and not the atom size,a0 ∼ 10−8cm.
In rare gases, the main role is played by Doppler broadening,which is on the order
of ∆ f ≡ ∆ω/2π ∼ 1GHz. The natural width for allowed optical transitions is two
orders of magnitude as small; therefore,σ ∼ λ2/100. (In the case of magnetic
dipole transitions,∆ fnat ∼ 103Hz andσ ∼ 10−6λ2.)
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2.3.3 Population kinetics

Let us consider the evolution of mean populationsNm of the levels, which are
defined as

Nm ≡ |cm|2N0, (2.56)

whereN0 is the total number of atoms. Thus, from considering a singleparticle
we pass to studying a system ofN0 identical non-interacting particles. Then→ m
transition rate is defined as (see Eq. (2.36))

Wmn ≡ d|cm|2/dt. (2.57)

Hence, the population increase rateṄm of the final statem is N0
∑

n Wmn. However,
we have assumed that the initial staten is occupied with a unity probability; here,
this probability is equal toNn/N0; therefore,Ṅm =

∑

n WmnNn. If we also take into
account that particles leave the levels, we get the following system of equations
for populations:

dNm/dt =
∑

n

(WmnNn −WnmNm). (2.58)

Here, so far, the relaxation is ignored; in the general case,the ratesWmn should
also include contributions from chaotic fields created by the surrounding particles.
Such equations are studied in non-equilibrium thermodynamics; they are called
kinetic equations or population balance equations. If only two levels take part in
the exchange, then

N1 + N2 = N0, (2.59)

and only one of equations (2.58) is sufficient. Because the perturbation operator
is Hermitian, it follows thatW12 =W21 ≡W (see (2.26)), hence

Ṅ1 = −Ṅ2 =W(N2 − N1), (2.60)

2.3.4 Photon kinetics

Each transition down is accompanied by the emission of a single photon while
each transition up, by the absorption of a single photon; as aresult, the rate of
photon emissionc is Ṅ1, and thetransfer equationfor photons takes the form

∂N/∂t + ∇(uN) = dN1/dt, (2.61)
cIn the semiclassical theory of radiation, there is no concept of a photon, and it would be more con-
sistent to speak here of the field energy variation by~ω. But ‘photon language’ is more convenient as
it is more visual.
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whereN(r , t) is the photon concentration anduN = F is the photon flux density
vector. Hence, in the stationary one-dimensional case, where ∂N/∂t = 0 and
F = Fz(z),

dF/dz=W(N2 − N1). (2.62)

Further, from the definition of the transition cross-section, it follows that

dF/dz= −σ(N1 − N2)F ≡ −αF. (2.63)

Let populations be independent ofz, then (2.63) leads to the exponential variation
of the intensityd of light,

F(z) = F(0)e−αI , (2.64)

where the absorption (or amplification, atN1 < N2) coefficient, according to
(2.52), is

α = (4π2/~c)ωg(ω)|d(e)
12|

2(N1 − N2). (2.65)

2.3.5 Coefficient of resonance absorption

Maximal (resonance) value of the absorption coefficient in the case of a Lorentzian
line shape (2.39) is

α0 = (8π/~c)(ω21/∆ω)|d(e)
12 |

2(N1 − N2). (2.66)

Note that in the stationary case,Ṅm = 0, and atW , 0 it follows from (2.60)
that N1 = N2, so that, seemingly, alwaysα = 0. (This population balancing due
to the effect of the radiation is calledsaturation.) However, relaxation processes
that are ignored in (2.60), such as spontaneous transitions, inelastic collisions of
atoms with each other and with electrons in gases, interaction with lattice oscilla-
tions in solids, radiation-free transitions etc., tend to restore the initial population
differenceN1 − N2. Therefore, in the case of sufficiently weak fields, saturation
can be neglected.

In the optical range, for allowed transitions with natural broadening,α can be
as high as 1 cm−1 at relatively small numbers of active particles|∆N| = N2 − N1.
At λ = 0.5µ, according to (2.55),|∆N| = 2πα0/3λ2 = 109cm−3. In the X-ray
range,λ is 4 orders of magnitude as small, and|∆N| ≈ 1017cm−3.

In microwave paramagnetic amplifiers, the line width is determined by the
dipole-dipole interaction of paramagnetic ions. In a ruby crystal (Al2O3+10−3Cr),

dRecall that intensity scales asF, namely,I = ~ωF.
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with the concentration of chrome ions 1019 cm−3, the line width is on the or-
der of 50 MHz. Substitutingµ for d in (2.53), for λ = 1 cm we getσ =
8πµ2/~λ∆ f = 5 · 10−20 cm2. A realistic number of active particles available in
paramagnetics is approximately equal to the equilibrium population difference,
∆N(0) = ~ωN0/κTg ≈ N0/10= 1018 cm−3, whereg = 2S + 1 = 4 is the degener-
acy of the chrome ion ground level, which is lifted by a constant magnetic field,
andS is the spin number. Hence,α0 = 0.05 cm−1, and for obtaining amplification
G = 100 one needs the length of the crystall = ln G/α0 ≈ 1 m. In order to reduce
l, the crystal is placed into a bulk resonator, where radiation can many times pass
through the matter, or into a slowing-down system. In the latter case, the above-
given formulas forσ andαwill be still valid, with the speed of light in the vacuum
replaced by the group velocity of waves in the slowing down medium,u = dK/dz,
whereK is the propagation constant.

2.3.6 Amplification bandwidth

Due to the exponential relation (2.64) between thetransfer coefficientof a layer
of thicknessl, G ≡ F(l)/F(0), and the absorption coefficientα, the shape of the
observed frequency dependenceG(ω) at |α| l � 1 (large optical density) will differ
from the functionα(ω). It is easy to see that this effect will lead to the ‘sharpening’
of the observed resonance atα < 0 and to its ‘broadening’ atα > 0 (Fig. 2.4).
Let α < 0 and theα(ω) dependence be Lorentzian. Defining the amplification
bandwidth∆ω′ by the condition ofG(ω)−1 two-fold reduction with respect to its

Fig. 2.4 Observed shape of the resonance in the case of a Lorentzian line with width∆ω at different
optical densitiesy = α0l at the center of the line (x ≡ 2(ω − ω0)/∆ω).
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maximal value, we find from (2.64) that

∆ω′

∆ω
=

{

ln G0

ln[(G0 + 1)/2]
− 1

}1/2

, (2.67)

with G0 ≡ exp(−α0l). Hence, atG0 − 1 � 1 it follows that∆ω′ = ∆ω, while at
G0 − 1� 1,

∆ω′

∆ω
≈

(

ln 2
ln G0 − ln 2

)1/2

≈ 1√
|α0|l

. (2.68)

Thus,the narrowing of the amplification band with the increase of the amplifier
length is rather slow. For instance, atG0 = 100 (α0l = −4.6) the ratio (2.67) takes
the value 0.417 (approximate expressions (2.68) yield 0.42 and 0.46).

2.3.7 ◦Degeneracy of the levels

Expression for the amplification coefficient and the inversion conditionN2 > N1

have been obtained above under the assumption that the atom energy levels were
not degenerate. Let nowg1 different (with respect to some parameters) states have
the same energyE1 andg2 states have energyE2,

(H0 − E1)ϕ1i = 0 (i = 1, . . . , g1),

(H0 − E2)ϕ2 j = 0 ( j = 1, . . . , g2).
(2.69)

Note that the conclusions given below will be also valid in the case where the
degeneracy is lifted due to sufficiently small perturbations (Fig. 2.5). Now, the

Fig. 2.5 Degeneracy of the levels:g1 different states have the same energyE1 while g2 other states
have the energyE2. In the right-hand side of the figure the degeneracy is lifteddue to the external con-
stant fieldH0, which breaks the symmetry of the system. Alternating field causes transitions between
a certain pair of statesi, j.
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subscripts 1 or 2 in the perturbation theory should be replaced by double indices,
1i or 2j. The probability of a stimulated transition between the states 1i and 2j,
according to (2.37), scales as the corresponding matrix element:

W1i,2 j =W2 j,1i ∼ |d(e)
1i,2 j |

2.

The number of transitions up or down is proportional to the population of the
initial stateN1i or N2 j , therefore

Ṅ1i =

g2
∑

j=1

(W1i,2 jN2 j −W2 j,1iN1i). (2.70)

The variation rate of the total population of the level,N1 ≡
∑

N1i , will be equal to
the double sum over the degenerate states,

Ṅ1 =
∑

i j

W1i,2 j(N2 j − N1i). (2.71)

Now, assume that the saturation effect is absent and relaxation or inversion
lead to a uniform distribution of sublevel populations,

N1i = N1/g1, N2 j = N2/g2. (2.72)

As a result, (2.71) takes the form (see (2.60))

Ṅ1 = −W′∆N′, (2.73)

where

W′ ≡
∑

i j

W1i,2 j , ∆N′ ≡ N1/g1 − N2/g2. (2.74)

Thus, degeneracy of the levels can be taken into account ifW in Eq. (2.66)
is understood asW′ and∆N, as the difference of ‘state populations’Nm/gm. The
inversion condition then takes the form

N1/g1 < N2/g2. (2.75)

Let, for instance,g1 = 1 andg2 = 3, then, one needsN2 > 3N1 for amplification.
Recall that, according to the Boltzmann distribution,

N(0)
2 /N(0)

1 = (g2/g1) exp(−~ω21/κT) (2.76)

andN(0)
2 < 3N(0)

1 .
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2.4 Stimulated transitions in a random field

Up to now, the field stimulating a transition was considered as monochromatic.
Let now E(t) have an arbitrary time dependence. According to (2.24), the first-
order perturbation theory gives the following expression for the transition ampli-
tude in the dipole approximation, provided thatc1(t0) = 1:

c2(t) = − 1
i~

∫ t

t0

dt′ exp(iω21t
′)

∑

α

d21αEα(t′), (2.77)

whereα = x, y, z are indices in the Cartesian frame. Squared module of this
expression gives the transition probability,

P21(t) = ~−2
∑

αβ

d21αd∗21β

" t

t0

dt′dt′′ exp[iω21(t′ − t′′)]Eα(t′)Eβ(t′′). (2.78)

2.4.1 Correlation functions

Next, consider the case of a chaotic, random field. Then,P should be averaged
over a corresponding probability distribution, so that instead of the pair product
EαEβ, (2.78) will contain the matrix of second-order fieldmomentse

〈Eα(t′)Eβ(t′′)〉 ≡ Gαβ(t′, t′′) = Gβα(t′′, t′). (2.79)

This equality defines a certain tensor, each of its nine components being a function
of two arguments. The matrix of second-order moments (2.79)is also called the
field correlation tensor. Another equivalent term is the fieldcoherence function
(of the first order). Statistical properties of a random fieldare fully described by
a set of moments (coherence functions) of all orders and for all possible pairs of
‘points’ x ≡ r , t. Statistical optics will be described in more detail in Chapter
7; here, we only note that odd field moments, as a rule, are equal to zero, while
moments of order 2n determine the probabilities ofn-photon transitions. Let us
also mention that the sum of the diagonal elements of the second-order moment
matrix,

∑

Gαα (the trace of the matrix), with coinciding arguments defines the
mean energy density〈E2〉/8π of the electric field at the point under consideration.

The most important class of random fields arestationary fields, whose statis-
tical characteristics (intensity, spectrum, polarization) do not change with time.
The correlation function of a stationary process can only depend on the difference
of its two arguments,

Gαβ(t′, t′′) = Gαβ(t′ + t0, t
′′ + t0) ≡ Gαβ(t′ − t′′). (2.80)

eAngular brackets denote averaging over a statistical ensemble of fields (Sec. 7.2).



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

34 Physical Foundations of Quantum Electronics

From (2.80) and the definition (2.79), the symmetry propertyfollows,

Gαβ(−t) = Gβα(t); (2.81)

in particular,Gαα(t) should be an even function of time.
Thus, according to (2.78) and (2.79), the probability of a transition due to

stationary random radiation is determined by the field correlation tensor,

P21 = ~
−2

∑

αβ

d21αd∗21β

" t

t0

dt′dt′′ exp[iω21(t′ − t′′)]Gαβ(t′ − t′′). (2.82)

2.4.2 Transition rate

Consider the action of the perturbation at time intervals that are much larger than
the field correlation timeτE (Sec. 7.2). Then the integration limits in (2.82) can
be replaced by±∞. Let us make a change of variables,t1 ≡ t′ − t′′, t2 ≡ t′ + t′′.
Integration int1 yields the Fourier transform ofGαβ(ω21), which is called the field
spectral densitytensor,

Gαβ(ω) ≡ (2π)−1
∫

dteiωtGαβ(t) = G∗αβ(−ω) = G∗βα(ω) ≡ G+αβ(ω). (2.83)

The inverse transformation has the form

Gαβ(t) =
∫

dωe−iωtGαβ(ω). (2.84)

Here, as usual, we omit infinite integration limits and denote the function and its
Fourier transform by the same letter. The second integration (in t2) simply yields
the observation timet − t0, so that one can define a time-independent transition
rateW ≡ P/(t − t0). Let the dipole moment of the transition be parallel to thex
axis, then we finally find a simple expression for the transition rate,

W21 = 2π~−2|d21|2Gxx(ω21). (2.85)

Thus,the rate of a stimulated transition due to a random (noise or incoher-
ent) perturbation scales as the spectral density G(ω) of the perturbation at the
transition frequency.It is useful to compare (2.85) with formula (2.37), which
defines the transition rate in the case of a monochromatic field. The two formulas
coincide after the substitution|E0|2g(ω)→ G(ω).

In this consideration we did not take into account the broadening∆ω of the
levels due to relaxation processes. However, intuitively it is clear that the conclu-
sion should be still valid in the case where∆ω is much less than the width of the
perturbation spectrum,∆ωE ∼ 1/τE. In this case, the field is called incoherent. In
the opposite case, the field can be obviously considered as monochromatic, i.e.,
coherent.
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2.4.3 Einstein’s B coefficient

Consider now isotropic non-polarized radiation withGαβ = Gδαβ. FromG(ω) we
will pass to the energy spectral densityρ(ω). The latter is defined through the
energy density as follows (we assumen = 1):

E/V = 〈E2 + H2〉/8π ≡
∫ ∞

0
dωρ(ω). (2.86)

In the radiation,E = H, therefore,

E/V =
∑

α

Gαα(t = 0)/4π = 3
∫ ∞

0
dωG(ω)/2π, (2.87)

where the last equality was obtained using relation (2.84) with t = 0 and taking
into account that, according to (2.83),G(ω) is an even function. From the com-
parison of (2.86) and (2.87) we get the relation between the spectral densities of
field amplitude and energy,

G(ω) = 2πρ(ω)/3. (2.88)

By substituting (2.88) in (2.85), we finally find the transition rate in an isotropic
non-polarized noise field with a broad spectrum:

W21 = B21ρ(ω21), (2.89)

B21 = B12 ≡ (2π|d21|/~)2/3. (2.90)

The proportionality coefficient B between the transition rate and the energy
density is called theEinstein coefficient for a stimulated transition. In the next
section, using the Planck functionρ(0)(ω) for equilibrium radiation, we will find
the second Einstein coefficient,A, giving the rate of spontaneous transitions.

2.4.4 ◦Spectral field density

Concluding this section, let us clarify the physical meaning of the field spectral
densityG(ω). In order to do this, we formally representE(t) as a Fourier integral
(theα subscript is omitted),

E(t) =
∫

dωe−iωtE(ω), (2.91)

E(ω) =
∫

dteiωtE(t)/2π. (2.92)
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A rigorous definition for the Fourier representation of a random function can be
found in Ref. [Rytov (1976)]. With the help of (2.92) and definitions (2.79),
(2.80), we find the correlator of the field Fourier components,

〈E(ω)E(ω′)〉 =
"

dtdt′eiωt+iω′t′G(t − t′)/4π2. (2.93)

In the time integral, we make a change of variables,t1 ≡ t − t′, then the
integral int1 yields, according to (2.83), 2πG(ω), while the second integral yields
2πδ(ω + ω′), according to one of the delta-function representations,

lim
T→∞

∫ T

−T
dteiωt = 2πδ(ω). (2.94)

As a result,

〈E(ω)E(ω′)〉 = G(ω)δ(ω + ω′). (2.95)

BecauseE(t) is real, it follows from (2.92) that

E(ω) = E∗(−ω); (2.96)

therefore, (2.95) can be also represented in the form

〈E(ω)E∗(ω′)〉 = G(ω)δ(ω − ω′). (2.97)

Thus,in a stationary field, only harmonics of opposite frequencies correlate,
and their correlation is determined by the spectral densityG(ω). It means that the
reading of a photodetector measuring the field energy withina frequency band∆ω
centered at ¯ω will scale asG(ω̄)∆ω.

2.5 Field as a thermostat

Consider population kinetics for atoms in an equilibrium field with the energy
spectral densityρ(0)(ω). From the kinetic equation (2.60) for two nondegenerate
levels, it follows that

Ṅ2 = −Ṅ1 = Bρ(N1 − N2), (2.98)

whereB ≡ B12 = B21 andρ ≡ ρ(ω21). Thus, a noise broadband field, similarly
to a monochromatic one, tends to equalize the populations ofthe levels, so that
in the stationary regimeN1 = N2. However, equilibrium radiation of temperature
T should heat or cool the matter to the same temperature, hencethe population
distribution is given by the Boltzmann formula, according to whichN1 > N2.
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2.5.1 Spontaneous transitions

This contradiction can be solved by adding to the kinetic equation (2.98) a term
describing spontaneous (i.e., field-independent) transitions from the excited level
2 to the ground level 1. Such transitions are accompanied by the emission of light
from the heated body, which prevents the equalization of thepopulations due to
the external field. According to Einstein, let us denote the rate of spontaneous
transitions asA12 ≡ A, then (2.98) takes the form

Ṅ2 = Bρ(N1 − N2) − AN2. (2.99)

The A coefficient can be calculated from Boltzmann’s and Planck’s distribu-
tions and theB value found above. If the atoms are in equilibrium with the field,
Ṅ2 = 0, and (2.99) leads to the relation

A/B = (N1/N2 − 1)ρ. (2.100)

Substituting here the Planck distribution,

ρ(0)(ω) = ~k3N(ω)/π2, (2.101)

with

N(ω) = [exp(~ω/κT) − 1]−1, (2.102)

and the Boltzmann distribution,

N(0)
1 /N(0)

2 = exp(~ω21/κT), (2.103)

we find the ratio of the coefficients for spontaneous and stimulated transitions:

A/B = ~k3/π2, (2.104)

wherek = ω/c = 1/o. Hence, taking into account expression (2.90) for the B
coefficient, we find that

A = 4k3|d21|2/3~. (2.105)

For an allowed transition in the visible range (d21 = 1D, λ = 0.5µ), estimation
yieldsA = 2 · 106 s−1.

The notion of a spontaneous transition plays an important role in the theory
of interaction between field and matter and in quantum electronics. Spontaneous
transitions determine the minimal linewidths of emission and absorption. They
lead to the thermal radiation of heated matter. Similarly torelaxation processes
in general, they hinder obtaining population inversion. Also, since spontaneous
transitions occur independently of the external field, theyare a source of noise and
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therefore limit the sensitivity of quantum amplifiers and the monochromaticity of
quantum generators (Sec. 7.1).

Let us note that the probability of a spontaneous transitionhas a strong (cu-
bic) dependence on the frequency, which explains why creating UV and X-ray
lasers faces a certain difficulty. Although in the opposite spectral range, the mi-
crowave one, the probability of spontaneous transitions isvery small, the minimal
noise temperature of paramagnetic amplifiers is namely determined by sponta-
neous transitions (see (7.10), (7.11)).

We have foundA in an indirect way. Spontaneous transitions can be consis-
tently explained in the framework of quantum electrodynamics, by the interaction
between atoms and the vacuum (Sec. 7.7). However, they have simple classi-
cal and semiclassical analogues, the radiation of accelerated electrons in an atom
(Sec. 5.2). One can also provide a ‘semi-quantum model’: a classical current, ac-
cording to Glauber [Glauber (1965)], excites quantized field into a coherent state.

2.5.2 Natural bandwidth

Spontaneous transitions limit the lifetimeT1 of an isolated atom in an excited
state. One can expect thatT1 = 1/A. This simple dependence will be confirmed in
what follows, see (5.34). Further, according to the uncertainty relation∆E∆t = ~,
where∆E is the accuracy of the energy measurement and∆t is the measurement
time, a finite lifetime of an atom leads to a finite width of the energy level. As-
suming∆t = T1, we obtain∆E2 = ~A. This broadening of the level should man-
ifest itself, in stationary experiments, in the variance ofthe transition frequency,
∆ω21 = ∆E2/~, i.e., in the broadening of spectral lines,

∆ωnat = A. (2.106)

The width of spectral lines caused by spontaneous transitions is called thenat-
ural bandwidth. This term stresses that∆ωnat is the minimal possible linewidth,
which takes place even in the case of a single isolated atom. Note, however, that
natural broadening can be, in principle, eliminated by placing an atom into a bulk
resonator that has no oscillations with frequencies in the vicinity of ω21. In prac-
tice, observed lines have natural bandwidth only in the rarecases where other
perturbations, such as collisions and the Doppler effect in gases, interaction with
phonons in crystals, etc., have much smaller contributionsand, in addition, the op-
tical thickness of the sample is small (Sec. 7.1). Note that in this case, the width
of absorption or amplification lines related to stimulated transitions is also equal
to A.
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Natural broadening of isolated lines leads to Lorentzian lineshapes. Rig-
orously, this follows from the Wigner-Weisskopf theory (see, for instance,
Ref. [Louisell (1964)]). There is also a simple classical model, according to which
an excited atom emits an exponentially decaying quasi-monochromatic oscillation
(Sec. 5.2). Fourier transformation of this oscillation provides the Lorentzian (dis-
persion) lineshape of the emission spectrum.

Let us estimate, with the help of (2.106), the relative valueof the natural broad-
ening. For allowed transitions,d ≈ ea0 (see (2.30)), so that

∆ωnat/ω ≈ (4/3)(1/137)(a0/o)2, (2.107)

where we assumed the value 1/137 for the fine structure constante2/~c (recall
that this number also defines the ratio of the velocity of an electron in a hydrogen
atom to the speed of light). Assumingλ = 1/R≡ 4π · 137a0 ≈ 0.1µ, with R being
the Rydberg constant, we obtain

∆ωnat/ω ≈ 0.3/(137)2 ≈ 10−7. (2.108)

Displacement of atomic levels due to the interaction with the electromagnetic vac-
uum (the Lamb shift) is on the same order of magnitude or smaller. Thus, relative
perturbation of an atom by the vacuum is extremely small.

2.5.3 Number of photons, spectral brightness, and brightness
temperature

Let us find the ratio of stimulated and spontaneous transition probabilities in the
case of incoherent (noise) field. According to (2.104) and (2.89),

Wst/Wsp = Bρ/A ≡ ρ/~ωgω ≡ N, (2.109)

where

gω ≡ ω2/π2c3, (2.110)

has the meaning ofthe spectral density of field modesin a unit volume (recall that
ρ is the energy spectral density per unit volume). Amode, or anoscillation type, is,
roughly speaking, an oscillation degree of freedom (or a spatial harmonic) of the
field (Sec. 7.3). The inverse value, 1/gω, is equal to the frequency interval between
the neighboring modes. According to definition (2.109),N has the meaning of the
field energy per one mode, in~ω units. In other words,N is thenumber of photons
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per mode. This value is also called thedegeneracy factorof photon gas. Note that
both energy and the number of photons fluctuate; here,ρ andN are mean values.f

The valueN is the most important parameter of incoherent radiation. Let us
show that it scales as the basic photometry characteristic,thespectral brightness
IωΩ. The latter is defined as the radiation intensity within a unit spectral interval
and unit solid angle and has dimensionality [W/(cm2 ·Hz·sr)]. Radiation intensity
per unit frequency is equal to half the spectral energy density, ρ/2, multiplied by
the speed of light. By adding the factor 1/4π, we pass to the spectral brightness
IωΩ. Hence, with the help of (2.109), we find

IωΩ = cρ/8π = ~cλ−3N. (2.111)

Thus, according to (2.109),stimulated transitions due to incoherent field occur
N times as frequently as spontaneous ones. The total number of transitions up and
down can be represented as

w21 = AN, w12 = A(N + 1). (2.112)

Sometimes spontaneous transitions, which correspond to the second term in
the last expression, are interpreted as stimulated transitions due to zero-point (vac-
uum) fluctuations of the field. However, this interpretationleads to underestimat-
ing twice the probability of spontaneous transitions down and does not explain the
absence of spontaneous transitions up [Ginzburg (1983)]. The correct result is ob-
tained by distinguishing betweennormally and antinormallyordered fluctuations.
In Sec. 7.7, it is shown thatspontaneous transitions are determined by normally
ordered fluctuations of the atom dipole moment and by antinormally ordered fluc-
tuations of the vacuum.

In equilibrium radiation,N only depends on the frequency and temperature
and is given by the Planck formula (2.102),N = N(ω). In the general case,N
depends, in addition to frequency, on the observation direction, polarization type,

f Editors’ note: Eq. (2.109) has an important consequence in the context of quantum information. As
it was first mentioned by Wooters and Zurek and independentlyby Milonni and Hardies in 1982, if the
ratio between the induced and spontaneous transitions tends to unity, then it leads to the impossibility to
clone the polarization state of a single photon. Indeed, ifWin =Wsp, then the mean number of photons
per field mode equals unity. Then, amplification of a single photon through stimulated transitions in an
atom (which was initially prepared in excited state) will beaccompanied by the spontaneous emission
of a photon that has random polarization with respect to the initial one. If the mean number of photons
per mode grows, then the contribution of spontaneous transitions goes down. According to (2.109),
cloning becomes possible in the limit of highN, which is often associated with classical field, therefore
this fact does not contradict to the non-cloning theorem. However, we would like to stress that this
conclusion has to be applied with caution because there is nocriteria of non-classicality of light based
on the mean photon number! For instance, squeezed states of light or bright squeezed vacuum states
(Sec.7.5) are nonclassical despite having large photon numbers [Bachor (2004)].
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and observation point:N = N(k, r , ν). Here,k is the wavevector, which also
defines the frequency and the direction, andν is polarization index taking two
values.

In non-equilibrium field, equality (2.102) is used as the definition of the bright-
ness temperatureTe f(N) ≡ ~ω/κ ln(1+ 1/N) for radiation with given frequency,
direction, and polarization. For instance, solar radiation, taken in the optical range
and within an appropriate angular interval, hasTe f ∼ 6000 K, so that, according
to (2.102), for green light (λ ∼ 0.5µ) N ∼ 10−2. We see that stimulated transitions
in solar light are much less frequent than spontaneous ones.Thus, in the visible
range the probabilities of stimulated and spontaneous transitions become equal
only for radiation that is hundreds of times as bright as the Sun radiation, with
Te f ∼ 4 · 104 K. Such brightness can be only achieved with multimode lasers (the
notion of brightness cannot be applied to single-mode lasers).

2.5.4 ◦Relaxation time

With the help of (2.99), let us now define the rate of population variation with an
account for both spontaneous and stimulated transitions. For this, we replaceN1

by N0 − N2 and use relation (2.112):

Ṅ2 = A[NN0 − (2N + 1)N2]. (2.113)

HereN is the number of photons per mode andN0 = N1 + N2 is the total number
of atoms at two levels. Hence, in a stabilized regime,

N(0)
1 /N0 = (N + 1)/(2N + 1) = ν/(1+ ν),

N(0)
2 /N0 = N/(2N + 1) = 1/(1+ ν),

(2.114)

whereν ≡ exp(~ω21/κT). The solution to (2.113) has the form

N2(t) = N(0)
2 + [N2(t0) − N(0)

2 ]e−t/T1,

1/T1 ≡ A(2N + 1) = 2Bρ + A = w12 + w21.
(2.115)

Thus, the timeT1 of heating (or cooling) of the atomic internal degrees of freedom
due to the interaction with incoherent radiation at smallN equals 1/A, the life time
of an atom due to spontaneous transitions, while at largeN it reduces 2N + 1 =
coth(~ω21/2κT) times.

In fact, here we have considered a simple model of relaxationwhere the ther-
mostat is formed by incoherent electromagnetic radiation surrounding the atom
(Sec. 7.7).
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Chapter 3

Density Matrix, Populations, and
Relaxation

The probability method used above allowed us to describe theenergy exchange
between radiation and atoms. At the same time, another knownmanifestation of
the interaction between field and matter, namely, the slowing down of the waves
propagation, was not considered. Another, and more important, drawback of the
probability approach is that it does not provide a sufficiently rigorous account
for relaxation processes, whose consistent considerationshould be performed in
the framework of statistical physics and kinetics. A more complete theory of
the interaction of atoms with the external field and the thermostat is based on the
density matrix formalism, which combines quantum and statistical considerations.

Below, in Sec. 3.1, we discuss the definition and the general properties of the
density matrix. Itn Sec. 3.2, its diagonal elements are considered, which give the
populations of the levels, and the notion of negative temperature is introduced.
Section 3.3 describes the time evolution of the density matrix and the relaxation
processes.

3.1 Definition and properties of the density matrix

3.1.1 Observables

In Chapter 2, we have defined the transition probability in terms of the amplitudes
of energy statescn. Let us now write an arbitrary observablef of a quantum
system (further,f will be understood as the dipole moment of an atom,f ≡ dα) in
terms of similar coefficients. We will start from the basic ‘measurement’ postulate
of the quantum mechanics: multiple measurements of a valuef performed on an
ensemble of identical systems, i.e., systems ‘prepared’ inthe same stateΨ(r , t),
will yield, on the average, the value

〈 f (t)〉 =
∫

drΨ∗(r , t) f̂Ψ(r , t) ≡ 〈t| f |t〉, (3.1)

43
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where f̂ is the operator corresponding tof andr is the set of the system coordi-
nates. (In what follows, we will often omit the hats of the operators.)

It is important thatf in (3.1) can be also understood as a product of operators,
f ≡ g2 or f ≡ gh. This enables one to determine not only the mean values,〈 f 〉,
called first-ordermoments, but also higher-order moments,〈g2〉, 〈gn〉, 〈gh〉, . . . ,
which characterize the quantum fluctuations ofg and the quantum correlation of
g andh. Of course, Eq. (3.1) is written in the Schrödinger pictureand is therefore
applicable only to the case wheref is a single-time operator, for instance,f (t) =
g(t) h(t). In order to define the correlation functions〈g(t1) h(t2)〉, one has to switch
to the Heisenberg picture where the time dependence is attributed to the operators
and not to the wave functions.

Knowing the wave function, one can find not only the moments〈 f n(t)〉 of an
observablef but also its distribution at timet, P( f , t). This function is given by
Eq. (3.1) with the operator̂f replaced by the diade operator| f 〉〈 f | (Sec. 7.5).

3.1.2 Density matrix of a pure state

Let us expand the wave function over the set of the eigenstates of some operator
(not necessarily the energy operator),

Ψ(r , t) =
∑

n

bn(t)ϕn(r ). (3.2)

In the Dirac notation, simply|t〉 = ∑ |n〉〈n|t〉. Note that ifϕn are energy func-
tions, then the coefficientsbn andcn differ in only exponential factors (see (2.13)).
Substituting (3.2) in (3.1), we obtain

〈 f 〉 =
∑

nm

b∗nbm fnm. (3.3)

Here, the matrix

fnm ≡
∫

drϕ∗n fϕm ≡ 〈n| f |m〉

is assumed to be known, and the problem is reduced to the one offinding pairwise
productsb∗nbm, which also form a matrix, called thedensity matrixor thestatistical
matrix,

ρmn ≡ bmb∗n. (3.4)

Thus, the state vector of the systemΨ is put into correspondence with a matrix.
One can also define an operator ˆρ corresponding toΨ:

∫

drϕ∗mρ̂ϕn ≡ bmb∗n, (3.5)

which, in Dirac’s notation, reads ˆρ = |t〉〈t| (Sec. 7.5).
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In terms of the density matrix and operator, the mean (3.3) can be written in a
more compact manner,

〈 f 〉 =
∑

mn

ρmnfnm = Tr(ρ f ), (3.6)

where Trf means the sum of the diagonal elements,
∑

fnn, called thetrace, or
Spur, of the matrix. The trace of a matrix is one of its invariants,since it does not
change under the matrix transformations of the formf ′ = U f U−1. Such operator
transformations describe changes of the representation inquantum mechanics, and
the invariance of the trace provides that the observable quantities are independent
of the choice of representation. The property Trf ′ = Tr f immediately follows
from another property, Tr(gh) = Tr(hg), which can be easily verified from the
definitions of the Tr and multiplication operations.

3.1.3 Mixed states

In the transition from classical mechanics to statistical physics, the main notion is
the Gibbs ensemble, which is composed of identical systems distributed with the
probabilitiesP(q, p) over the possible states of the system. A quantum statistical
ensemble is constructed in a similar way: we assume that itsP1N systems are in
the stateΨ1, P2N in the stateΨ2, PiN in the stateΨi , and so on. Here,N is the
total number of systems in the ensemble and

∑

Pi = 1.
A mixed stateis a state of the system for which the exact wave function is

not defined but only the set of numbersPi is known, each of them giving the
probability that the system is in theΨi state. The system is then characterized as a
weighedmixtureof states, in contrast to apurestate, for which the wave function
of the system is known.

We stress that a linear combinationα1Ψ1 + α2Ψ2 is still a pure state with a
well-defined wave function. The mean value of an operator contains in this case
an interference term, which depends on the relative phase ofthe states,

〈 f 〉 = P1 f11 + P2 f22 + 2Re(α∗1α2 f12), (3.7)

where

Pi ≡ |αi |2, fi j ≡
∫

drΨ∗i fΨ j .

In a similar mixed state, the last term in (3.7) is absent. There is an analogy
with the superposition of two light fields: coherent fields interfere, while a non-
coherent mixture simply yields double intensity.
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Additional uncertainty of mixed states leads to additional‘thermal’ fluctua-
tions of observables over an ensemble and, according to theergodicity hypothesis,
also over time. However, these fluctuations are not as principal and inevitable as
quantum ones.

In real experiments, the ‘purity’ of the prepared states depends on the skill
of the experimentalist. Near the absolute zero, a crystal isin a pure (ground)
state with a definite energy, but the coordinates of its atomsstill have quantum
fluctuations. In a good maser or laser with complete population inversion, the
atoms are in the excited state with the energyE2. In this case, there are no energy
fluctuations,〈H2〉 = E2

2, but the coordinate of the electron and the dipole moment
still fluctuate.

Thus, depending on its prehistory, a quantum object can be found in one of the
three possible state types:

1) in an eigenstateϕn of a given operator̂f , where one knowsa priori that
〈 f 〉 = fnn and f does not fluctuate,

〈 f k〉 = 〈 f 〉k;
2) in a pure stateΨ formed by a superposition

∑

bnϕn, with quantum fluctuations
observed and only the probability|bn|2 of measuring a certain valuefnn is known,

〈 f k〉 =
∑

|bn|2( fnn)
k;

3) in a mixed state, where quantum uncertainty is combined with the lack of in-
formation about the wave function.

In the case of mixed states, mean values should be calculatedvia double av-
eraging: quantum averaging over the wave functionΨi , according to Eq. (1), and
classical averaging, with the help of thePi distribution and the usual rules of the
probability theory,

〈 f 〉 =
∑

i

Pi fii =
∑

i

Pi

∫

drΨ∗i fΨi . (3.8)

Now, the amplitudes in expansion (3.2) and the density matrix (3.4) depend
on the indexi,

Ψi =
∑

b(i)
n ϕn,

so that (3.8) takes the form

〈 f 〉 =
∑

mni

Pi(b(i)
n )∗b(i)

m fnm = Tr(ρ f ), (3.9)

where we have defined the density operator of a mixed state,

ρ̂ ≡
∑

i

Pi ρ̂i , ρ̄mn ≡ bmb∗n. (3.10)
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Due to its linearity, the averaging operation could be included into the definition
of the density matrix. Equation (3.6) maintains its form in this case. In future, the
bar denoting additional averaging will be omitted.

3.1.4 ◦More general definition of the density matrix

Often, one defines a mixed state and the density matrix in a different, more general
way. In this case, the term ‘mixed state’ is applied not to thewhole system but to
a part of it.

Let a system consist of two parts,A andB. Its state is given by a wave function
Ψ(r A, r B), which, in the general case, is not factorable,Ψ(r A, r B) , ΨA(r A)ΨB(r B).
Therefore, the wave functionΨA of a subsystem does not exist. Indeed, factora-
bility means independence of the subsystems, hence it is impossible ifA andB
interact or have interacted in the past. There is an analogy with classical statis-
tical physics: for interacting particles, the joint probability distribution P(r A, r B)
cannot be represented asP(r A)P(r B).

However, in classical statistical physics we can separately define the probabil-
ity distribution function for subsystemA by summingP over the variables that are
of no interest for us,

PA(r A) =
∫

dr BP(r A, r B). (3.11)

The question is whether a similar procedure is possible in quantum mechanics.
In order to define the density matrix of a subsystem, let us expandΨ over some

complete set of functionsψin(r A, r B),

Ψ =
∑

in

binψin. (3.12)

Such a setψin = χiϕn is generated by two operators, each of them acting on the
variables of only one subsystem. For instance,

(HA − EAn)ϕn = 0, (HB − EBi)χi = 0.

Let fA be the observable of interest,

〈 fA〉 =
∫

dr Adr BΨ
∗ fAΨ

=
∑

ii ′nn′
b∗inbi′n′ fAnn′δii ′ ≡

∑

nn′
ρAn′n fAnn′ = Tr(ρA fA). (3.13)

We have once again obtained Eq. (3.6) by introducing the notation

ρAn′n ≡
∑

i

b∗inbin′ , (3.14)
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which is equivalent to the definition (compare with (3.11))

ρA ≡ TrB(ρAB). (3.15)

In quantum electronics, theA system usually corresponds to a particular atom
(or a molecule or an electron in a crystal) while theB system includes all other
matter particles and quantized electromagnetic field. (Apparently, a classical field
acting on a system does not destroy the ‘purity’ of the state.) Sometimes, on
the contrary,A is understood as a particular field mode whileB corresponds to the
matter. If systemBhas a sufficient number of degrees of freedom and a continuous
energy spectrum, i.e., has a large heat capacity, then its state can be considered as
independent ofA and it plays the role of athermostat. The influence ofB on A
causes the relaxation ofA.

If the back-action ofA on B can be neglected, thenA can be described by
means of a wave function or a density matrix of a pure state (3.4), and we come
back to the problem of a quantum system in a given noise field, which was con-
sidered in Sec. 2.4. Solving this problem in the framework ofsome model enables
one to calculate the relaxation properties and the shapes ofspectral lines. In the
simplest model, the thermostat for an atom is formed by the equilibrium Planck
field, and the probabilities of relaxation transitions are given by the Einstein coef-
ficientsA, B (Sec. 2.5).

3.1.5 Properties of the density matrix

Using definition (3.10), one can easily show that the densitymatrix has the fol-
lowing properties:

Trρ = 1, 0 ≤ ρnn ≤ 1, ρ+ = ρ. (3.16)

In most cases, one uses the energy representation, in which the diagonal elements
of the density matrixρnn ≡ ρn have the meaning of relative occupation numbers
of the levels. The first property in (3.16) means that the probability to find the
system on some level is equal to unity, the second one provides the non-negativity
of the probability, and the third one (Hermiticity), that the observable quantities
are real,

〈 f 〉∗ =
∑

ρ∗mnf ∗nm =
∑

ρnmfmn = 〈 f 〉.

The non-diagonal element of the density matrixb∗mbn characterizes the de-
gree of correlation between them andn states in a statistical ensemble. If the
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state amplitudes of various systems of the ensemble containrandom phase fac-
tors,b(i)

n ∼ exp(iϕ(i)
n ), then, form, n,

ρmn ∼ expi(ϕm− ϕn) = 0, (3.17)

and the state of the ensemble is fully characterized by the state populationsρn.
For a pure state, definition (3.4) leads to the property|ρmn|2 = ρmmρnn. In a

mixed state, the elements of the density matrix satisfy the Cauchy-Bunyakovsky
inequality,

|ρmn|2 < ρmmρnn. (3.18)

3.1.6 ◦Density matrix and entropy

Let a closed system be in a pure energy state,Ψ = ϕ1 exp(−iE1t/~). Then, accord-
ing to definition (3.4), there is only one nonzero element of the density matrix,
ρmn = δmnδn1. Such a trivial matrix satisfies the matrix equation

ρ̂2 = ρ̂. (3.19)

This is a property of all pure states.It follows from Eq. (3.4), the matrix multipli-
cation rule, and the normalization condition Tr ˆρ = 1.

Violation of equality (3.19), or its corollary Trρ2 = 1, can be a sign of a
mixed state. However, there exists a more convenient quantitative measure of
statistical indeterminacy of quantum systems,the entropy(see, for instance, [Fain
(1972); Landau (1964)]). Let us define the entropy operator in terms of the density
operator in the following way:̂S ≡ − ln ρ̂. Then the entropyS is equal to〈Ŝ〉, i.e.,

S = −〈ln ρ̂〉 = −Tr(ρ̂ ln ρ̂). (3.20)

In the representation where ˆρ is diagonal, (3.20) takes the form

S = −
∑

n

ρn ln ρn. (3.21)

(This follows from the fact that in the diagonal representation, [F( f̂ )]nn = F( fnn).)
In a pure state,ρn equals 0 or 1, thereforeS = 0, the indeterminacy (‘chaoticity’)
is minimal. The opposite limiting case of a maximal indeterminacy is realized for
a uniform mixture of states,ρn = const= 1/g, whereg is the number of states with
a given energy (the Gibbsmicrocanonical ensemble). Then,ρ̂ = Î/g, ρ̂2 = Î/g2

and, according to (3.21)

S = −
g

∑

n=1

(1/g) ln(1/g) = ln g. (3.22)

Thus, 0≤ S ≤ ln g.
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3.1.7 ◦Density matrix of an atom

In statistical physics, one usually considers macroscopicobjects consisting of
N ∼ 1022 identical particles. The terms ‘state’, ‘energy level’, ‘density matrix’
relate in this case to the matter as a whole. In principle, onecan speak about the
wave function of a 1 cm monocrystal, which depends on about 1022 space argu-
mentsr i and time. Correspondingly, the number of possible states and, hence, the
dimensionality of the matricesfmn, ρmn are also extremely high. Furthermore, in
order to realize an ensemble one has to have, say, 103 similar crystals.

On the other hand, active media in quantum electronics, suchas gases,
doped crystals or dye solutions, as a rule, consist of weaklyinteracting atoms
or molecules. Then, it is sufficient to consider the state of a single atom, or, to be
precise, of a single external electron. The rest of the particles are then considered
as a thermostat, which has a weak influence on the wave function of the atom.

This transition from about 1022 degrees of freedom to a few ones leads to a
crucial simplification of the theory, i.e., to the ideal gas model. The theory is fur-
ther simplified by excluding from considerations all statesthat are not populated
and not resonant with respect to the external field. This transition to thetwo-level
systemis valid in the case of a quasi-monochromatic external field and the ab-
sence of degeneracy. Note that the density matrix of ann-level non-degenerate
system consists ofn2 elements,n(n − 1) of them being complex. However, the
normalization and Hermiticity conditions (3.16) reduce the number of indepen-
dent elements, so that the state of the system is described byn2 − 1 ≡ m real
numbers. For a two-level system,m = 3, and its state can be represented as a
point in a three-dimensional phase space, with the coordinates 2ρ′21, 2ρ′′21, and
ρ1 − ρ2 ≡ ∆ (Sec. 4.4). In the case of a pure state, conditionρ2 = ρ reduces the
number of independent parameters to two, and the state can beshown by a point
on a unit sphere.

Since the atoms are identical and independent, the additivemacroscopic pa-
rameters of the matter, such as polarizationP, are calculated by simply multiply-
ing single-atom mean values byN, P = N〈d〉. Note that if all gas atoms are under
the same conditions, the gas as a whole can be considered as anensemble (quan-
tum or quantum-statistical) containing approximately 1022 systems. Summation
over atoms is then equivalent to ensemble averaging, and a diagonal element of
the density matrix,ρn, defines the average relative populationNn/N of a levelEn

in a real gas rather than in a hypothetical ensemble of 103 similar gas volumes.
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3.2 Populations of levels

3.2.1 Equilibrium populations

In thermodynamic equilibrium, all statistical propertiesof a system are determined
by the Gibbs canonical distribution. This distribution is applicable to both isolated
macroscopic systems and systems of any size interacting with a thermostat. If
single atoms or molecules of an ideal gas are considered, theGibbs distribution
corresponds to the density matrix of the form

ρ(0)
mn = δmnρ

(0)
m = δmnexp(−Em/κT)/Z, (3.23)

where the normalization factorZ is called thestatistical sumand can be found
from the normalization condition,

Z =
∑

m

exp(−Em/κT). (3.24)

Here,mnumerates various states of an atom, therefore the population of agn-fold
degenerate level is

N(0)
n = gnN exp(−En/κT)/Z. (3.25)

This equation is called the Boltzmann distribution. Note that the equilibrium den-
sity operator (3.23) can be represented in the form

ρ̂(0) = exp(−Ĥ0/κT)/Tr{exp(−Ĥ0/κT)}. (3.26)

As it was shown in Sec. 2.3, interaction of the external field with the matter
is determined by the populations of the ‘resonant’ levelsN1, N2. In the first order
of the perturbation theory, alternate field only creates thenon-diagonal elements
of the density matrix,ρ(1)

12 ∼ E, while the diagonal elements remain unchanged,
ρ

(1)
n ≈ 0. Therefore, at sufficiently weak fields one can calculate populations using

the Boltzmann distribution (3.25).
According to the Boltzmann distribution, the only populated states are the ones

that are apart from the ground state by an energy not much exceedingκT. Hence,
field at frequencies much larger thanκT/~ ≡ ωT can only cause transitions up. At
room temperature, this boundary frequency is in the far IR range (νt ≡ ωT/2πc ≈
200cm−1, λT = 1/νT ≈ 50µ), while at helium temperatures, in the microwave
range (νt ≈ 1cm−1).

In the case of atomic gases and dopant ions in crystals, the lowest excited
levels, as a rule, are well above this boundary, and almost all particles are in the
ground state, so that they all participate in the absorptionof light, ∆N ∼ N1 ∼ N.
Often, the ground level has a degeneracyg1, which can be lifted (completely or
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partly) due to the spin-orbit interaction (thefine structure) or due to static fields
(the Stark and Zeeman effects). In this case, particles are distributed over sub-
levels, and if the splitting is much less thanκT, then the populations of the
sublevels are approximately equal toN/g1, and the population differences are,
according to (3.25), on the order of

∆N ∼ (~ω/g1κT)N � N. (3.27)

Transitions between such sublevels in doped crystals are used in paramagnetic
amplifiers, and relation (3.27) explains why it is necessaryto cool the active media
of amplifiers down to helium temperatures.

In the case of molecular gases or solutions of organic dyes, the ground elec-
tronic level has a rich rotational-vibrational structure,which covers the microwave
and the middle-IR spectral ranges. Therefore, the molecules are distributed over
many levels, and the population differences are small as well.

3.2.2 Two-level system and the negative temperature

Consider populations of two non-degenerate levels as functions of the temper-
ature. Let the zero energy be placed exactly between the two levels, so that
E1,2 = ±~ω/2, then it follows from (3.23) thatρ1,2 = e±x/Z, with x ≡ ~ω/2κT.
From the conditionρ1 + ρ2 = 1 we find thatZ = ex + e−x and, as a result,

ρ1 = N1/N = (e−2x + 1)−1, ρ2 = N2/N = (e2x + 1)−1, (3.28)

∆ =
N1 − N2

N
= tanhx. (3.29)

The active medium of a laser, in principle, is in a strongly non-equilibrium
state, and the Boltzmann distribution (3.25) is not applicable to it, as is, strictly
speaking, any notion related to temperature. However, in the case of non-
equilibrium systems it is convenient to keep the equations in the form (3.28),
(3.29) but to understandT as some effective parameter.Effective, orspin, temper-
ature for a given pair of non-degenerate levels is defined through the population
ratio as follows:

Nm/Nn ≡ exp(~ωnm/κTe f), (3.30)

i.e., the effective temperature is simply a logarithmic measure of the population
ratio. It follows from (3.30) that in the case of population inversion,Te f < 0.

It is easy to see that Eqs. (3.28), (3.29) maintain their formeven for non-
equilibrium systems, provided thatT is understood as the effective temperature.
Figure 3.1 shows the relative population difference as a function of the effective
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Fig. 3.1 Relative population difference∆ and the entropyS of a two-level system as functions of the
parameterx = ~ω0/2κT.

temperature. The dependence is plotted according to Eq. (3.29) for all tempera-
tures, both positive and negative. Full inversion (ρ1 − ρ2 ≡ ∆ = −1) corresponds
to Te f = −0, full saturation (ρ1 = ρ2 = 1/2,∆ = 0) corresponds toTe f = ±∞,
at∆ = 1 Te f = +0. Note that a two-level system with a negative temperature has
more energy stored than a system with a positive temperature:

E = ρ1E1 + ρ2E2 = −(~ω/2)∆ = −(~ω/2) tanhx, (3.31)

wherex ≡ ~ω/2κTe f.
The entropy of a non-equilibrium two-level system can be also defined in

terms ofTe f. According to definition (3.21) and to (3.28),

S = −ρ1 ln ρ1 − ρ2 ln ρ2 = ln(2 coshx) − x tanhx. (3.32)

Thus, entropy is an even function of the temperature, with the maximumS0 = ln 2
at Te f = ±∞ (Fig. 3.1).

Further, we will show that the intensity of thermal radiation from a two-level
system can be also written in terms of the effective temperature (Sec. 7.1). At
Te f < 0, it is this radiation that causes the noise of quantum amplifiers (the Kirch-
hoff law for negative temperatures). In particular, at~ω� κ|Te f | the noise temper-
ature of an amplifier has the same absolute value as the effective one,Tn = |Te f |.

3.2.3 ◦Populations in semiconductors

Boltzmann’s distribution (3.25) is not valid for calculating the number of active
particles in the case of inter-band transitions in semiconductors. (Such transi-
tions are used in semiconductor lasers.) In contrast to bound electrons in gases
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or in doped dielectric crystals, electrons in the valence and conduction bands of
a semiconductor are not localized and can exchange locations. This possibility
allows one to consider the multi-electron problem and to take into account the
anti-symmetry of the total wave function with respect to thepermutation of two
electrons, which leads one to the Pauli principle.

In the first approximation, electrons behave like particlesof an ideal quantum
gas with high density. By applying to an ideal gas the generalGibbs distribution,
which has the form (3.23) provided thatm numbers all possible states of a multi-
particle system, and taking into account the Pauli principle, we come to the Fermi-
Dirac distribution f (0)(E). For comparing it with (3.25), we will represent this
distribution as (see Fig. 3.2(b))

N(0)
m = 2 f (0)(Em) = 2{exp[(Em− µ)/κT] + 1}−1, (3.33)

where the factor 2 takes into account spin saturation,µ is the Fermi level, defined
by the normalization condition

∑

N(0)
m = N, with N being the total number of elec-

trons, andEm are allowed energy values for one electron. The spectrum is discrete
due to periodic boundary conditions for the electron wave function. According to
(3.33), mean population of any level cannot exceed two electrons, in agreement
with the Pauli principle.

The energy levelsEm of electrons in semiconductors have almost continuous
distribution within the allowed bands. As a result, population Nm can be consid-
ered as a function of a continuous argumentE, and the normalization condition
∑

Nm = N, which indirectly defines the Fermi level, takes the form
∫

dEg(E)N(E) = N, (3.34)

with the integration running over the valence and conduction bands andg(E) being
the energy density of states.

For pure semiconductors, the Fermi level is approximately at the centre of
the energy gap. If there were dopant levels, each of them would contain one
electron;the Fermi level can be formally defined as the one that is half-occupied.
At low temperatures, the boundary between full and empty levels is very sharp
(Fig. 3.2(b)).

In the case of sufficiently high levels, for whichE − µ � κT, one can neglect
the unity in the denominator of Eq. (3.33), and the equation takes the form of the
Boltzmann distribution (3.25),

Nm = 2Z−1 exp(−Em/κT)� 2, (3.35)

whereZ = exp(−µ/κT).
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(a) (b) (c)

Fig. 3.2 Population inversion in a semiconductor: (a) relation between the momentump and the
energyE, i.e., the dispersion relation, for electrons and holes,Eg being the energy gap; light with the
frequencyω and wavevectork transfers electrons from theE1 level to theE2 level (or vice versa); (b)
populations of energy levels in an equilibrium semiconductor (the Fermi-Dirac distribution); (c) due
to the injection of carriers, the Fermi levelµ splits in quasi-levelsµv, µc, and for some pairs of levels,
inversion takes place:f1 < f2

3.2.4 ◦Inversion in semiconductors

Consider the condition for quantum amplification through inter-band transitions in
semiconductors. The incident field, with the frequencyω exceeding the gap width
Eg/~, leads to almost ‘vertical’ transitions of electrons from level 1 of the valence
band to level 2 of the conduction band (Fig. 3.2(a)). The levels 1,2 within the
bands are unambigously defined by the conservation laws of energy,~ω = E2−E1,
and momentum (or, to be precise, quasi-momentum),~k = p2 − p1.

The number of stimulated transitions up scales as the probability of filling
the ground level,N1/2 = f (E1) ≡ f1, multiplied, in accordance with the Pauli
principle, by the probability 1− f2 of a hole being on the excited level. Similarly,
the number of transitions down scales asf2(1− f1), with the same proportionality
factor (see (2.26)). The overall effect of field energy amplification or absorption
scales as the difference,

α ∼ f1(1− f2) − f2(1− f1) = f1 − f2 = (N1 − N2)/2. (3.36)

Thus, the contribution of a single pair of resonant levels into absorption scales
as the difference of their populations, similarly to the case of localized electrons,
and the inversion condition has the form

f (E2) > f (E1). (3.37)
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In an equilibrium semiconductor,f = f (0), and this condition is not satisfied.
However, if, for instance, a sufficient number of carriers (electrons and holes)
is injected into the bands with the help of an external DC current source, then
condition (3.37) can be satisfied, see Fig. 3.2(c). One can easily show that this
requires degeneracy of the carriers in the bands,

µc − µv > ~ω > Eg. (3.38)

Here,µc, µv are the Fermi quasi-levels in the conduction and valence bands. In
addition to the injection method, semiconductor lasers useoptical pumping, either
single- or two-photon one, and pumping with an electron beam.

Let us mention here that amplifiers and oscillators using free electrons, such
as gyrotrons, free-electron lasers etc., can be also described in terms of population
inversion (occupation numbers). For instance, in a quasi-monochromatic beam
with the mean energyE0, only a small group of levels in the vicinity ofE0 is
occupied; therefore, inversion takes place with respect toall lower levels,f (E0) >
f (E).

3.3 Evolution of the density matrix

3.3.1 Non-equilibrium systems

The density matrixρmn of a system, similarly to the distribution functionP(q, p)
in classical physics, contains complete statistical information about the proper-
ties of the system, i.e., allows one to calculate ensemble means〈 f 〉 = Tr( fρ),
higher-order moments, correlation coefficients〈 f g . . . 〉 = Tr( f g . . . ρ) etc. Ther-
modynamics mainly deals with equilibrium systems where thedensity matrix and
the ensemble means are time-independent, ˙ρ(0) = 〈 ḟ 〉(0) = 0. Note, however, that
the correlation functions〈 f (t)g(t′)〉(0) may depend on the time differencet − t′.

In quantum electronics, on the contrary, of most interest are systems where,
due to the effect of external fields, essentially non-equilibrium state is formed,ρ ,
ρ(0). If the external perturbation is alternating,V = V(t), then the density matrix
and the ensemble means are naturally time-dependent,ρ = ρ(t), 〈 f 〉 = 〈 f (t)〉. On
the other hand, after the external field is switched off, the initially non-equilibrium
(ρ(t0) , ρ(0)) system will relax and tend to equilibrium, and its density matrix and
means will be again functions of time. However, the relaxation processes can be
also described by alternating perturbation,V(t), acting on the system from the
thermostat.

Non-equilibrium and non-stationary systems are studied bynon-equilibrium
statistical thermodynamics, also called the kinetic theory. In contrast to dynamics,
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kinetics studies not the time dependencies of coordinates and momenta of separate
particles,q(t), p(t), or of the wave function,Ψ(q, t), but the behavior of the means,
〈 f (p, q, t)〉, distribution functions,P(q, p, t), or the density matrix,ρmn(t), for sys-
tems interacting with the thermostat and (or) with externalalternating fields.

3.3.2 Von Neumann equation

Let us first consider, in terms of the Schrödinger equation,the dynamic problem
about the behavior of the density matrix for a system with a known energy operator
H . For this, we substitute expansion (3.2) in the Schrödinger equation and left-
multiply the resulting equation by the operator

∫

drϕ∗m. Because the functions
ϕm are orthogonal and normalized, we obtain the following system of equations
determining the dynamics of thebm coefficients:

i~ḃm =
∑

n

Hmnbn. (3.39)

Recall that, in contrast to Eq. (2.14), this equation includes the matrix elements
of the total HamiltonianH rather than the interaction operatorV. This is due to
a different definition of state amplitudes. In addition, the basicfunctionsϕm used
here are not necessarily eigenfunctions of the energy operator.

We multiply (3.39) byb∗k and write its complex conjugate,

i~b∗kḃm =
∑

n

Hmnb
∗
kbn,

i~bkḃ∗m = −
∑

n

Hnmbkb
∗
n.

(3.40)

Here, we used the Hermiticity of the energy operator,H+ = H . Let us interchange
them, k indices in the second equation and take the sum of the two equations. As
a result, taking into account the definition of the density matrix for a pure state,
(3.4), we find the following equation of motion:

i~ρ̇mk =
∑

n

(Hmnρnk − ρmnHnk). (3.41)

According to definition (3.10), the equation for a mixed-state density matrix
has the same form. Using the matrix multiplication rule and the commutator no-
tation, [f , g] ≡ f g− g f , one can write Eq. (3.41) in a compact invariant form,

i~ρ̇ = [H , ρ]. (3.42)

This equation, describing the evolution of the density matrix, is called thevon
Neumann equation. It is the starting point for non-equilibrium thermodynam-
ics. Its classical analogue is the Liouville equation for the distribution function
P(q, p, t).
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3.3.3 Interaction with the thermostat

In the most general approach,ρ in Eq. (3.42) is understood as the density matrix
of a closed system in a pure state, with the energy containingthe following terms:

H = H0 +V, H0 = HA +HB, V = V1 +V2, (3.43)

whereHA andHB are unperturbed Hamiltonians of the system and the thermo-
stat whileV1 andV2 describe, respectively, the interaction of the system with
the thermostat, i.e., relaxation, and with the external field. The von Neumann
equation is solved in terms of the perturbation theory, and then averaging over the
variables of the thermostat is performed, see the second definition of the density
matrix (3.15).

In a less rigid approach,ρ only relates to the system under consideration, i.e.,
an atom, a molecule, etc.,H0 ≡ HA, andV1 is assumed to be a stochastic function
of the time with given statistical parameters. Let the indicesk,m, n numerate non-
perturbed energy functions (H0ϕk = Ekϕk), then Eq. (3.41) takes the form

(

d
dt
+ iωmk

)

ρmk =
1
i~

∑

n

(Vmnρnk − ρmnVnk), (3.44)

where theV operator includes the action of the thermostat and the external field.
Note, however, that this approach does not explain the non-equality of the ‘up’
and ‘down’ relaxation transition probabilities,w12 > w21, see the next section.

Finally, in quantum electronics, as a rule, relaxation is taken into account phe-
nomenologically, using a small number of constants, which are assumed to be
known from a more detailed theory or from experiment.

3.3.4 Evolution of a closed system

Before introducing relaxation parameters into the density-matrix equation, con-
sider the case of a closed system. Letϕn be eigenfunctions of the energy operator,
thenHmn = Enδmn, and Eq. (3.41) takes the form

ρ̇mk = −iωmkρmk. (3.45)

Thus, the density matrix of a closed system has a trivial dependence on time,

ρmk(t) = ρmk(0) exp(−iωmkt), (3.46)

i.e., non-diagonal elements of the density matric oscillate with the corresponding
Bohr frequencies while the diagonal elements (relative populations) are constant.
Note that this result also follows directly from the exponential time dependence
of the state amplitudes,bn = cn exp(−iEnt/~), and the definition ofρ (3.4).
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The dipole moment of an isolated atom can be calculated from Eq. (3.46),

〈d(t)〉 = Tr{dρ(t)} =
∑

mn

dnmρmn(0) exp(−iωmnt). (3.47)

At the same time, it follows from Maxwell’s equations that anoscillating dipole,
similarly to an aerial, emits electromagnetic waves into free space; therefore,
within a certain time an atom should lose all its energy and get into the ground
state, i.e.,ρmn(∞) = δmnδn0. Thus, an atom cannot be isolated from electromag-
netic vacuum, which plays the role of the thermostat withT = 0. This example
reminds us that isolated systems do not exist, and hence (3.45) should be com-
pleted by relaxation terms describing the evolution into equilibrium, ρ(∞)→ ρ(0).

3.3.5 Transverse and longitudinal relaxation

The most simple models of relaxation, based, in particular,on the Markovian
approximation, lead to the following form of kinetic equations for the density
matrix (see, for instance, [Fain (1972); Apanasevich (1977)]):

(

d
dt
+ iωmk

)

ρmk = −γmkρmk, m, k (3.48)

dρm

dt
=

∑

n

(wmnρn − wnmρm), ρm ≡ ρmm. (3.49)

According to (3.48), non-diagonal elements of the density matric behave like
amplitudes of exponentially decaying oscillators,

ρmk(t) = ρmk(0) exp[(−iωmk− γmk)t]. (3.50)

The damping constant for a given pair of levels,γ12 ≡ γ21, is often denoted as
1/T2. The relaxation timeT2 of the non-diagonal componentρ12 is called the
time ofspin-spin, or transverse, relaxation. (The meaning of the second term will
be clarified in Sec. 4.4.)

From the experimental viewpoint, transverse relaxation isusually revealed in
the broadening of spectral lines. (So far, we ignore nonstationary experiments,
which will be considered in Chapter 5.) It will be shown in Sec. 4.2 that (3.48)
leads to a Lorentzian line shape with the FWHM

∆ω = 2γ12 = 2/T2. (3.51)

In rarefied gases, relaxation is only caused by the interaction of atoms with elec-
tromagnetic vacuum. This interaction leads to the spontaneous emission, with
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the probabilityA12 = 2γ12, and the corresponding broadening of the upper level
∆E2 = ~A12, as well as the spectral broadening, called thenaturalbroadening,

∆ωnat = 2γ12 = A12. (3.52)

If the lower level of the transition under consideration is not the ground one, its
broadening has to be taken into account as well. Let 2γn ≡

∑

m<n Amn be the total
probability of a spontaneous transition from leveln to all lower levels, then

γmn = γm+ γn. (3.53)

In reality,∆ fnat is on the order of MHz for the case of visible-range allowed tran-
sitions, andT2 ∼ 10−6 s.

For sufficiently dense gases, natural broadening is masked by the collision
one, andT2 coincides, within an order of magnitude, with the mean timeτ be-
tween the collisions of atoms with each other. As a result,∆ω ≈ 2/τ, and the
line width scales as the pressurep, provided, of course, that the Doppler broad-
ening is smaller than the collision one. For rough estimates, one can assume that
at p = 1 mmHg,∆ f ∼ 10...100 MHz. Note, however, that under certain con-
ditions, the increase of the pressure leads to line narrowing, ∆ω ∼ 1/p, called
collision, or dynamical, narrowing. One of the models of this effect is considered
in Ref. [Akhmanov (1981)].

Interaction of atoms with the thermostat leads not only to the damping of the
states, but also to a certain shiftδω of the transition frequency. In the case where
the thermostat is a vacuum, this shift is called theLambshift. Both effects can
be formally taken into account by substituting a complex value for the transition
frequencyωmn,

ω̃mn = ωmn+ δωmn− iγmn. (3.54)

It is important that transverse relaxation is not always related to the energy
transfer to the thermostat. For instance, elastic collisions in a gas lead to random
changes in the phases of complex state amplitudes for separate atoms,b(i)

m , and
their pair products,b(i)

m b(i)∗
n . If these phases are initially equal,ρmn , 0, then, after

a certain time intervalT2 = 1/γmn, which is on the same order of magnitude as
the mean time interval between collisions, the phase will beuniformly distributed
within the interval 0− 2π, so thatρmn → 0. A similar effect is caused by the
dipole-dipole interaction of neighboring dopant atoms in crystals. Perturbations
of this kind, which do not change populations, are calledadiabatic. Certainly,
non-adiabatic perturbations, such as non-elastic collisions, also contribute to the
relaxation of non-diagonal elements, as they change both the amplitudes and the
phases of the coefficientsb(i)

m .
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Let us now consider the relaxation of diagonal density matrix elements, i.e.,
populations. Kinetic equations (3.49) contain a set of phenomenological coeffi-
cientswmn with the dimensionality 1/s. Thew21 coefficient defines the rate of
transition from state 1 into state 2 due to the effect of the thermostat. (Recall
that in quantum mechanics, transition indices are read fromright to left.) The
role of the thermostat can be played, for instance, by lattice vibrations in crystals,
translational degrees of freedom of atoms in gases, and electromagnetic radiation.

In the case of two-level systems, one denotes

T1 = (w12 + w21)
−1. (3.55)

T1 determines the relaxation time of populations, i.e., of themean energy, and is
called the time ofspin-lattice, or longitudinal, relaxation. The time of longitudinal
relaxation depends on the thermostat temperature and varies within broad limits,
from 10−12s in the case of nonradiative optical transitions in condensed matter, to
hours and days in the case of nuclear magnetic resonance. (Inthis case, interac-
tion with lattice is weak due to the small value of the nuclei magnetic moment,
µ ∼ 10−23 CGS.) Note that adiabatic perturbations, like dipole-dipole interaction,
do not change the populations; therefore, usuallyT1 > T2. In experiment, longi-
tudinal relaxation manifests itself in the saturation effect (Sec. 4.3).

Equations (3.48), (3.49) should also involve the case of thermodynamic equi-
librium, whereρ = ρ(0) and ρ̇(0) = 0; hence, the following relation should hold
true:

∑

n

(wmnρn − wnmρm) = 0. (3.56)

This equality is satisfied, in particular, if one assumes theprinciple of detailed
equilibrium,

wmnρn = wnmρm. (3.57)

Hence, taking into account the Boltzmann distribution, we find the relation be-
tween the probabilities of relaxation transitions and thusreduce the number of
independent parameters in Eq. (3.49) by a factor of two,

wmn/wnm = exp(~ωnm/κT), (3.58)

with T being the temperature of the thermostat. This condition provides dy-
namical equilibrium for the populations. Thus,w12 > w21, in contrast to the
case of stimulated transitions in a classical field, where, according to (2.26),
W12 = W21. When the thermostat is at low temperature, it has no excitations
(photons, phonons, etc.) with high energy,~ω > κT. Therefore, it can only absorb
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energy from the system under consideration, and transitions ‘up’ are practically
absent. An extreme example is realized for transitions between nuclei levels in
theγ range. Even in condensed matter, such transitions usually occur only due to
spontaneous emission, with the probabilityw12 = A = 1/T1. In the case of nuclear
isomers,A is extremely small because the transitions are forbidden, andT1 can be
as large as days, similarly to the NMR case.

The parameterswmn can be calculated, in principle, using some model of the
thermostat. An example where the role of the thermostat is played by the field has
been considered in Sec. 2.5. Then,

w21 = Bρ,w12 = Bρ + A, (3.59)

1/T1 = Acoth(~ω21/2κT) = A/∆(0), (3.60)

whereA, Bare the Einstein coefficients for spontaneous and stimulated transitions,
ρ ≡ ρ(0)(ω21) is the spectral density of the equilibrium field, given by the Planck
formula, and∆(0) is the equilibrium relative population difference (see Eq. (3.29)).

3.3.6 Interaction picture

Usually, one has to solve the von Neumann equation for the density matrix by
means of the perturbation theory, i.e., a sequence of iterations. The only exception
is the case of a two-level system, which will be considered inSec. 4.3. As in the
case of solving the Schrödinger equation in the energy representation (Sec. 2.1),
we will assume that the influence of the external alternatingfield on the electrons
in an atom is much weaker than the effect of the nucleus constant field, which
determines the unperturbed stationary states of a bound electron. As we will show
in what follows, a more precise formulation of the conditionfor the perturbation
theory to be valid has the formΩ � ω̃, whereΩ = |dmn · E0|/~ is the Rabi
frequency, i.e., the matrix element of the perturbation energy in frequency units,
andω̃ is the mismatch between the field frequency and the closest atom frequency,
i.e., the energy deficit|ω − ωmn| in the virtual state (Sec. 6.2) or the transition
bandwidthγmn given by the relaxation.

Before solving the von Neumann equation, it is convenient totransfer the triv-
ial time dependence of the unperturbed density matrix to theoperators. To do
this, let us introduce the following notation for the matrixelements of an arbitrary
operator in the energy basis:

f ′mn = fmnexp(iωmnt) =
∫

drΦ∗m(r , t) fΦn(r , t), (3.61)

where the functionsΦn = ϕn exp(−iEnt/~) satisfy the equationi~Φ̇n = H0Φn.
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Transformation of the matrix elements (3.61) corresponds to the followingunitary
transformationof the operators:

f ′(t) = U+0 f U0, (3.62)

U0(t) ≡ exp(−iH0t/~), U+0 U0 = I . (3.63)

The unitary operatorU0 is called theunperturbed evolution operator; it is diago-
nal in the energy representation and has the eigenvalues exp(−iEnt/~), so that

Φn(t) = U0(t)ϕn, (3.64)

ϕn = U+0 (t)Φn(t). (3.65)

In the Dirac notation, the time evolution of a state vector, for the caseV = 0,
is described as

|t〉 = U0(t − t0)|t0〉. (3.66)

The inverse transformation has the form

| 〉′ ≡ |t0〉 = U+0 |t〉. (3.67)

Let us now substitute into the von Neumann equation (3.42), for ρmn andVmn,
the primed values, according to (3.62), and take into account thatωmn+ωnk = ωmk.
As a result, we get the equation for the density matrix in theinteraction picture,
also called theDirac picture,

i~ρ̇′mk =
∑

n

(V′mnρ
′
nk − ρ′mnV′nk). (3.68)

In the invariant notation, it is written as

i~ρ̇′ = [V′, ρ′]. (3.69)

Note that the time dependence of an arbitrary operatorf is given by the
Heisenberg equation,

i~ ḟ = [ f ,H ]. (3.70)

Here, it is assumed thatf does not depend on the time directly, i.e.,∂ f /∂t = 0.
Transformations of operators of the form (3.63) accompanied by transforma-

tions of state vectors of the form (3.67) means passing to theinteraction picture,
and in the caseV = 0, to theHeisenberg picture. These transformations are
similar to passing to a rotating frame of reference.

In the initial Schrödinger picture, state vectors, and also, according to def-
inition (3.4), the density matrix elements are functions oftime. Operators can
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depend on time only due to a varying external force (as, for instance, the energy
operatorV(t) = −d · E(t) in dipole interaction). On the contrary, in the Heisen-
berg picture all time dependence is transferred to the operators and their matrix
elements, except the density matrix operator, and the statevectors are constant.
The interaction picture is intermediate, and it has all values time-dependent.

However, it is important thatthe observables do not depend on the choice of
the picture,

〈 f 〉 = Tr( fρ) = Tr( f ′ρ′). (3.71)

This can be proven using definition (3.63), the unitarity,U0U+0 = I , and the in-
variance of the trace to cyclic permutations, Tr(abc) = Tr(bca).

3.3.7 ◦Perturbation theory

It is not difficult to find the formal solution to the von Neumann equation (3.69)
using the iteration method. For this, let us represent the density operator as a series
expansion (the primes will be temporarily omitted),

ρ(t) = ρ(0) + ρ(1)(t) + ρ(2)(t) + . . . (3.72)

and substitute it in (3.69). Here,ρ(0) = ρ(t0) is the initial condition. By setting
equalities between the terms of the same order in the perturbationV, we find the
relation

i~ρ̇(k) = [V, ρ(k−1)]. (3.73)

Integration yields

ρ(k)(t) = (i~)−k
∫ t

t0

dtk . . .
∫ t2

t0

dt1[V(tk), . . . [V(t1), ρ(0)] . . . ]. (3.74)

From this, we find the mean value of an arbitrary operator,

〈 f (t)〉 =
∞
∑

k=0

(i~)−k
∫ t

t0

dt1 . . .
∫ tk−1

t0

dtk

× 〈[. . . [ f ′(t),V′(t1)], . . . ,V′(tk)]〉(0). (3.75)

In the last expression, averaging is over the initial (unperturbed) density matrix
ρ(0); the initial time momentt0 is usually assumed to be−∞. Eq. (3.75) was
derived using the property Tr(ab) = Tr(ba), which leads to the following equalities
under the Tr operation:

a[b, c] = [a, b]c, a[b, [c, d]] = [[a, b], c]d. (3.76)
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Relation (3.75) determines the response (reaction) of a quantum system to an
external perturbation. For instance, assumingf = dα,V(t) = −d · E(t) one can
find the mean dipole moment of an atom, i.e., the charge displacement due to a
given electric field, in the form

〈d(t)〉 = α̂E + β̂E2 + γ̂E3 + . . . , (3.77)

whereα̂, β̂, γ̂ are some integral operators whose structure is clear from (3.75). Ex-
pansion ofd(t) andE(t) in Fourier integrals or series determines thepolarisability
tensorsα(ω), β(ω,ω′), . . . of an atom. Further, by multiplying atom polarisabil-
ities by the densityN of the atoms, one can find the macroscopicsusceptibility
tensors of the matter,χ(1)(ω), χ(2)(ω,ω′), . . .

As a result of such calculations, some of which will be demonstrated in
Secs. 4.2 and 6.2 below, polarizationP = N〈d〉 of the matter can be expressed
in terms of the external field and the parameters of the atoms,dipole matrix ele-
mentsdmn and the transition frequenciesωmn.
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Chapter 4

The Susceptibility of Matter

In classical electrodynamics, the interaction between matter and a field is con-
ventionally studied in two steps, the microscopic one and the macroscopic one.
The microscopic part is focused on the behaviour of charged material particles
in a given external field. As a result, one finds the averaged, macroscopic, pa-
rameters of the matter, such as the susceptibility tensorχ, which determines the
polarizationP = χ · E of homogeneous matter caused by the field, or the dielectric
functionε = 1+4πχ. As a result of frequency Fourier expansion of the field, these
quantities become complex functions of the frequency,ε(ω) = ε′(ω) + iε′′(ω).

In the macroscopic approach, the susceptibility of the matter is assumed to be
known, and the emission and propagation of the field are studied using Maxwell’s
macroscopic equations.

The present chapter considers first the definition and the general properties
of the susceptibility tensor (Sec. 4.1). Further, in Sec. 4.2 the susceptibility is
calculated in the framework of the simplest model of identical, motionless and
non-interacting molecules. Both classical and quantum theory is used in this case.
Section 4.3 considers saturation, the most important effect in nonlinear optics,
in which populations of two levels get balanced due to a strong resonant field.
Finally, in Sec. 4.4 the Bloch equations, which are widely used in quantum elec-
tronics, are derived.

4.1 Definition and general properties of susceptibility

By definition, linear dielectric susceptibilityχ(ω) is the proportionality factor be-
tween a monochromatic macroscopic fieldE(ω) at frequencyω and the polariza-
tion P(ω) emerging in a homogeneous medium due to its effect. In an anisotropic
medium, polarization can be non-parallel to the field, so that in the general case,

67
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susceptibility is a tensor,

Pα(ω) =
∑

β

χαβ(ω)Eβ(ω), (4.1)

with α, β = x, y, z. Usually, the summation sign is omitted. In more compact
notation,

P(ω) = χ(ω)E(ω). (4.2)

4.1.1 Symmetry

Here,E(ω) denotes the Fourier component of the fieldE(t). As it is common in
physics, a function of timef (t) and its Fourier transformf (ω) are denoted by the
same symbol and only their arguments differ,

f (t) =
∫

dωe−iωt f (ω), f (ω) =
∫

dteiωt f (t)/2π. (4.3)

The absence of the integration limits means that they are±∞. Note that if f (t) is
real, then (4.3) leads to the following symmetry property for f (ω):

f (−ω) = f ∗(ω). (4.4)

Thus, the real part,f ′(ω), is an even function while the imaginary part,f ′′(ω),
is an odd function, so it is sufficient to knowf (ω) for positive frequencies. From
the definition (4.2), it follows that all components of the susceptibility tensor also
satisfy (4.4),

χ(−ω) = χ∗(ω). (4.5)

Theχ(ω) tensor and its inverse Fourier transform,χ(t), calledthe Green func-
tion or the response function, have one more general property, typical for arbitrary
physical systems: they are symmetric,χ = χ̃, or

χαβ = χβα. (4.6)

Here,χ̃ is the transposedtensor, ˜χαβ ≡ χβα. This equality is an example of the
generalOnsager symmetry principle for kinetic indices. It is also confirmed by the
microscopic theory (see (4.59)). The symmetry ofχ is only violated in the case of
optical activity, either natural or caused by a constant magnetic field. In the latter
case, instead of (4.6) we haveχ(H0) = χ̃(−H0).

Additional relations between different components ofχαβ are imposed by the
symmetry of the medium. For instance, in crystals with cubicsymmetry,χαβ =
χδαβ, as in isotropic media.
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4.1.2 The role of causality

Dependence of susceptibility on the frequency,χ(ω), cannot be arbitrary. As we
will see, its real and imaginary parts,χ′(ω) andχ′′(ω), are related via the Hilbert
transformation.

Consider polarization induced in a dielectric by a very short field pulse,
E(t) ∼ δ(t), so that the pulse duration is much less than the period of the most
high-frequency eigenmode of the matter. In the spectrum of such a pulse, all
frequencies are distributed uniformly,E(ω) = const, and the spectrum of the
polarization, according to (4.1), repeats the shape ofχ(ω): P(ω) ∼ χ(ω). (For
simplicity, the medium is considered as isotropic.) Hence,the polarization pulse
P(t) repeats the shape of the Fourier transform of the complex susceptibility,

P(t) ∼
∫

dωe−iωtχ(ω) ≡ 2πχ(t).

Apparently, the system cannot respond before the external force is ‘turned on’;
hence,χ(t) should turn to zero att < 0,

∫

dωe−iωtχ(ω) ∼ θ(t), (4.7)

whereθ(t) is the Heaviside step function, which is unity att > 0 and zero att < 0.
The causality principle, according to (4.7), restricts considerably the allowed

class ofχ(ω) functions. Indeed, it follows thatχ(ω), considered as a function of a
complex frequencyω = ω′ +ω′′, should be analytical in the upper semiplane. Let
us calculate the integral in (4.7) using the residue theory.The integrand contains
the factoreω

′′t; therefore, att > 0, the integral should run along a contour in
the lower semiplane (see Fig. 4.1), while att < 0, the contour should be in the
upper semiplane. However, due to the causality principle, at t < 0 the integral
should turn into zero. Therefore, theχ(ω) function cannot have poles in the upper
semiplane (see, for instance, [Vinogradova (1979); Landau(1982, 1964)]).

Further, according to the integral Cauchy formula, the realand imaginary parts
of an analytical function are related via the Hilbert transformations,

πχ′(ω) = PV
∫

dω1
χ′′(ω1)
ω1 − ω

, πχ′′(ω) = PV
∫

dω1
χ′(ω1)
ω − ω1

, (4.8)

where ‘PV’ denotes the principal value of an integral. Theseintegral equations
are called theKramers-Kronig relations. They allow, for instance, the real part of
susceptibility to be calculated from the measured imaginary part. The above-given
derivation can be extended to the case of an anisotropic medium. Then, equations
(4.8) will be valid for all components of theχ tensor.
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Fig. 4.1 Proof that the susceptibility of a dielectricχ(ω) is an analytical function of complex fre-
quency in the upper semiplane: att < 0, the response functionχ(t) turns to zero due to the causality
principle. At the same time, it is equal to the integral ofχ(ω)e−iωt along theC contour. Hence,
according to the Cauchy theorem,C should not contain poles ofχ(ω).

4.1.3 Absorption of a given field

In the linear optics approximation, susceptibilityχ completely determines emis-
sion, propagation, and absorption of a macroscopic field in ahomogeneous
medium, as well as the properties of surface waves, refraction and diffraction at the
boundaries. Moreover, according to the fluctuation-dissipation theorem (FDT),χ
also determines the equilibrium thermal field in matter (Sec. 7.7).

Let us show that the imaginary part of the susceptibility,χ′′(ω), determines
the power of radiation absorbed or, atχ′′ < 0, emitted by the matter. We start
from macroscopic Maxwell’s equations for a linear non-magnetic medium with
D = E + 4πP = (I + 4πχ)·E andB = H,

c rotH − Ḋ = 4πj , (4.9)

c rotE + Ḣ = 0, (4.10)

divD = 4πρ, (4.11)

divH = 0, (4.12)

wherej andρ are external (given) densities of current and charge.
At j = 0, the powerP absorbed by a unit volume of the matter, due to the

energy conservation law, should be opposite to the divergence of the energy flux
densityS,

P(t) = −cdiv(E ×H)/4π = c(E · rotH − H · rotE)/4π.

From (4.9, 4.10), it follows that

P(t) = (E · Ḋ + H · Ḣ)/4π.

In the case of a monochromatic field, this expression contains terms oscillating
at a double frequency. After time averaging, it turns into zero, so that the mean
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power per period is

P ≡ P(t) = E · Ṗ = ωIm(E∗0 · P0)/2 = iω(E0αχ
∗
αβE

∗
0β − E∗0αχαβE0β)/4 (4.13)

Let us interchange theα, β indices in the first term and take into account that in a
non-gyrotropic material, susceptibility (4.6) is a symmetric tensor, then

P = ωχ′′αβE∗0αE0β/2 ≡ ωE∗0 · χ
′′·E0/2. (4.14)

In the case of a gyrotropic material, the imaginary part ofχ in (4.14) should be
replaced by the anti-Hermitian part, (χ − χ+)/2i. For an isotropic medium or a
cubic crystal, (4.14) takes the form

P = ωχ′′|E0|2/2. (4.15)

4.1.4 ◦Susceptibility of the vacuum

Further, let us find the field generated in a homogeneous medium by external
sources, i.e., a given polarization with a harmonic variation in time and space,

P = (1/2)P0e
ik·r−iωt + c.c. (4.16)

Here,k andω are independent variables. In a homogeneous medium,P induces
a plane monochromatic wave with amplitudesE0,H0. Let us substitute (4.16) in
(4.9, 4.10) and take into account thatj = Ṗ. We get a system of algebraic equations
for E0,H0 (n ≡ ck/ω),

n × H0 + ε·E0 = −4πP0, (4.17)

n × E0 − H0 = 0. (4.18)

ExcludingH0, we get

n × (n × E0) + ε·E0 = −4πP0. (4.19)

Double vector product in (4.19) projects the−E0 vector onto the plane orthog-
onal to the propagation directionk. Let us denote this projection operation byΠ.
Apparently, theΠ tensor has the components

Παβ = δαβ − kαkβ/k
2. (4.20)

As a result, Eq. (4.19) takes the form

(n2Π − ε) · E0 = 4πP0. (4.21)

Thus, the problem is reduced to solving a system of two linearnon-
homogeneous algebraic equations. The solution can be expressed, in a standard
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way, in terms of the minors and determinant of the matrix (n2Π − ε)αβ. Instead
of solving the system directly, we expressE0 in terms ofP0 using the formalism
of the inverse matrix or tensor. By definition,A · A−1 = A−1·A = I ; therefore, it
follows from (4.18) and (4.21) that

E0 = G · P0, H0 = n × (G · P0), G ≡ 4π(n2Π − ε)−1. (4.22)

TheGαβ(k, ω) tensor is called thespectral Green functionfor Maxwell’s equa-
tions. It determines a macroscopic field induced by polarization (4.16), i.e., the
response of the electromagnetic ‘vacuum in matter’ to an external excitation. The
tensor functionG(k, ω), similarly toχ or ε, satisfies the Kramers-Kronig relations.
Its Fourier transform,G(r , t), determines the fields emerging in a homogeneous
medium due to an arbitrary distribution of the polarizationP(r , t) or a current.

Consider the case of a homogeneous medium. Let thez axis be alongk, then
from (4.20) and (4.22) we find

E0x,y = 4πP0x,y/(n2 − ε), (4.23)

E0z = −4πP0z/ε; (4.24)

recall that heren ≡ ck/ω. The last equation for the fieldE0z, which is longitudinal
with respect to the propagation direction, shows that it is independent ofk: we
usually exclude the effects ofspatial dispersionwhereε = ε(k, ω). According
to (4.24), longitudinal field created by this polarization is maximal at frequencies
where|ε(ω)| is minimal; these frequencies are given by the conditionε′(ω) ≈ 0.
Note that the Green function for a longitudinal field can be also obtained from
Eq. (4.11) by assuming thatρ = divP.

Transverse components of the field,E0x,y, considered as functions ofk, ac-
cording to (4.23), have a ‘wave resonance’ atk = ω

√
ε′/c, i.e., atn2 = ε′. Then,

Gxx = Gyy = i/χ′′, and the radiation power is (c.w. (4.15))

P = ω(|P0x|2 + |P0y|2)/2χ′′. (4.25)

4.1.5 ◦Thermodynamic approach

Between the ranges of strong absorption in matter, there aretransparency ‘win-
dows’ where one can neglect the energy dissipation, i.e., assume|χ′′/χ′| � 1.
(We consider the matter to be non-gyrotropic.) In the absence of dissipation, the
vibrational energy of the particles caused by the external field is conserved; hence,
the work of polarization can be defined as a function of the field amplitude,A(E0).
This work consists of displacing the charges and is performed by the sources of
alternating fields. Note that forA to be defined, a finite time is necessary for a



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

The Susceptibility of Matter 73

stationary amplitudeP0 of polarization oscillations to be formed, which is only
possible in the presence of some finite absorption. After introducing the notion of
work A(E0) we can considerE0 as one of the thermodynamic parameters defining
the state of the matter, in addition to entropyS, densityρ, etc. In the framework of
this approach, one can formulate thermodynamical definitions for the polarization
P0(S, ρ,E0) and susceptibilityχ(S, ρ,E0) as functions of the state of the matter.

In transparency windows, dispersion is small as well; therefore, polarization
follows the field almost instantaneously,

P(t) ≈ χ(ω)E(t), (4.26)

whereω is the central frequency of a quasi-monochromatic field. In the case of an
optical field,χ(ω) is certainly defined without accounting for the inertial mecha-
nisms of polarization, for instance, orientation of the molecules by an alternating
field (Sec. 6.2). Such mechanisms only contribute to the static and radio-frequency
susceptibilities.

Let us first ignore the dispersion completely. Then the stateof the matter has a
time dependence only via the fieldE(t). Then, in (4.13) one can assumeṖ = χ·Ė,
so that the variation rate of the macroscopic field (per unit volume) takes the forma

P(t) = (E·Ė + H·Ḣ)/4π + E·χ · Ė = d
dt

(

E2 + H2

8π
+

1
2

E · χ · E
)

. (4.27)

In the last equation, we have used the symmetry of theχ tensor. The expres-
sion in brackets is obviously the energy density of the macroscopic field, the first
term being energy of the field in the vacuum, at the sameE,H, and the second
one having the meaning of additional workA performed by a field source in the
presence of the matter. Additional energy of the matter in a given field has the
opposite sign,

v = −E · χ · E/2. (4.28)

Strictly speaking, the macroscopic fieldE inside the matter should be replaced
here by the external fieldE′ in the absence of the matter (see Ref. [Landau (1982)],
Sec. 11), but for the sake of simplicity we ignore the difference betweenE andE′.

Equations (4.26)–(4.28) assume a linear relation betweenP andE, which is
valid only for a sufficiently weak field. An evident generalization of (4.28) is

dv= −P(S, ρ, E) · dE, (4.29)

aTaking dispersion into account leads, in the linear approximation, to replacingχ in (4.27) by
d(ωχ)/dω [Landau (1982)].



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

74 Physical Foundations of Quantum Electronics

or

v = −
∫ E

0
P(S, ρ, E) · dE. (4.30)

PolarizationP and, hence, the elementary work of polarization,−dv, certainly
depend not only onE but on the other parameters defining the state of the matter.
Therefore, the integral in (4.30) is along a curve, and in order to findv, this curve
should be specified. The work of polarization can be defined atconstant entropyS
and densityρ, i.e., for a thermally isolated material with a given concentration of
moleculesN = ρ/m. In this case, polarization will not change the internal energy
of the matter per unit volume in the absence of the field,U0(S, ρ) (by definition,
dU0 = TdS+µdρ, µ being the chemical potential). Therefore, the internal energy
of the matter in the presence of the field is

U(S, ρ, E) = U0(S, ρ) + v(S, ρ, E), (4.31)

whereE plays the role of an external thermodynamical parameter.
Now, one can define polarization and susceptibility thermodynamically as

functions of the state of the matter,

Pα(S, ρ, E) ≡ −∂U/∂Eα, (4.32)

χαβ(S, ρ) ≡ −(∂2U/∂Eα∂Eβ)E=0. (4.33)

Thus,by defining theχ tensor in terms of the thermodynamical potential one
can provide its symmetry.In (4.27)–(4.32), one can assumeE = E(r, t) if the dis-
persion is neglected; hence, the state of the matter dependson time and coordinate
as parameters.

Further, doing the Taylor expansion of the internal energyU(E) or the energy
of adiabatic polarizationv(E), near theE = 0 point one can define the nonlinear
polarization and the nonlinear susceptibility tensorsχ(n) (Sec. 6.1).

It is often convenient to use, instead ofU, other thermodynamic potentials
such as, for instance, the free energyF(T, ρ, E). The field part ofF, which has
the meaning of the work of polarization,vF , should be calculated at constant tem-
perature, so that in the general casevF , vU . However, in weak fields, the field
parts of all potentials are the same (see Ref. [Landau (1964)], Sec. 15) and equal
to v(E). As a result, various macroscopic effects in electromagnetic field, such as
electrostriction, electrocaloric effect etc., are determined by partial derivatives of
χ in density, temperature, and so on (Sec. 6.2).

Let now the field be quasi-monochromatic, thenχ should be replaced byχ(ω).
Thus, transmission of light by transparent matter leads to an increase of thermo-
dynamic potentials by a value of

v(t) = −[E0 · χ(ω) · E∗0 + E0 · χ(ω) · E0e−i2ωt + c.c.]/8. (4.34)
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Only the constant, or slowly varying, part of the potential is of practical interest,

v = −E0 · χ(ω) · E∗0/4. (4.35)

This expression for the effective potential of the matter in a monochromatic
field describes, according to the known thermodynamic equations, the effect of
light on the state of the matter. Variation of the state (temperature, density, etc.) of
the matter, in its turn, influencesχ and the transmitted light, i.e., causes a nonlinear
optical effect (Sec. 6.2).

Note that, according to (4.35), one can define the polarization amplitude and
the susceptibility in terms of the effective potential,

P0α = −4∂v/∂E∗0α, χαβ = −4∂2v/∂E∗0α∂E0β. (4.36)

Let the density of the molecules beN, then in the approximation of non-
interacting molecules, polarizability of a single molecule isα = χ/N, and from
(4.35) one can find the effective potential of a molecule in an alternating field,

V = −1
4

E0 · α(ω) · E∗0. (4.37)

This potential defines the mean force of light pressure acting on a molecule in a
monochromatic field in terms of the molecule polarizability,

F = −∇V = ∇(E0·α(ω) · E∗0)/4. (4.38)

This expression can be transformed as

Fα =
1
4
∂

∂xα
(E0βαβγE

∗
0γ) =

1
4

∂E0β

∂xα
d∗0β + c.c.

=
1
4
∂

∂xα
d∗0 · E0(r) + c.c.=

∂

∂xα
d(t) · E(r, t). (4.39)

The factor 1/2 is absent here since we assume that the∇ operator does not act on
the dipole momentd = α · E of the molecule. The force (4.39) corresponds to the
potentialV(r) = −d · E(r). Light pressure will be considered in more detail in
Sec. 6.2.

4.2 Dispersion theory

4.2.1 Dispersion law

In the transparency windows,ε′′ = 0 and, according to (4.23), the Green function
turns to infinity atn =

√
ε. Usually, it is this ‘resonant’ value of the ratiock/ω

that is denoted byn and called the refractive index.
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The same condition provides the existence of a nontrivial solution (E0 , 0)
to homogeneous (P0 = 0) Maxwell’s equations. Therefore,a medium without
sources can only support propagation of waves with a certainrelation between
the wavelength,λ = 2π/k, and the frequency. This relation,

k(ω) = ω[ε(ω)]1/2/c, (4.40)

or the inverse of it,ω(k), is calledthe dispersion law, and the waves satisfying
it are calledfree, or normal, ones. The condition for normal longitudinal field to
exist is ε(ω) = 0.b It follows from (4.40) that the phase velocity of transverse
normal waves is

√
ε times as small as the speed of light. The group velocity, as

we know, is given by the derivativedω/dk≡ u. It follows that longitudinal waves
do not propagate, since, according to (4.24),ω(k) = const andu = 0. (Here, we
again neglect the effect of spatial dispersion.)

In an anisotropic medium, the condition for normal waves to exist, or for the
Green function to turn to infinity, according to (4.22), has the form

det(n2
Π − ε) = 0. (4.41)

This condition is called the Fresnel equation. With the frequencyω and the
wavevector directionk/k fixed, Eq. (4.41) only has solutions for twoc particular
directions of the polarization vectoreν (ν = 1, 2). In the general case, the polar-
ization vector is not orthogonal tok and may be complex, which corresponds to
the elliptical polarization of the normal wave (for more details, see Ref. [Landau
(1973)]). The two normal waves have different dispersion lawsων(k), which leads
to birefringence. In an anisotropic medium, the group velocity vectoru is equal
to∇ων(k) and, in the general case, is not parallel to the phase velocity vector.

4.2.2 The effect of absorption

With an account for absorption, the Fresnel equation has solutions only for com-
plex ω and/or k. The choice depends on the particular problem. A stationary
experiment corresponds to a real frequency and a complex propagation constant.
If the wave vector is complex, a free monochromatic wave getseither damped
or amplified in the course of propagation. Let us make a replacement in (4.40),
k → k̃ ≡ k + iα/2, then the dispersion law of a normal transverse wave in an
isotropic medium takes the form (k+ iα/2)2 = (ε′ + iε′′)ω2/c2. Hence,

k2 − α2/4 = ω2ε′/c2, αk = ω2ε′′/c2,

bWe neglect the effects of spatial dispersion, which can be described by aε(k) dependence (see, for
instance, Refs. [Vinogradova (1979); Landau (1982)]).
cEffects of spatial dispersion may double the number of normal waves at a given frequency. The
corresponding waves are called ‘new’ ones (Fig. 4.5).
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or

k =
ω

c
Re
√
ε =

ω

c

(

|ε| + ε′
2

)1/2

, (4.42)

α/2 =
ω

c
Im
√
ε =

ω

c

(

|ε| − ε′
2

)1/2

. (4.43)

The sign by the square root is chosen from physical considerations. These equa-
tions define the positions of the two poles of the Green functionsG(k̃, ω) in the k̃
plane.

In the case of weak absorbtion,α2 << k2, Eqs. (4.42), (4.43) take the form

k = ω
√
ε′/c, (4.44)

α = kε′′/ε′. (4.45)

It should be stressed again that the dispersion lawων(k) and a fixed polariza-
tion eν only take place for free waves, i.e., waves generated by distant sources. In
the presence of given sources, the spatial and temporal dependencies of ‘stimu-
lated’ field are determined by the distribution of the currents and can be arbitrary.
In particular, thermal fluctuation field inside the matter iscreated by the chaotic
motion of charged particles and the field at a given frequencyis a superposition of
plane waves of various lengths. Note that waves with maximalamplitudes do not
always satisfy (4.44) (see Eq. (4.79)).

Thus, the macroscopic theory enables all basic observable rules of waves emis-
sion, propagation, and absorption through the phenomenological functionχ(ω).
The next step is calculatingχ(ω) in the framework of the microscopic theory.
This is a traditional problem of non-equilibrium thermodynamics, and its com-
plete solution is still absent.

4.2.3 Classical theory of dispersion

In order to find the order of magnitude and the dispersion dependence for linear
dielectric permittivity, let us use the simplest model of the matter as a set of inde-
pendent, motionless, and identical atoms or molecules. Dueto alternating electro-
magnetic field, the electron cloud of a molecule oscillates (the nuclei are assumed
to be motionless), and the molecule gains the dipole momentd(t) = −e

∑

r i(t),
which, in the first approximation, scales as the field. Here,e > 0 is the electron
charge andr i is the radius vector of theith electron. As a rule, magnetic dipole
moment, quadruple moment and higher-order moments can be ignored since the
scale of the spatial field variation,λ > 10−5 cm, in the optical range exceeds much
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the typical size of a molecule,a0 ∼ 10−8 cm. The product ofd and the con-
centration of moleculesN is equal to the dipole moment per unit volume, i.e.,
polarization,P = Nd = χE.

Thus, the problem of calculating the susceptibility is reduced to calculating
the dipole moment of a molecule induced by an external field.

Thermal motion of charges can be taken into account in the framework of the
kinetic theory. In the quantum theory,r i and, hence,d, are operators; therefore,
one should do both quantum and statistical averaging, i.e.,use the density matrix
formalism.

Consider first the classical Lorentz model, which represents a molecule as an
oscillator. The equation of motion of a linear isotropic oscillator has the form

r̈ + 2γ ṙ + ω2
0r = eEloc/m, (4.46)

wherem, ω0 ande are the effective mass, frequency, and charge of the oscillator,
respectively,γ is the phenomenological damping constant, andEloc is the field at
the centre of the molecule, known as thelocal field. After multiplying (4.46) by
eN, we find the equation of motion for the polarization,

P̈+ 2γṖ+ ω2
0P = ω2

pEloc/4π, (4.47)

whereωp = (4πe2N/m)1/2 is the so-called plasma frequency.
The field Eloc at the centre of a motionless molecule differs from the space-

averaged macroscopic fieldE. According to Lorentz,

Eloc = E +
4π
3

P =
ε + 2

3
E, (4.48)

so that (4.47) takes the form

P̈+ 2γṖ+ ω̃2
0P = ω2

pE/4π, (4.49)

ω̃2
0 ≡ ω2

0 − ω2
p/3. (4.50)

Hence, assuming the field to be monochromatic, we find

χ =
ω2

p/4π

ω̃2
0 − ω2 − 2iγω

. (4.51)

In what follows, we will assume that the eigenfrequency shifts (4.50) due to the
Lorentz correction are included into the definition ofω0.

Suppose now that there are several types of independent oscillators with eigen-
frequenciesω j and concentrationsf j N,

∑

f j = 1, then

χ =
ω2

p

4π

∑

j

f j

ω̃2
j − ω2 − 2iγω

. (4.52)
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The parameterf j is called theoscillator strength. A similar expression, which
in many cases describes well the observed dispersion of susceptibility, will be
obtained below using the quantum theory.

Note that for very high frequencies or in the case of free electrons in a plasma
or metal, one can assume in (4.52)ω � ω j , so that

ε ≈ 1−
ω2

p

ω(ω + 2iγ)
.

4.2.4 Quantum theory of dispersion

Let us now start from the kinetic equations for the density matrix (3.48), (3.49)
with the phenomenological relaxation parametersγmn,wmn. In the dipole approx-
imation, the perturbation energyV = −d · E, and its matrix elements in the case
of a monochromatic field have the form

Vmn(t) = −~Ωmne
−iωt/2+ h.c., (4.53)

where

Ωmn ≡ dmn · E0/~. (4.54)

Notation ‘h.c.’ stands for the Hermitian conjugate matrix,

−d∗nm · E∗0eiωt/2 = −dmn · E∗0eiωt/2.

Monochromatic perturbation will cause, in the linear approximation, the same
response; therefore, let us seek the density matrix in the form

ρ(1)
mn(t) = ρ

(1)
mn(ω)e−iωt + h.c. (4.55)

In the zeroth order of the perturbation theory, the density matrix is diagonal,ρ(0)
mn =

ρ
(0)
m δmn, so that, after substituting (4.53) and (4.55) in (3.48), (3.49), we find for

m, n

ρ(1)
mn(ω) =

Ωmn∆
(0)
nm/2

ωmn− ω − iγmn
, (4.56)

where∆nm ≡ ρn − ρm is the relative population difference for levelsn and m.
The diagonal elementsρ(1)

nn , according to (3.48), (3.49), will scale as the inverse
frequencyω of the perturbation; if one is only interested in resonance effects,
under the conditionγ/ω � 1 one can assumeρ(1)

nn = 0. Thus, the amplitude of
the response to a harmonic perturbation scales as the population difference and
reaches its maximum at resonance,ω = ωmn.
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After substituting (4.56) in (3.6), we find the dipole momentof the molecule
and the polarization,

P = N〈d(t)〉 = 1
2

P0e−iωt + c.c.

P0 =
N
~

∑

mn

∆
(0)
nmdnm(dmn · E0)
ωmn− ω − iγmn

.

Hence, according to definition (4.1),

χαβ =
N
~

∑

mn

∆
(0)
nmd(α)

nmd(β)
mn

ωmn− ω − iγmn
, (4.57)

whered(α) ≡ dα is the projection of the molecule dipole moment onto the axis
α = x, y, z.

One can easily verify that the obtained expression has the necessary symme-
try (4.5) and satisfies the causality principle (Fig. 4.1). Note that (4.57) can be
represented in a somewhat different form,

χαβ =
∑

n

Nnα
(n)
αβ

(ω),

α
(n)
αβ

(ω) ≡ 1
~

∑

m













d(α)
nmd(β)

mn

ωmn− ω − iγmn
+

d(α)
mnd

(β)
nm

ωmn+ ω + iγmn













.

(4.58)

Here,α(n) has the meaning of the polarizability tensor of a molecule instaten.
In the absence of a static magnetic field, unperturbed wave functions and, hence,
the matrix elementsdmn = dnm, can be considered to be real (see Ref. [Landau
(1964)]). Then, according to (4.6), (4.58) is invariant to the permutation ofα, β
indices,

α
(n)
αβ
= α

(n)
βα
=

2
~

∑

m

ωmnd
(α)
mnd

(β)
mn

ω2
mn− (ω + iγmn)2

. (4.59)

Using (4.57) and (4.14), one can easily show that the contribution of each pair
of levels (m,n) into the field energy is positive or negative depending on the sign
of ωmn∆nm, i.e., amplification of the field requires population inversion, see also
(4.60).

In the case of a gas, (4.57) should be averaged over random orientations and
velocities of the molecules. Due to orientation averaging,non-diagonal elements
of thedαdβ turn into zero, and the diagonal ones become|d(α)

mn|2 = |dmn|2/3. As a
result, the susceptibility tensor (4.57) becomes a scalar,

χ =
2N
3~

∑

m>n

ωmn∆
(0)
nm|dmn|2

ω2
mn− (ω + iγmn)2

, (4.60)
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In the last equation, we have taken into account that the double sum contains twice
each term withm, n,

∑

mn

amn =
∑

n

ann+
∑

m>n

(amn+ anm), (4.61)

and the diagonal terms in (4.60) are zero since∆nn = 0.

4.2.5 ◦Oscillator strength

In order to compare (4.60) with the classical expression (4.52), let us define di-
mensionlessoscillator strengths,

fmn ≡ 2mωnm|dmn|2/3~e2. (4.62)

Note that the oscillator strength can be also defined phenomenologically, in terms
of χ′′, see Ref. [Landau (1982)].

Let us number possible pairs of states (m, n) by a single indexj ≡ {m, n}, as-
sumingm > n. If we neglect theγ2 terms in the denominator of (4.60) and put
f j ≡ fnm∆

(0)
nm, Eq. (4.60) takes the form of (4.52). Therefore, quantum calcula-

tion confirms the Lorentz model:in the first approximation in the amplitude of
the external field, matter behaves like a set of linear oscillators with damping.
However,f j may now take negative values, which manifests itself in the effects of
quantum amplification (χ′′ < 0) and negative dispersion (∂χ′/∂ω < 0 outside of
the resonance).

Recall that, according to (4.7), a fieldδ-pulse causes a pulse of polarization
shaped as the Fourier transform ofχ(ω). According to (4.60), the poles ofχ(ω̃),
understood as the function of a complex frequency, are at pointsω̃ j = ±ω j − iγ j

in the lower semi-plane; therefore, the polarization pulseis a sum of damped
harmonic oscillations,

χ(t) = θ(t)
ω2

p

4π

∑

j

f j

ω j
exp (−γ jt) sin (ω j t). (4.63)

This expression defines the Green function for the polarization of the matter in
terms of the eigenfrequencies and the oscillator strengthsof the transitions.

The oscillator strengths satisfy thesum rules. For instance, for single-electron
transitions,

∑

m

fnm = 1. (4.64)

This equation can be obtained from the commutation rule [x, p] = i~, p ≡ px.
LetH0 = p2

α/2m+V(r), then

[x,H0] = i~p/m, pmn = imωmnxmn; (4.65)
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hence,

ωmn|xmn|2 = ixmnpnm/m= −ipmnxnm/m,
∑

m

ωmn|xmn|2 = i[p, x]nn/2m= ~/2m.

From the last equation, we obtain (4.64).
For most strong optical transitions in atoms,| fmn| ≈ 1. For instance, for the

‘resonance’ line of atomic hydrogen,f = 0.416 (the 1s−2p transition,λ = 0.12µ).
Hence, according to (4.62),

|xmn| = (ocomnfmn/2)1/2 = 10−8 cm, (4.66)

which corresponds to|dmn| = 4.8 · 10−18CGSE= 4.8 D. Here,oc ≡ ~/mc ≈
4·10−11 cm is the Compton wavelength. For allowed transitions between rotational
levels in the millimeter range,dmn is also on the order of 1D, but in this case,
according to (4.62),fmn ≈ 10−5. Note that the sum in (4.64) should also include an
integral over the continuous spectrum of ionized states; for instance, in hydrogen
the ionized state forn = 1shas a contribution off = 0.43.

4.2.6 Isolated resonance

In the vicinity of a narrow isolated resonance, only a singleterm in the double
sum of (4.60) has to be taken into account,

χ = χ∞ +
2γω0∆χ

ω2
0 − ω2 − 2iγω

. (4.67)

Here,∆χ ≡ ∆Nd2/3~γ = fω2
p/8πγω0 andχ∞ is the contribution of other reso-

nances, which is real. In the denominator of (4.67), the termγ2 has been omitted;
similarly to the Lorentz correction (4.50), it can be incorporated into the defini-
tion ofω0. The parameter∆χ, scaling as the product of the active particle density,
∆N, and the squared dipole moment of the transition,d2, determines the maximal
value ofχ′′ and the amplitude ofχ′ variation (Fig. 4.2).

In the optical range, theQ-factor of a resonanceis usually high,ω0/2γ � 1;
therefore, in the close vicinity of a resonance one can use a simple approximate
formula,

χ = χ∞ −
∆χ

x+ i
, (4.68)

with

x ≡ (ω − ω0)/γ, ω ∼ ω0 � γ > 0.
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Fig. 4.2 Dispersion dependence of susceptibilityχ(ω) in the vicinity of an isolated resonance, for
the Q-factorω0/2γ = 5 andχ∞ = 0: solid lines correspond to (4.67), dashed lines, to approximate
formula (4.68), and dash-dotted lines, to approximate formula (4.69).

This equation yields an even dependence forχ′′(x) and an odd dependence for
χ′(x) − χ∞ (see Fig. 4.2). It is clear from Fig. 4.2 that even for a resonance with
a low Q-factor, this formula provides a good approximation for χ′′ and somewhat
worse one forχ′.

Note that far from the resonance,|χ′ − χ∞| decays much slower than|χ′′|;
therefore, in the transparency windows, whereχ′′ � 1, the refractive indexn
can still noticeably differ from unity. At a sufficient distance from the resonance,
absorption can be neglected, and (4.67) takes another asymptotic form (Fig. 4.2),

χ − χ∞ ≈
fω2

p/4π

ω2
0 − ω2

=
χ0 − χ∞

1− ω2/ω2
0

, (4.69)

whereχ0 ≡ χ(0).
In the description of optical experiments, instead ofχ or ε = 1+4πχ, one uses

parameters that are more close to experiment, the refractive index and the index
of absorption,

n ≡ kc/ω = Re
√
ε, κ ≡ αc/2ω = Im

√
ε. (4.70)

The valueκ−1 has the meaning of the length of the wave penetration into the
matter, ino/2 ≡ c/2ω units. Figure 4.3 shows the dispersion dependence of these
parameters, according to (4.68), (4.69) and (4.42)–(4.45), in the vicinity of an
isolated resonance.
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Fig. 4.3 Dispersion dependence of the refractive indexn and the absorption indexκ in the vicinity of
an isolated resonance, for the resonance ‘amplitude’∆ε being 1 (a) and 5 (b): solid lines correspond
to (4.42), (4.43), and (4.68); dashed lines, to (4.44), (4.45) (i.e., weak absorption approximation), and
dash-dotted lines, to (4.69) (i.e., approximation ofε′′ = 0, whenn =

√
ε at ε > 0 andκ =

√
−ε at

ε < 0); shading denotes the energy gap, whereε′ < 0.

In laser media, as a rule,|α| � 1 cm−1, so that|ε′′/ε′| ≈ |α|/k < 10−4, and
approximations (4.44), (4.45) are certainly valid. Substituting into them (4.68),
we find

n ≈ n∞

(

1− ∆ε
2ε∞

x
1+ x2

)

, (4.71)

α ≈ ω∆ε/cn∞
1+ x2

, (4.72)

wheren∞ ≡ ε1/2
∞ = (1+ 4πχ∞)1/2 is the refractive index atx� 1 and

∆ε ≡ 4π∆χ =
fω2

p

2γω0
=

4π∆Nd2

3~γ
(4.73)

is the resonance ‘amplitude’ forε. Note that (4.72) coincides with the result of
a ‘probabilistic’ calculation, (2.65), and that population inversion leads to a sign
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change inχ′, χ′′, andα. In this case, the dispersion dependence of the refractive
index looks opposite to the usual one:n decreases with the growth of the fre-
quency outside of the resonance and increases in the absorption range. This effect
is callednegative dispersion.

In condensed matter, narrow resonances often have large amplitudes,∆ε > 1.
This is especially typical for theε dispersion in the infrared range, near lattice
eigenvibrations of ion crystals. The corresponding elementary excitations (quasi-
particles) are calledoptical phonons. Let, for instance,d = 1D,∆N = 1020 cm−3,
and∆ω ≡ 2γ = 1 cm−1; then, according to (4.73),∆ε = 4.d If, in addition, f = 1
andλ0 = 1 cm−1, then the plasma frequency is much larger than∆ω but still much
smaller thanω0: ωp = (ω0∆ω∆ε)1/2 = 200 cm−1.

From homogeneous Maxwell’s equations, it follows that longitudinal oscilla-
tions are possible, their dispersion dependence beingε(ω, k) = 0. In the neglection
of dissipation and spatial dispersion, such an oscillationhas a fixed frequencyωl

and an arbitrary wave vector, i.e., zero group velocityu = dω/dk. According to
(4.69), atf = ε∞ = 1,

ωl =

√

ω2
0 + ω

2
p ≈ ω0 + ω

2
p/2ω0 = ω0 + γ∆ε. (4.74)

Hence, at∆ε � 1, the splitting between the longitudinal and transverse frequen-
cies,ωl andω0, is much larger than the damping constantγ. The same condition
defines whether the eigenfrequency shifts of molecules due to their Coulomb in-
teraction, (4.50), are high, soω0 in (4.74) should be understood asω0 − γ∆ε/3.

In the intervalω0 − ωl , according to (4.69),ε < 0, and the wave number
k̃ = ω

√
ε/c is purely imaginary, so that the field is not a wave any more. Thus,

this interval is a ‘forbidden zone’ where the module of Fresnel’s reflectivity R=
(
√
ε − 1)/(

√
ε + 1) becomes a unity, and the dielectric behaves as a metal. Note

that a metal, in its turn, is atω � ωp similar to a dielectric.

4.2.7 ◦Polaritons

In the case of low absorption, macroscopic field in the mattercan be treated quan-
tum mechanically (Sec. 7.4). In this case, the notion ofa photon in matter, or
a polariton, emerges. (It should not be confused with a polaron, an electron in a
dielectric considered together with the polarization it induces.) A polariton (some-
times also called alight exciton) is an elementary excitation of a macroscopic field
and the molecules interacting with it, having an energy~ω and propagating with a
velocityu = dω/dk. Asω approachesω0, more and more of the polariton energy
is contained in the internal energy of the molecules.

dHere, the scaling factor 2πc betweenω and frequency in cm−1 has been omitted.
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When a photon enters a medium from a vacuum, it becomes a polariton, with
a probability of 1− |R|2; after passing an average distance ofα−1, the polariton
gets absorbed. The momentum~k of a photon in matter differsn times from the
momentum~ω/c of a vacuum photon with the same energy.

Polaritons can be also excited through thermal energy, in which case their
mean number per mode is given by the Planck functionN(ω). According to
FDT (Sec. 7.7), theωk spectrum of equilibrium field fluctuations in matter scales
asN(ω)G′′(ω, k), whereG is the Green’s function for macroscopic Maxwell’s
equations (Sec. 4.1).

Above, we discussed the dispersion law, i.e., the relation between the fre-
quency and the wavelength, for free waves created by a distant source. One can
suggest other definitions for the functionsn(ω) or ω(k), for instance, given by
the maximum of the Green’s function imaginary partG′′(ω, k). The correspond-
ing dispersion dependence manifests itself in experimentson light scattering by
polaritons (Sec. 6.5).

Let us substituteε(ω) in the single-pole approximation (4.68) into Eqs. (4.23),
(4.24). Then, forω > 0,

Gx =
4π

y+ ∆ε/(x+ i)
, (4.75)

Gz =
4π

−ε∞ + ∆ε/(x+ i)
, (4.76)

where

x ≡ (ω − ω0)/γ, y ≡ (ck/ω)2 − ε∞.

Hence, the spectra of transverse and longitudinal field fluctuations are described
by the functions (Fig. 4.4)

G′′x =
4π∆ε

(∆ε + xy)2 + y2
, (4.77)

G′′z =
4π∆ε

(∆ε − xε∞)2 + ε2
∞
. (4.78)

If the y dependence onω is neglected, then the spectra of fluctuations at fixedk
have Lorentzian shapes with the central frequencies given by the equations

ε̃(ω) = (ck/ω)2, ε̃(ωl) = 0, (4.79)

where ˜ε(ω) coincides with (4.68) under the conditionγ = 0,

ε̃ ≡ ε∞ − ∆ε/x ≈ ε∞ + fω2
p/(ω

2
0 − ω2). (4.80)
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Fig. 4.4 Spectral density of equilibrium field,〈E2
α〉ωk, normalized to~N/2π3, as a function of the

frequency and wave vector in the vicinity of a dielectric function resonance forω0/γ = 20 and∆ε = 5.
Solid lines refer to transverse (with respect tok) oscillations , dashed lines, to longitudinal ones. It
is clear from the figure that the frequency spectrum of thermal field fluctuations is described by the
dispersion dependence (dash-dot) without the anomalous part.

Thus, thedispersion law for field equilibrium fluctuations (4.79) differs from
the dispersion law for free waves (4.42) ck/ω = Re

√
ε(ω) by the absence of the

damping parameterγ.
The dispersion law (4.79) corresponds to the condition∂G′′/∂x = 0. At the

same time, the condition for theG′′x maximum at a fixed frequency,∂G′′x /∂y = 0,
leads, according to (4.77), to the known dispersion law (4.44), Reε(ω) = (ck/ω)2.
Hence, it follows thatthe dispersion law observed near a resonance depends on
the experimental conditions.

Dispersion properties of a medium can be qualitatively represented as a graph
showing the relation betweenω andk, instead of theε(ω) or n(ω) dependencies.
Figure 4.5 shows such a relation in different approximations and provides the
commonly used names of the corresponding quasi-particles.

If the coupling between the transverse field and the oscillations of charges is
negligible, which is possible atk � ω0/c, the elementary excitation, i.e., the en-
ergy quantum of the matter, in the case of polar oscillationsof ions in a crystal
lattice, is called anexciton, or anoptical phonon. Excitons, similarly to photons,
depending on the wave packet describing them, can be either localized within a
certain area in the crystal, or spread over the whole space. In the∆ε = 0 ap-
proximation, dispersion dependencies of photons and excitons overlap without
interaction, which means that the incident field does not excite the excitons.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.5 Dispersion in various approximations. The numberscorrespond to the following quasipar-
ticles: 1, photon; 2, mechanical exciton, or optical phonon; 3, Coulomb exciton(longitudinal and
transverse); 4,polariton (light exciton); 5, ‘new’ waves. The following cases are shown: (a) oscillator
strength or the particle density is small, and dispersion dependencies ‘anti-intersect’ with a small gap;
(b) Coulomb interaction between the molecules lifts the degeneracy between the frequencies of lon-
gitudinal and transverse excitons; (c) interaction between the molecules and the transverse field leads
to polariton effects, namely, to the energy gap (shaded area), to the dispersion of the polariton phase
velocityω/k outside the gap and to its group velocityu turning into zero at both boundaries of the gap;
(d) dissipation leads to the smearing of the dispersion dependence, to finite life timeτ and finite free
path length 1/α = uτ for polaritons; in this case, waves excited externally haveanomalous dispersion
(dashed line); (e,f) anisotropy of the matter leads to the dependence of exciton and polariton frequen-
cies on the wavevector directionk/k. The figure shows frequency and angular dispersion,k(ω, ϑ), for
the extraordinary wave in a uniaxial crystal in the cases of weak (e) and strong (f) anisotropy;ϑ is the
angle between the wave vector and thez axis of the crystal,ωz

0 andωz
l are frequencies corresponding

to εzz being∞ and 0, respectively;ωx
0 andωx

l are the same frequencies with respect toεxx = εyy.

At small∆ε and negligible dissipation, there is ‘anti-crossing’, or ‘repulsion’,
of the dispersion dependencies, which look, in the interaction area, like two hy-
perbolas separated by a small gap (Fig. 4.5(a)).

At ∆ε � 1, oscillations of the charges and the field strongly influence each
other, and the dispersion dependence changes considerably. There appears the
longitudinal branch and the energy gap, near whichu → 0 (Figs. 4.4, 4.5(c)).
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The electromagnetic wave is followed by an in-phased (ω < ω0) or anti-phased
(ω > ω0) polarization wave, whose contribution into the total energy density is
considerable. Note once again thatlongitudinal oscillations, in the u= 0 ap-
proximation, do not propagate, i.e., these are waves with a fixed frequencyωl and
arbitrary wavelengths.

Certainly, the simplest models considered here provide only a qualitative de-
scription of the field dispersion in realistic media. For thedescription of spatial
dispersion effects, one has to take into account the dependence of∆ε adω0 on
k [Vinogradova (1979); Landau (1982)]. Doppler broadening can be included into
the model by integrating (4.67), (4.68), (4.69) w.r.t.ω0 over the Maxwell dis-
tribution in the case of gases and over the Fermi-Dirac distribution in the case
of inter-band transitions in condensed matter. Transitions between narrow exci-
ton bands in semiconductors and molecular crystals are described by dispersion
dependencies (4.67), (4.68), (4.69) with∆ε, ω0, andk depending onω, k. Calcu-
lation of these parameters is an interesting problem in solid state theory.

Note, in conclusion, that sometimes, instead of calculating ε, it is simpler to
calculate directly the Green functionG or the spectral density of equilibrium fluc-
tuations [Zubarev (1971)], which is related to it through the Green-Kubo formula
(Sec. 7.7).

4.3 Two-level model and saturation

Susceptibilityχ calculated above determines the response of the matter to analter-
nating field only within the first order of the perturbation theory. This calculation
does not take into account saturation of populations and other effects nonlinear
in the field. Nonlinear effects are most pronounced under resonance conditions,
when the field frequency is close to the eigenfrequencies of the matter.

4.3.1 Applicability of the model

This section considers two-level model, which is widely used in quantum elec-
tronics and spectroscopy. The model is based on the assumption that the field is
quasi-monochromatic and a resonanceω ∼ ω21 ≡ ω0 takes place only for a single
pair of non-degenerate levels of a molecule. Such a situation is typical for mag-
netic resonance effects, nuclear (NMR) or electronic (EPR) ones. If a molecule
has a single uncoupled electron, or the nucleus has a spinI = 1/2, then an exter-
nal magnetic fieldH0 splits each level in two Zeeman’s sublevels, with the tran-
sition frequencyω0 = γH0, γ being thegyromagnetic ratio. Usually,ω0 is in the
microwave range and differs much from all other frequencies of the molecule.
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However, in the absence of a constant magnetic field the Hamiltonian, as a
rule, is invariant to certain symmetry operations, such as rotations etc., and there-
fore all energy levels are degenerate. Nevertheless, even in this case the two-level
model provides a qualitatively correct description.

Note that in some cases, the two-level approximation is not applicable at all.
For instance, it is not valid for NMR atI > 1/2 or for transitions between vi-
brational levels of molecules with weak anharmonicity. Such a molecule behaves
as an oscillator with nearly equidistant levels, so that a resonance takes place for
many pairs of levels simultaneously.

4.3.2 Kinetic equations

A two-level system is described by density-matrix equations (3.44) withm, n =
1, 2 and phenomenological relaxation timeswmn and γ21 ≡ 1/T2 (see (3.48),
(3.49)). LetVnn = 0, then

ρ̇21 = −(iω0 + 1/T2)ρ21 − i(ρ11 − ρ22)V21/~, (4.81)

ρ̇11 = w12ρ22 − w21ρ11 + i(V21ρ12 − ρ21V12)/~. (4.82)

In the case of two levels,ρ11+ ρ22 = 1, hence ˙ρ11 = −ρ̇22. Denote

ρ11 − ρ22 ≡ ∆, w12 + w21 ≡ 1/T1. (4.83)

With the perturbation ‘switched off’, V = 0, populations should take their equilib-
rium valuesρ(0)

nn ; therefore, the relaxation ratesw12 andw21 are related by (3.58),
which leads to

(w12 − w21)/(w12+ w21) = ∆
(0). (4.84)

With an account for (4.83) and (4.84), Eq. (4.82) takes the form

∆̇ = (∆(0) − ∆)/T1 + 4Im(ρ21V12)/~. (4.85)

Let the field be quasi-monochromatic and have the mean frequencyω > 0
close toω0,

E(t) = (1/2)E0(t) exp(−iωt) + c.c., (4.86)

whereE0(t) is the slowly varying amplitude of the field. Then, in the dipole and
resonance approximations, one can assume in (4.81) that

V21 ≈ −(1/2)d21 · E0(t) exp(−iωt) ≡ −(1/2)~Ω exp(−iωt + iϕ). (4.87)
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Here, we have omitted the non-resonant negative-frequencyterme proportional to
eiωt and introduced the Rabi frequencyΩ ≡ |d21 · E0|/~ and the interaction phase
ϕ(t). For a linearly polarized field and real wave functions,ϕ is simply the phase
of the wave. Let us also define the slowly varying ‘envelope’ of the non-diagonal
density matrix element,

ρ21(t) = ρ0(t) exp(−iωt). (4.88)

As a result, kinetic equations for a two-level system take the form

ρ̇0 = [(i(ω − ω0) − 1/T2]ρ0 + iΩ∆eiϕ/2, (4.89)

∆̇ = (∆(0) − ∆)/T1 − 2ΩIm(ρ0e−iϕ). (4.90)

This system of three equations for three real functionsρ′(t), ρ′′(t), and∆(t) deter-
mines the evolution of a two-level system due to the thermostat and the external
field. According to (4.89), the effect of the field onρ0 scales as the population
difference∆, which, in its turn, is related to the field throughρ0, according to
(4.90). It is this relation that leads to the nonlinearity ofthe two-level system
response. Under stationary conditions, this nonlinearitymanifests itself in thesat-
uration effect, i.e.,∆ tending to zero provided thatΩ2 � 1/T1T2. Non-stationary
effects caused by the anharmonicity of a two-level system will be considered in
Chapter 5.

4.3.3 Saturation

Consider now a stationary response of a two-level system to amonochromatic
field, withΩ, ρ0, ϕ, and∆ being constant. Then it follows from (4.89) (compare
with (4.56)) that

ρ0 =
Ω∆/2

ω0 − ω − i/T2
eiϕ, (4.91)

Substituting this expression in (4.90) allows one to find thestationary population
difference,

∆ = ∆(0)/(1+ 2T1W), (4.92)

where

W ≡ Ω2T2/2

1+ (ω0 − ω)2T2
2

. (4.93)

eWe also neglect higher-order harmonics of the density matrix, which oscillate with frequenciesnω
and are on the order of magnitude of (Ω/ω)n.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

92 Physical Foundations of Quantum Electronics

These equations describesaturation, the decrease of population difference due
to a strong resonance field. Note that (4.93) coincides with the transition rate
calculated in Sec. 2.2 for the case of a Lorentzian shape withthe unsaturated
width ∆ω0 = 2/T2. The second term in the denominator of (4.92) is called the
saturation factor,

s≡ 2WT1 = 2W/(w12+ w21). (4.94)

It is clear from (4.94)that saturation results from the competition between the
transition rates due to the noise field of the thermostat,(w12 + w21)/2, and the
external monochromatic field, W.

According to (4.93), saturation is most pronounced at exactresonance, where
the saturation factor takes its maximal value,

s0 = Ω
2T1T2 = 2σ0FT1 ≡ F/Fs. (4.95)

Here, we have introduced the transition cross sectionσ ≡ W/F, photon flux den-
sity F, and the photon flux density corresponding to a two-fold decrease in the
population difference,

Fs ≡ 1/(2σ0T1) = ~c/(8πω0|d(e)
12|

2T1T2). (4.96)

Thus, in a resonant field the population difference decreases as

∆ =
∆(0)

1+ F/Fs
. (4.97)

4.3.4 ◦Lineshape in the presence of saturation

By substituting (4.92) and (4.93) into (4.91), one finds the value ofρ0 with an
account for population saturation. The dipole moment of a two-level system (we
consider a non-polar molecule,dnn ≡ 0) is

〈d(t)〉 = d12ρ21 + c.c., (4.98)

so that the susceptibility of a medium consisting ofN two-level molecules takes
the form (see (4.57))

χαβ(E0) = Nd(α)
12 d(β)

21∆/~(ω0 − ω − i/T2)

= ~−1∆(0)Nd(α)
12 d(β)

21

ω0 − ω + i/T2

(ω0 − ω)2 + (1+ s0)/T2
2

. (4.99)

Recall that here, frequenciesω and ω0 are positive and the values ofχ at
ω < 0 are determined by (4.99) withω, i replaced by−ω,−i. Note that ats0 , 0 it
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follows from (4.99) that the susceptibilityχ(ω,E0), considered as a function of the
complex variable ˜ω = ω′+iω′′, has poles both in the upper and lower semi-planes,

ω̃ = ±ω0 ± i(1+ s0)1/2/T2.

As a result, the functionχ(ω,E0) does not satisfy the Kramers-Kronig relations
(4.8) atE0 , 0.

Let us find, using (4.99) and (4.14), the power of absorbed, or, at∆(0) < 0,
emitted radiation:

P = ~ω∆(0)NW0/[1+s0+(ω0−ω)2T2
2 ] ≡ Pmaxs0/[1+s0+(ω0−ω)2T2

2], (4.100)

whereW0 ≡ |d21 · E0/~|2T2/2 is the stimulated transition rate at exact resonance.
It follows from this equation that at saturation, the spectral line maintains its
Lorentzian shape of the form 1/(1 + x2), but its width increases

√
1+ s0 times

(Fig. 4.6),

∆ω = 2
√

1+ s0/T2. (4.101)

This effect is calledradiation-induced broadeningor field-induced broadening.
Let s0 � 1+ (ω0−ω)2T2

2 (strong saturation), then it follows from (4.100) that

P = ~ω∆(0)N/2T1 ≡ Pmax. (4.102)

Thus,at strong saturation the power absorbed by the matter is no more de-
pendent on the intensity and frequency of the field and is onlydetermined by the

Fig. 4.6 The absorbed powerP as a function of the frequencyω at different saturation factorss0,
according to (4.100).
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rate of energy transfer from the molecules to the thermostat. In the case of strong
saturation, the susceptibility real part, according to (4.99), scales linearly with the
frequency,

χ′ ∼ (ω0 − ω)/s0. (4.103)

Let us make a numerical estimate. For a wave with the intensity I = 1 W/cm2

and wavelengthλ = 1µ, ~ω = 2 · 10−12 erg, F = 5 · 1018 photon/(s cm2), and
E0 =

√
8πI/c = 0.1G= 30 V/cm. If d12 = 1D, thenΩ = 108 s−1, so thats0 = 1 at

T1 = T2 = 10−8 s. The transition rate isW = 5 ·107 s−1, and if∆(0)N = 1019 cm−3,
as it is the case for a doped crystal or a gas at atmospheric pressure, then it follows
from (4.100) thatP = 50 MW/cm3. This estimate shows that in the optical range,
saturation is accompanied by strong heating of the matter. On the other hand, for
electronic paramagnetic resonance in theλ = 1 cm range and atT1 = 10−3 s it
follows from (4.102) thatP = 0.1 W/cm3, so that stationary saturation is possible.
This is used in paramagnetic amplifiers.

Saturation is very important in quantum electronics. It is used for creating
population inversion by means of auxiliary radiation (pump) in lasers based on
doped solids and in paramagnetic amplifiers. It is also applied for producing short
strong light pulses via Q-switching and mode locking. Saturation stabilizes the
amplitude of quantum oscillators and limits the dynamical range of quantum am-
plifiers.

In the case of inhomogeneous broadening, for instance, due to the Doppler ef-
fect, saturation affects not all the line but only its part, with the width on the order
of collision or natural bandwidth. This effect, leading to theBennett hole burn-
ing in the velocity distribution of the molecules (Fig. 4.7), isused for frequency
stabilization of lasers and in saturation spectroscopy (Sec. 6.4).

Fig. 4.7 Bennett hole burning. For a line inhomogeneously broadened due to the Doppler effect,
saturation only affects those molecules whose velocities have given projectionsvz(ω) = (ω0−ω)/k on
the directionk of the wave propagation.∆N(vz) is the velocity distribution of active particles.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

The Susceptibility of Matter 95

4.4 ◦Bloch equations

4.4.1 Kinetic equations for the mean values

In the previous section, we first solved kinetic equations for the density matrix
and then, with the help of the obtained solutionρ(t), we found the necessary mean
(observed) value according to the formula〈 f (t)〉 = Tr{ fρ(t)}. It seems natural to
try to excludeρ and to find kinetic equations for the observables directly. Such
equations can be obtained from the equations forρ, but here we will find them in
a different way.

In the case of a closed system, equations for the observablescan be found
by averaging the Heisenberg equations, which determine thetime dependence of
operators in the Heisenberg picture,

i~d f/dt = [ f (t),H(t)]. (4.104)

(We assume thatf has no direct time dependence.) The averaging is over the
initial density matrix, which is usually considered as equilibrium,

i~d〈 f 〉/dt = Tr{[ f (t),H(t)]ρ(t0)}. (4.105)

In the case of multi-particle systems, the derivatived〈 f 〉/dt depends, as a rule,
not only on the mean value〈 f (t)〉 but also on the second moments or correlation
functions,〈 f (t)g(t′)〉. One can write the Heisenberg equations for the second mo-
ments, but after averaging, the result will contain the third moments, and so on.
In order to ‘unlink’ this infinite chain of equations for the moments, one has to
neglect the correlation of some values at a certain point,〈 f g〉 ≈ 〈 f 〉〈g〉.

As a result, after excluding ‘excessive’ variables, one canobtain relatively
simple kinetic equations for the observables of a single particle. In these equa-
tions, interaction with other particles and with the thermostat is taken into account
with the help of a few phenomenological parameters, like relaxation timesT1,T2

for a two-level system or kinetic transfer coefficients. It is noteworthy that, ac-
cording to FDT (Sec. 7.7), kinetic coefficients for the first moments provide infor-
mation about the second moments, i.e., fluctuations.

Approaches based on the density-matrix equations are certainly equivalent to
the ones based on the equations for the mean values, and they should yield simi-
lar results. Note that in classical statistical physics, similarly, there are two basic
methods of describing the kinetics: the first one is based on the distribution func-
tion (Liouville’s equation, Boltzmann’s distribution, Fokker-Planck equation), and
the other one, on the moments (diffusion and transfer equations).

Macroscopic Maxwell’s equations are, in fact, kinetic equations for the first
field moments〈E〉, 〈H〉, with the phenomenological functionε(ω). The relaxation
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time τ of a monochromatic field is apparently equal to the ratio of the energy
density,E = ε′|E0|2/8π, and the loss power,̇E = ωε′′|E0|2/8π, i.e.,τ = ε′/ωε′′.

The same result is obtained if we set equality betweenτ and the absorption
length 1/α divided by the velocity of the wave,c/n.

Below, we will consider equations for the observables of a two-level system
in two typical cases, namely, for electric dipole and magnetic dipole interactions,
the energy of interaction with the field being−d · E and−µ · H , respectively.
In the latter case, the observable is the magnetic moment〈µ〉 of the particle or
magnetizationM = N〈µ〉; kinetic equations for these observables are called the
Bloch equations. In the case of electric dipole interaction, kinetic equations for
〈d〉 and the population difference∆, i.e., energy in~ω0 units, are similar to the
Bloch equations and are called theoptical Bloch equations.

4.4.2 Pauli matrices and expansion of operators

Description of two-level systems is most convenient in terms of two-dimensional
Pauli matrices, which are defined as

σx ≡
(

0 1
1 0

)

, σy ≡
(

0 − i
i 0

)

, σz ≡
(

1 0
0 − 1

)

. (4.106)

These matricesσαmn ≡ 〈m|σα|n〉 representcertain operatorsσα, whose eigenval-
ues areλ = ±1. (Recall that the eigenvalues of a matrixfmn are defined as the
roots of the characteristic equation, det{ fmn − λδmn} = 0.) The matrix represen-
tation (4.106) is theeigenrepresentationfor theσz operator. From (4.106) and
the rules of matrix multiplication, we find the multiplication table for the Pauli
operators,

σxσy = −σyσx = iσz,

σ2
α = I , σyσz = −σzσy = iσx, (4.107)

σzσx = −σxσz = iσy.

Thus, the Pauli matricesanti-commutewith each other (σασβ+σβσα = 2δαβ),
and their commutation relations coincide with the ones for the Cartesian compo-
nents of the angular momentums.

It is also convenient to introduce elementary matrices calleddiadic tensors, or
outer productsof vectors,

σ(1) ≡ |1〉〈1| =
(

1 0
0 0

)

, σ(+) ≡ |1〉〈2| =
(

0 1
0 0

)

σ(−) ≡ |2〉〈1| =
(

0 0
1 0

)

, σ(2) ≡ |2〉〈2| =
(

0 0
0 1

)

.
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In the general case, two arbitrary vectors|a〉 and |b〉 can always compose a di-
adic tensor, with the matrix elements given by the products of the corresponding
components of the vectors,

σ(ab) ≡ |a〉〈b|, σ(ab)
mn = 〈m|a〉〈b|n〉.

A symmetric diadic operatorσ(n) ≡ |n〉〈n| is called a projector, since its action on
a vector consists of projecting it onto the|n〉 direction,

σ(n)|a〉 = |n〉〈n|a〉 = const· |n〉.

Usually, |n〉 is a unit vector,〈n|n〉 = 1. Note that the mean value of a diadic
operatorσ(mn) coincides with the corresponding element of the transposeddensity
matrix,

〈σ(mn)〉 = Tr{ρ|m〉〈n|} =
∑

kl

ρkl〈l|m〉〈n|k〉 = ρnm.

The Pauli operators are related to the diadic operators as

2σ(1) = I + σz, 2σ(2) = I − σz, 2σ(±) = σx ± iσy,

σx = σ
(+) + σ(−), σy = i(σ(−) − σ(+)), σz = σ

(1) − σ(2),

I = σ(1) + σ(2).

One can easily find the multiplication table and the commutation relations for the
diadic operators,

σ(1)2 = σ(1), σ(±)2
= 0, σ(+)σ(−) = σ(1),

σ(−)σ(+) = σ(2), [σ(+),σ(−)] = σz, [σ(±),σz] = ∓2σ(±).

Note thatσ(±) are non-Hermitian operators: (σ(±))+ = σ(∓). They can be called
creation and annihilation operatorsfor an energy quantum. Indeed, let|2〉 be
the ground-state wave function of the system. Theσ(+) operator turns it into the
excited-state wave function,σ(+)|2〉 = |1〉. Similarly,σ(−)|1〉 = |2〉.

One can easily verify that any Hermitian operator acting in the Hilbert space
of a two-level system can be represented as a sum (sometimes we will keep the
‘hats’ over the operators),

f̂ = aÎ + bσ̂x + cσ̂y + dσ̂z, (4.108)

wherea, b, c, d are real numbers. Indeed, combining (4.106) and (4.108), wefind
the relations that define the coefficients in the expansion (4.108) in terms of the
matrix elementsfmn,

f̂ =

(

a+ d b− ic
b+ ic a− d

)

. (4.109)
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Recall that quantum mechanics, similarly to vector calculus, operates with
three types of variables: usual complexnumbers(c-numbers, scalars), complex
vectors(wave functions of discrete or continuous variables), given by n numbers,
andoperators(matrices, tensors), given byn2 numbers. (Here,n is the dimension-
ality of the vector space, equal to the number of states of thesystem.) For a given
operator, one can find, according to certain known rules, thecorresponding scalars
(eigenvalues and trace), which are invariant with respect to a change of represen-
tation, i.e., to a rotation of the basic vectors. The Pauli vector, σ̂ ≡ {σ̂x, σ̂y, σ̂z},
and the orbital momentum̂s, which is proportional to it, are vectors in a real three-
dimensional space and, at the same time, operators in the abstractspace of states,
having two complex basic vectors|1〉, |2〉.

Note that the coefficients in the Pauli-matrix expansion (4.108) of an arbitrary
operator f̂ have a clear physical meaning. They determine two values that the
observablef can take at single measurements. By writing the equation forthe
eigenvalues of matrix (4.109), one can see that thespectrum fnn ≡ fn consists of
two numbers,

f1,2 = a± (b2 + c2 + d2)1/2. (4.110)

Let the basic vectors for the representation (4.106) be the energy states of the
system. Then the operator̂H0 is diagonal and, forf ≡ Ĥ0, it follows from (4.109)
thata = b = c = 0, d = −~ω0/2. Therefore, the Hamiltonian of the system scales
as theσ̂z operator,

Ĥ0 = −~ω0σ̂z/2, (4.111)

where~ω0 ≡ H022−H011. The relative population difference is in this case equal
to the mean value of ˆσz,

〈σz〉 = ρ11 − ρ22 ≡ ∆. (4.112)

Let the eigenfunctions|m〉 of theĤ0 operator and, hence, the matrix elements
of the electric dipole momentdmn be real,d12 = d21 = d0. Let us also assume
that the diagonal elements are absent (the molecule is non-polar), dnn = 0, then
the operator̂d = −er̂ scales as ˆσx,

d̂ = d0σ̂x, (4.113)

and the perturbation operator takes the form

V̂ = −(d0 · E)σ̂x. (4.114)
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4.4.3 The Bloch vector and the Bloch sphere

Let us define theBloch vectorR (also calledpseudo-spin) as the mean value of
the Pauli operatorσ. Using (4.106),R can be also written in terms of the density
matrix,

R ≡ 〈σ〉 = {2ρ′21, 2ρ
′′
21,∆}. (4.115)

Thus, theR vector, similarly to the density matrixρmn, fully determines the
state of the system. In other words, an arbitrary state of a two-level system is
given by three real numbers, which can be explicitly shown bya point or a radius
vector in some three-dimensional space. In the case of a spin-1/2 particle, this
vector is parallel to the mean orbital momentum. In the case of an electric dipole
two-level system,R does not correspond to any observable vector, but itsx andz
components, according to (4.111), (4.113), have a clear physical meaning.

Let us find the length of theR vector. According to (4.115) and (3.18),

R2 = (ρ11 − ρ22)2 + 4|ρ21|2 ≤ 1. (4.116)

In the case of a pure state, by definition (3.4),|ρ21|2 = ρ11ρ22 andR is a unit vector.
Thus, an arbitrary pure state of a system can be shown by a point on a sphere
called theBloch sphere. If the state is mixed, then (see (3.18)),|ρ21|2 < ρ11ρ22,
andR< 1.

During time evolution, the depicting point (theR(t) vector) moves along some
trajectory on the unit sphere. This trajectory, for an arbitrary perturbationV(t)
(4.114), can be found using the Heisenberg equation (4.104)for σα and the com-
mutation rules (4.107). AtV = 0, (3.46) immediately yields

Rx = Rx0 cosω0t + Ry0 sinω0t,

Ry = −Rx0 sinω0t + Ry0 cosω0t, (4.117)

Rz = Rz0.

Thus, in the case of a closed system, the end of theR vector circles around
thez axis, similarly to the precession of a spinning top around the gravity force
direction (Fig. 4.8). According to (4.111) and (4.113), theenergy is constant in
this case, while the dipole moment oscillates with the transition frequency. In
particular, for a pure coherent state, withcn = exp(iϕn)/

√
2, it follows from (3.4)

that

Rx = cos(ω0t + ϕ1 − ϕ2),

Ry = − sin(ω0t + ϕ1 − ϕ2), (4.118)

Rz = 0,
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Fig. 4.8 The state of a two-level system represented geometrically using the Bloch vectorR whose
components determine the dipole moment〈d〉 = d0Rx and the population difference∆ = Rz. The
z axis is directed downwards, so that points denoting the excited states of the system are above the
point denoting the ground state. Under free evolution of thesystem,R undergoes precession with the
frequencyω0, the angle of precessionθ being determined by the initial conditions.

i.e., the depicting point moves along the ‘equator’ of a unity sphere, and thepre-
cession angleis ϑ ≡ arctan(R⊥/Rz) = π/2. For an energy state, the point rests at
one of the poles (cn = 0 or 1,ϑ = 0 or π). A weak resonant perturbation causes
a slow variation of the precession angle with the Rabi frequency, the so-called
nutation(Sec. 5.1).

4.4.4 Higher moments and distributions

Recall that the density matrix (or, according to (4.115)), the vectorR = 〈σ〉)
provides full statistical information about the system, i.e., allows one to find the
higher moments〈 f k〉 and the probability distributionsP( f ) of an arbitrary observ-
able f . Moments can be easily expressed in terms ofρ or 〈σα〉 using (4.108) and
the multiplication formulas (4.107). In particular, it follows from (4.107) that

σ2k+1
α = σα, σ

2k
α = I .

Hence, the main measure of fluctuations, the variance, is

∆σ2
α ≡ 〈σ2

α〉 − 〈σα〉2 = 1− R2
α. (4.119)

For an energy state, whereRz = ±1 andRx,y = 0, the energy variance is equal
to zero, while the variance of the dipole moment is a unity (ind0 units). In the
case of a coherent state, according to (4.118), the energy fluctuates with the unity
variance (in~ω0/2 units), while the variance of the transverse components,σx,y,
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depends on the time instance of the measurement, as it oscillates with 2ω0 fre-
quency between 0 and 1.

Consider the uncertainty relations containing the variances of the Pauli vector
components and limiting the accuracy of their simultaneousmeasurement. Ac-
cording to (4.119),

∆σ2
α∆σ

2
β = 1+ R2

αR2
β − R2

α − R2
β,

∆σ2
α + ∆σ

2
β = 2− R2

α − R2
β.

For an arbitrary state, the length of theR vector does not exceed unity (see
(4.116)); therefore, the following inequalities hold true:

∆σ2
α∆σ

2
β ≥ R2

γ + R2
αR2

β, (4.120)

∆σ2
α + ∆σ

2
β ≥ 1+ R2

γ, (4.121)

whereγ , α, β. In the caseRα = 0, inequality (4.120) takes the form of a standard
uncertainty relation,

∆ f∆g ≥ |〈[ f , g]〉|/2. (4.122)

Let us now find the probability distributions. LetPα(±1) be the probability of
σα taking values±1, then

〈σα〉 = Pα(1)− Pα(−1) = 2Pα(1)− 1.

Hence,

Pα(±1) = (1± Rα)/2.

For instance, for a coherent state (4.118),

Px(1) = cos2[(ω0t + ϕ2 − ϕ1)/2].

Similarly, for an arbitrary observable of a two-level system,

P( f1) = 1− P( f2) = (〈 f 〉 − f2)/( f1 − f2). (4.123)

4.4.5 Bloch equations

Let us find the equations of motion for the Pauli vector. From (4.104), (4.107),
(4.111), and (4.114), it follows that

σ̇x = ω0σy,

σ̇y = −ω0σx + Ω(t)σz, (4.124)

σ̇z = −Ω(t)σy,
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whereΩ(t) ≡ 2d0 · E(t)/~ is the ‘instantaneous’ Rabi frequency. Let us introduce
the vectorA(t) ≡ {Ω(t), 0, ω0}, then (4.124) can be represented as a vector product,

σ̇ = σ × A. (4.125)

From (4.125), we immediately find a similar equation for the Bloch vector,

Ṙ = R× A. (4.126)

According to (4.126),the R vector, which represents all properties of a two-
level system, is precessing around the instantaneous direction of the effective field
vectorA(t).

Further, let us take into account, in the simplest approximation, the interac-
tion between the particle and its environment. Assume that there is an exponential
relaxation with two positive parametersT1,T2, which characterize the rate of ap-
proaching thermodynamic equilibrium after the perturbation is off. As a result,
the Heisenberg equations (4.125) turn into the so-calledoptical Bloch equations,

Ṙ = R× A − R⊥/T2 − ẑ(Rz− ∆(0))/T1, (4.127)

whereẑ is a unit vector along thezaxis.
One can easily verify that these equations, with an account for (4.115), co-

incide with the density-matrix equations (4.81), (4.85), and hence all results of
Sec. 4.3 are still valid. However, now the system behavior has an obvious geo-
metric interpretation.

It should be stressed that the Bloch equations (4.127) are kinetic equations,
describing only the first moments of the observablesR = 〈σ〉; they provide no
information about fluctuations and higher moments. The latter can be only found
by choosing some particular stochastic model of relaxation.

In the case of a monochromatic field, a settled stimulated motion of R is pre-
cession with the field frequencyω around thez axis (Fig. 4.8). The precession
angleϑ, according to (4.91), is given by (Ω ≡ |d0 · E0|/~)

tanϑ ≡ R⊥
Rz
=

2|ρ21|
∆
=

sign(∆)ΩT2

[1 + (ω0 − ω)2T2
2]1/2

, (4.128)

and the length of theR vector, according to (4.92), is

R= ∆/ cosϑ = ∆(0)/[cosϑ(1+ ξ tan2 ϑ)], (4.129)

whereξ ≡ T1/T2. Let T1 = T2 ≡ τ andω = ω0, then theR vector, due to
the resonance field, shrinks (1+ Ω2τ2)1/2 times and precesses at an angleϑ =

arctan(Ωτsign(∆)).
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Fig. 4.9 Relaxation of the Bloch vectorR. After the perturbation is switched off, the transverse
component goes down to zero at a rate ofT−1

2 , while the longitudinal component takes its equilibrium
value∆(0) at a rate ofT−1

1 .

If the perturbation is suddenly switched off, theR vector, according to (4.127),
will simultaneously precess with the Bohr frequencyω0 and undergo relaxation to
the equilibrium value{0, 0,∆(0)}, i.e., move along a spiral (Fig. 4.9). IfT1 � T2,
then the first to disappear is the transverse component,R⊥, i.e., the non-diagonal
element of the density matrix,ρ21, and after thatRz takes its equilibrium value.

4.4.6 Equation for polarization

In the framework of the two-level approximation, the obtained equations (4.127)
fully determine the optical properties of the medium, both stationary (Sec. 4.3)
and non-stationary (Chapter 5) ones. To make it more obvious, let us pass from
the variablesRx,Ry to polarizationP = Nd0Rx [Pantell (1969)], which enters
Maxwell’s equations. From (4.127), it follows that

Ṗ+ P/T2 = ω0Nd0Ry. (4.130)

Taking the second derivative, we get

P̈+ Ṗ/T2 = ω0Nd0(−Ry/T2 − ω0Rx + Ω(t)Rz). (4.131)
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In practice, alwaysω0T2 � 1, so that atΩ � ω ∼ ω0, according to (4.130), one
can assume in the right-hand side of (4.131) that

ω0Nd0Ry ≈ Ṗ. (4.132)

As a result, we find that polarization satisfies the second-order linear differential
equation (we assume thatd0‖E)

P̈+
2
T2

Ṗ+ ω2
0P =

2ω0d2
0

~
E∆N, (4.133)

where∆N ≡ NRz is the population difference per unit volume. Substituting
(4.132) into the equation forRz, we find the equation for∆N,

∆Ṅ +
1
T1

(∆N − ∆(0)N) = − 2
~ω0

EṖ. (4.134)

This equation has a simple meaning: according to (4.13),EṖ is the power ab-
sorbed in the matter.

Thus, a two-level system behaves as a harmonic oscillator with the damping
1/T2 whose coupling with the external forceE depends on the force itself, with the
inertia timeT1. In the case of a weak field, with the saturation factorΩ2T1T2� 1,
the system is equivalent to a linear oscillator.

4.4.7 Magnetic resonance

As it was already mentioned, two-level approximation is most applicable to a
spin-1/2 particle. In a magnetic field, an electron acquires additional energyH =
−µ · H, with µ being the magnetic moment of the electron, anti-parallel toits
mechanical moment (spin) s, µ = −(gµ0/~)s. Here,g = 2.002 is the so-calledg
factor of a free electron,µ0 = e~/2mc= 0.927· 10−20erg/G is the atomic unit of
magnetic dipole moment (Bohr’s magneton). The spin is usually given in~ units:
s′ ≡ s/~. The operators of spin projections,sα, scale as the Pauli matrices, i.e.,
s′ = σ/2. Thus, if we ignore the difference betweeng and 2, thenµ = −µ0σ, and

H = µ0H · σ. (4.135)

Now, using commutation relations forσα (4.107), we can easily find equations
of motion for any operator. For instance,

i~σ̇x = µ0([σx,σy]Hy + [σx,σz]Hz) = 2iµ0(Hyσz − Hzσy). (4.136)

Derivatives for other components can be written in a similarway. As a re-
sult, equation of motion for the Pauli vector takes a simple form (compare with
(4.125)),

σ̇ = γσ × H, (4.137)
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whereγ ≡ −2µ0/~ = −2π · 2.8 MHz/G is thegyromagnetic ratio. Since theσ
vector scales as the magnetic and mechanical moment of an electron, equations
for µ andshave a similar form, for instance, ˙s= γs× H.

The last equation has the same form as the classical equationfor rotational
motion, according to which the rate of angular momentum variation is equal to the
torque of the forces acting on a dipole in a magnetic field,µ × H = −2µ0s× H/~.
Thus, an electron in a magnetic field behaves similarly to a spin top under the
action of two forces. In the case of a constant magnetic field,(4.137) describes
precession, the motion of the momentum vector along a cone aroundH0 (Fig. 4.8).
The precession frequency,ω0 = |γ|H0, coincides with Bohr’s transition frequency,
(H22−H11)/~.

However, in contrast to a classical spin top, the observableangular momen-
tum of an electron can have only a single absolute value,s ≡ (

∑

s2
α)1/2, equal to

~
√

3/2, sinceσ2
α = 1. Also, a single measurement of its projection onto an axis

can only yield one of the two values,±~/2. Note thats2 , 〈s〉2 = ∑〈sα〉2; for in-
stance, in a mixed state with equal populations (∆ = ρ21 = 0), all three projections
are equal to zero, so that〈s〉2 = 0.

Let the magnetic field have, in addition to the constant componentH0, a time-
varying componentH⊥(t), orthogonal toH0. Let thex axis be parallel toH⊥ and
thez axis be anti-parallel toH0. Then the electron energy (4.135) can be written
in terms of the Pauli operators,

H = H0 +V(t) = −~(ω0σz + Ω(t)σx)/2, (4.138)

where, this time,Ω(t) = γH⊥. We have chosenH0z to be negative for the subscript
1 to denote the lower level. Once again, the Heisenberg equations take the form
(4.124).

Let us average these equations over the initial density matrix, pass to magne-
tization M = −µ0N〈σ〉, and add relaxation. We get

Ṁx = −Mx/T2 + ω0My,

Ṁy = −My/T2 − ω0Mx + γMzH⊥, (4.139)

Ṁz = (M(0)
z − Mz)/T1 − γMyH⊥,

whereM(0)
z ≡ −µ0N∆(0) is the static equilibrium magnetization.

This system of equations, determining the magnetization kinetics of a param-
agnetic material (electronic or nuclear) in a constant or variable field, is called the
Bloch equations. The Bloch equations describe magnetic resonance, i.e., resonant
absorption of radio waves. This effect forms the basis of the most important di-
rections in radio spectroscopy,electronic paramagnetic resonance(EPR),nuclear
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magnetic resonance(NMR), andferromagnetic resonance. One can easily verify
that the Bloch equations are equivalent to the density-matrix equations in the case
of a two-level system; therefore, all above-made conclusions are also valid for the
case of magnetic resonance, with−d · E(t) replaced byµ0σ · H⊥(t).

As we have already mentioned, oftenT1 > T2, since the relaxation of the
population energy〈σz〉 is only caused by non-adiabatic interactions of the particle
with the environment, for instance, non-elastic collisions in a gas or spin-lattice
(spin-phonon) interaction in a crystal. At the same time, variation of the transverse
components,〈σ⊥〉 (or ρ21), does not require energy transfer, and hence the ‘life
time’ of 〈σ⊥〉 reduces as a result of both adiabatic (spin-spin) and non-adiabatic
perturbations. One can say that perturbations ‘disturb’ the precession phaseϕ1−ϕ2

in (4.118), which is the argument ofρ21, and hence the time and ensemble mean
values tend to zero,〈σ⊥〉 → 0.
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Chapter 5

Non-Stationary Optics

In previous chapters, we mostly considered settled, stationary cases of the inter-
action between a field and matter. With a harmonic field on, transient processes
decay due to the relaxation, and the oscillation of charges goes on with a station-
ary amplitude, given by the susceptibilityχ. Susceptibility with an account for
saturation,χ(E0) (see (4.99)), determines the response of the matter, namely, of
the polarization amplitudeP0, to a quasi-monochromatic perturbation, provided
that either the amplitudeE0 is constant or the time of its variation is much greater
than the relaxation time,τE � T1,2.

If the field is weak and there is no saturation, the populationrelaxation time
T1 does not play any role, and the stationarity condition has the formτE � T2.
It is important that in the absence of saturation, the equations of motion of matter
are linear, and hence the susceptibilityχ(ω) also determines non-stationary, tran-
sient processes. For instance, the response of matter to a short (τE � T2) weak
pulse scales as the Fourier transform ofχ(ω), i.e., Green’s functionχ(t), and has
the form of a set of oscillations decaying with the timesT2mn (see (4.63)). The
response to a weak pulse of an arbitrary shape,E(t), is given by the convolution
of χ(t) andE(t).

A question arises: what will be the response of matter to short and strong
pulses? In this chapter, it is shown that under such conditions, several unusual
optical effects can be observed. Among these effects, calledcoherenta ones,
there are, for instance,self-induced transparency, optical echo, and superradi-
ance. Some of these essentially non-stationary effects have been observed in ra-
dio spectroscopy relatively long ago; however, in the optical range they have only
been observed after the invention of the lasers. Apart of their general theoret-
ical importance, optical non-stationary effects are of practical interest from the

aIn this book, instead of the ambiguous term ‘coherent’ we will use the term ‘non-stationary’, which
is more accurate for the description of the effects considered.

107
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viewpoint of spectroscopic applications and for the optimization of lasers. They
also form the basis ofcoherent(non-stationary) spectroscopy [Steinfeld (1978);
Manykin (1984)]. More detailed description of non-stationary effects can be found
in Refs [Allen (1975); Macomber (1976)]. In Sec. 5.1, using the Bloch equations,
we find the variation of the state of a two-level system under ashort resonant
light pulse. Further, we consider emission from a single atom (Sec. 5.2) and an
ensemble ofN atoms (Sec. 5.3) under different initial conditions.

5.1 Stimulated non-stationary effects

Consider the reaction of a two-level system to a quasi-harmonic perturbation of
finite duration. For simplicity, assume that the pulse envelope is rectangular, with
the durationτE � T2, so that one can neglect relaxation and use the relations for
the density matrixρmn or the equivalent Bloch equations forR = {2ρ′21, 2ρ

′′
21, ρ11−

ρ22} at T1,2 = ∞. Then, the Bloch equations (4.126) have the same form as the
Heisenberg equations for theσ operator (4.125). In other words, at time intervals
much shorter than the typical times of the interaction between the system and its
environment, it can be considered as isolated and described, instead of kinetic
equations, in terms of the Schrödinger equation for the wave function, the von
Neumann equation forρ(t), or the Heisenberg equations for the operators.

We have already solved this problem using the Schrödinger equation in Chap-
ter 2, where we have found the amplitudes of the perturbed statescmn(t) and the
transition probabilityPmn = |cmn|2 for a multi-level system in the first order of the
perturbation theory. However, in the case of a two-level system, there is no need
to represent the solution as a perturbative series.

5.1.1 Atom as a gyroscope

Let us turn to the geometric representation of the instant state of the system us-
ing the Bloch vectorR. According to (4.126), it behaves similarly to the orbital
momentum of a body with a single fixed point,

Ṙ = R × A. (5.1)

Here,A ≡ {2d0E(t)/~, 0, ω0} is the effective field vector,d0 ≡ d21 = d12 is the
dipole moment of the transition, which is assumed to be real and parallel to the
field E(t), andω0 is the transition frequency. Equation (5.1) preserves the length
of theR vector, which is unity in the case of a pure state. The end of theR vector
moves then along the surface of a unit sphere.
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Consider the trajectory of this motion in a quasi-monochromatic field,

E(t) = (1/2)E0(t)e−iωt+iϕ0 + c.c.

Let us pass to a reference frame rotating with the field frequencyω around the
zaxis,

ρ21 = ρ0e−iωt,

Rx = R0x cosωt + R0y sinωt, (5.2)

Ry = −R0x sinωt + R0y cosωt.

Let the conditions|ω − ω0| � ω0, d0E0 � ~ω0 hold, then the rotating-wave
approximation is applicable and the functionsρ0(t), R0(t) are slow compared to
e−iωt. These functions have a simple physical meaning: they determine the ampli-
tude and the phase of the mean dipole moment,〈d〉 = 2d0ρ

′
21 = d0Rx. The power

absorbed from the external field is proportional toR0y(t), see (5.12).
It is not difficult to verify that in the rotating-wave approximation, equation of

motion (5.1) takes the form

Ṙ0 = R0 × Ω̃, (5.3)

where

R0 ≡ {2ρ′0, 2ρ′′0 ,∆},
Ω̃ ≡ {Ω cosϕ0,Ω sinϕ0, ω0 − ω}, (5.4)

∆ ≡ ρ11 − ρ22,Ω ≡ d0E0/~,

ϕ0 is the initial phase of the field at the center of the atom; in the case of a plane
wave,ϕ0 = kz+ ϕ1. Recall that for simplicity, we assume the matrix element of
the transition to be real. In the general case,ϕ0 = arg(d21 · E0).

Thus, in a harmonic field theR0 vector, which represents the state of the sys-
tem, rotates with the ratẽΩ = [Ω2 + (ω0 − ω)2]1/2 around the ‘effective field’
directionΩ̃ (Fig. 5.1). This slow rotation is callednutation; it adds to the fast
stimulated precession with the rate equal to the field frequencyω. In other words,
the angle of precessionϑ(t) (see (4.128)) slowly varies within the pulse duration,
so that the depicting point moves along a spiral on a sphere with the fixed radius
R= (∆2 + 4|ρ21|2)1/2.

In the resonant case, where|ω0 − ω| � Ω, the nutation axis̃Ω is in the equa-
torial plane. If, in addition, the initial state is an energyone, i.e.,R(0) is at one of
the poles andϑ(0) = 0 or π, then, due to the effect of the field,R moves along a
meridian with the longitudeϕ0 ± π/2.
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(a) (b)

Fig. 5.1 Nutation of the Bloch vectorR. Due to a monochromatic field,R, in addition to precession,
rotates around the direction of the effective fieldΩ̃ with the nutation ratẽΩ: (a) the frame of reference
rotates with the field frequencyω; (b) a fixed frame of reference; solid line corresponds to theexact
resonance, dashed line, toω , ω0.

As to the non-resonant case,|ω0−ω| � Ω, the nutation axis is almost parallel
to thez axis, so that theR vector moves approximately along latitudes, with the
angular ratẽΩ ≈ ω0 − ω in the rotating reference frame, i.e., with the rateω0 in a
fixed frame.

In practice, of course, the envelopeE0(t) of the field increases and decreases
gradually, so that the ratesΩ andΩ̃ are slow functions of time. At exact reso-
nance,ω = ω0, variation of the precession angle is determined by the ‘area’ of the
pulse [Allen (1975)],

ϑ(t) − ϑ(0) =
∫ t

0
Ωdt = d0

∫ t

0
E0dt/~. (5.5)

The phaseϕ0 of the field is assumed to be constant, i.e., only amplitude modula-
tion is considered.

Note that equation (5.3) provides a recipe for preparing anyarbitrary pure state
of the system (with given ‘latitude’ and ‘longitude’) with the help of a coherent
field: one should first cool the system, i.e., move the depicting point to the South
pole, and then apply a resonant pulse with a given area and phase.

5.1.2 Analytical solution

In the caseE0 = const, it is not difficult to describe nutation algebraically. Let, for
instance, the initial state be stationary, i.e., the depicting point is att = 0 at one
of the poles, andϕ0 = 0. Then (5.3) is satisfied by the following functions of the
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time [Allen (1975)]:

R0x = ∆(0)
2Ω(ω0 − ω)

Ω̃2
sin2(Ω̃t/2),

R0y = ∆(0)
Ω

Ω̃
sin(Ω̃t), (5.6)

Rz = ∆(0)

[

1− 2Ω2

Ω̃2
sin2(Ω̃t/2)

]

.

The last equation can be understood in terms of the transition probability. Let
the system initially be at the ground level,∆(0) = +1, then the probabilityP of a
transition up isρ22 = (1− Rz)/2, and (5.6) leads to theRabi formula,

P =

[

Ω

Ω̃
sin(Ω̃t/2)

]2

. (5.7)

Note that atΩ � |ω0 − ω|, (5.7) coincides with the transition probability (2.34),
which was found using the perturbation theory,

P =

[

Ω

(ω0 − ω)
sin

(

ω0 − ω
2

t
)

]2

. (5.8)

Hence, if one finds the transition rateW ≡ dP
dt from (5.7) and averages it over

the exponential distribution of interaction times (see theend of Sec. 2.2), the re-
sulting expression will be equivalent to formula (4.100) describing the stationary
absorption with an account for saturation (atT1 = T2).

Thus, in the presence of a resonant perturbation, a quantum systempasses
periodically from the ground level to the excited one and back (Fig. 5.2). The
transition time, according to (5.7), is

tπ = π/Ω = π~/d0E0. (5.9)

Fig. 5.2 Transition probability as a function of time, according to the Rabi formula, in the case of
exact resonance (solid line) and withω − ω0 =

√
3Ω (dashed line).
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This picture should be compared with the idea of ‘quantum jumps’, commonly
used at the early stage of quantum mechanics.

Let a transition withd0 = 1D be caused by a strong plane wave with the peak
intensity 1 GW/cm2; then,E0 = 1 MW/cm, and (5.9) leads totπ = 1ps. This time
is in many cases much smaller than the relaxation time, henceour approximation
T1,2 is valid.

But for usual optical experiments,tπ � T1,2, and theR vector, depicting the
state of a two-level particle on the sphere, does not have enough time to move far
from the South pole before the next ‘collision’ of the particle with the neighboring
ones, which returnsR into the equilibrium position withR⊥ = 0. As a result, on
the average, dynamical equilibrium takes place, with a certain stationary angle of
precession (4.128).

Note that the amplitude of the field required for stationary saturation,E0 ≥
~/d0

√
T1T2 (see (4.95)), does not exceed, on the order of magnitude, thepulse

amplitude required for observing coherent effects,

E0 ≥ ~/d0T2. (5.10)

In other words,a field that can cause a transition within a time much shorter than
the relaxation time, will cause, on a long-time scale, strong saturation.

Below, we will consider several experimental methods of observing non-
stationary effects.

5.1.3 ◦Nutation

Let an equilibrium two-level system interact with an electromagnetic wave with
the amplitudeE0 and the resonant frequencyω = ω0. At short time intervals,
t � T2, the response of the system is described by equation (5.3). According to
this equation, the Bloch vectorR, which denotes the instant state of the system,
performs, like a spin top, nutational motion, i.e., periodic variation of the preces-
sion angleϑ with the Rabi frequencyΩ = d0E0/~. At exact resonance,R moves
along a meridian from the South pole (the equilibrium state)through the equa-
tor (a coherent state) to the North pole (population inversion) and back, with the
angular rateΩ.

Evidently, when theR vector moves upwards, towards the North, the
ensemble-averaged energy of the system increases due to theenergy of the wave,
and at the time instance whenϑ = Ωt = π, the wave, on the average, loses exactly
one energy quantum~ω. Further, whenR goes downwards, towards the South,
the system gives the stored energy back. As a result, the wavebecomes amplitude
modulated with the nutation frequencyΩ (Fig. 5.3). Provided that there are suf-
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Fig. 5.3 Effects of transient optical nutation and free polarization decay. The front slope of a resonant
pulse (dashed line) creates in the matter a transient process, nutation, which leads to the intensity
modulationI(t) of the transmitted light (solid line) with the Rabi frequency. Here,α is the absorption
coefficient with an account for saturation,l is the layer thickness,T2 is the transverse relaxation time.
The back slope of the observed pulse gets a ‘tail’ caused by the free polarization precession.

ficiently many atoms, the wave transmitted through the matter can have a 100%
modulation. This periodic variation of instantaneous optical density of the matter
is calledoptical nutation.

Let us find the power absorbed by the matter. According to (4.98), polarization
of a medium with the densityN of two-level atoms is

P = 2d0Nρ′21 = d0N(R0x cosΩt + R0y sinωt) ≡ Pc cosωt + Ps sinωt, (5.11)

where thein-phase, Pc, and thequadrature, Ps, polarization components have
been introduced.b (We assume thatϕ0 = 0 andE = E0 cosωt.) From (4.13), it
follows that the loss power averaged over the period 2π/ω per unit volume of the
matter is determined by the quadrature component of the polarization,

P(t) =
1
2
ωE0Ps(t) = ωd0E0NR0y(t)/2. (5.12)

Hence, with the help of (5.6) we find

P(t) = ~ω∆(0)NΩ sin(Ωt)/2. (5.13)

This result agrees with the above-given qualitative consideration assuming that
the field and the atoms periodically exchange energy quanta.Note that, because at
t � T1,2 relaxation is too slow to manifest itself, real absorption,i.e., irreversible
energy dissipation into the thermostat, is absent here.

Further, att > T1,2, the amplitude of atoms nutation reduces due to relaxation,
and a stationary angle of precession is established (4.128). Absorption of the field

bEditors’ note: the terms come from radio spectroscopy; in nonlinear and quantum optics they would
be called amplitude and phase quadratures.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

114 Physical Foundations of Quantum Electronics

occurs then in a usual way and is described, according to Eq. (4.15), by the imag-
inary part of the susceptibility. Modulation of the transmitted wave disappears,
and its amplitude is given by the Bouguer law with an account for saturation (see
Fig. 5.3 and Sec. 6.4).

If then the field is suddenly switched off, the matter will continue to emit light
for some time (Fig. 5.3) due to the free precession of theR vector; the matter
is then in a coherentsuperradiance state(Sec. 5.3). This effect is calledfree
polarization decay.

In the presence of inhomogeneous, for instance, Doppler’s,broadening, these
formulas refer to only a small group of atoms with a certain projection of the
velocity. In order to find the total polarization, they should be integrated over
Maxwell’s distribution.

Optical nutation can be used for finding the transition dipole moment by mea-
suring the modulation frequencyΩ and for the study of relaxation processes by
observing the modulation decay rate.

5.1.4 Self-induced transparency

Further, let us consider interaction of two-level atoms with short resonant pulses
with durationτE � T1,2. According to (5.13), such pulses increase the energy per
unit volume of the matter by a value

E =
∫ τE

0
Pdt = ~ω∆(0)N sin2(ΩτE/2). (5.14)

Let, for instance,τE = 2π/Ω, so thatE0τE = 2π~/d0 forms the so-called ‘2π
pulse’, thenE = 0, and the pulse should pass through the matter without absorp-
tion! This theoretical prediction seems paradoxical:a material that is completely
opaque in the usual sense has full transmission for sufficiently short and strong
pulses.

This effect, namedself-induced transparency(SIT), or self-bleaching, is in-
deed observed in experiment. (It should be distinguished from the saturation ef-
fect, which also leads to deviations from the Bouguer law.) The effect of the
matter on the radiation is manifested here only in the reduction of the propagation
velocity and in the pulse distortion. However, it is important that the ‘area’ of the
pulse,ϑ = ΩτE (see (5.5)), remains equal to 2π.

SIT can be qualitatively explained as follows. The first halfof the pulse in-
cident on the matter (ϑ = π) is absorbed by the atoms, which pass into the ex-
cited state with the population inversion. However, the second half of the pulse
‘eliminates’ this inversion, so that the absorbed energy iscoherently returned to
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the field. Note that irradiating the matter with shortπ pulses is an example of a
non-stationary way to create population inversion in two-level atoms.

For the quantitative description of SIT, it is necessary to consider the inhomo-
geneous wave equation in combination with the equation of matter, i.e., Maxwell’s
and Bloch’s equations (see, for instance, Ref. [Allen (1975)]). Such a consider-
ation shows that the propagation velocityu of a 2π pulse is determined by its
‘length’, cτE ≡ l, and the usual absorption coefficientα0,

c/u = 1+ α0l/2. (5.15)

Thus, the longer the pulse, the more delayed it gets. For instance, atτE = 1ns
(l = 30 cm) andα0 = 102 cm−1 the pulse is slowed down by three orders of
magnitude.

An interesting result of the wave theory in nonlinear materials is the prediction
of solitons, stable pulses whose shape and amplitude do not change in thecourse
of propagation [Rabinovich (1989)]. In the case of two-level anharmonicity,
solitons have a hyperbolic secant shape,

E0(τ) = (2~/d0τE)sech(τ/τE), τ ≡ t − z/u. (5.16)

One can easily verify that (5.16) is a 2π pulse, i.e.,
∫

dtE0 = 2π~/d0.
It follows from (5.14) that 4π and, generally, 2πn pulses do not get absorbed

either. According to the wave theory, in the course of propagation such pulses
split in separate stable 2π solitons.

Note that SIT also takes place for inhomogeneously broadened transitions (for
instance, in the presence of the Doppler effect in gases or ingomogeneous static
fields in solids), where 2/∆ω ≡ T∗2 � T2. It is important that the condition
τE � T∗2 is not necessary. SIT is also observed under inter-band transitions in
semiconductors.

5.2 Emission of an atom

Consider an equilibrium two-level system after the incidence of a resonantπ/2
pulse with the durationτE = π/2Ω. According to (5.3), in the end of the pulse
duration the system is in a coherent state with the coordinatesϑ = ϕ = π/2
on the Bloch sphere (the initial field phase is assumed to beϕ0 = 0). Recall
that in a coherent state, the energy of a quantum ensemble hasno definite value.
When measured, it randomly takes values 0 or~ω0, the mean value being half of
a quantum,E ≡ 〈H0〉 = ~ω0/2, if the energy is measured from the ground level.
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According to (5.6), after theπ/2 pulse is over, the density matrix of the atom
has the following elements:

ρ21(t) = i∆(0)e−iω0t/2, ∆(t) ≡ ρ11 − ρ22 = 0. (5.17)

Hence, the mean dipole moment of the atom oscillates (see Fig. 2.1) with the
transition frequencyω0 = ω21, its amplitude being equal to the transition matrix
elementd0 ≡ d21 (we assume thatd21 = d12 and∆(0) = 1),

〈d(t)〉 = 2d0ρ
′
21(t) = d0 sinω0t (5.18)

5.2.1 Emission of a dipole

Let us now take into account the spontaneous emission of the atom, which we
so far neglected. As it was already mentioned in Sec. 2.5, spontaneous transfer
of energy from the atom to the vacuum can be considered as relaxation with a
typical timeT1 = T2/2 = 1/A, whereA is the spontaneous transition rate and
1/A is the radiative life time of the excited state. The vacuum plays then the role
of a thermostat with a zero temperature and infinite heat capacity. Spontaneous
emission is the simplest quantum model of an irreversible process.

Consider the spontaneous emission of an oscillating dipole(5.18) from the
classical viewpoint. It follows from Maxwell’s equations that the time-averaged
power emitted by moving charges is equal, in the dipole approximation, to [Lan-
dau (1973)]

P = 2d̈2
cl/3c3. (5.19)

If we identify dcl with 〈d〉, we will underestimate the power twice compared to the
prediction of the quantum mechanics (see below). Assume then thatdcl =

√
2〈d〉,

then

Pcoh = 4〈d̈〉2/3c3 = 2ω4
0d2

0/3c3. (5.20)

In addition to estimating the total power of spontaneous emission, the semi-
classical model predicts its polarization and directivitydiagram. For instance, in
the case of an electric dipole transition, the field in the far-field zone is

E(r , t) = −〈d̈⊥(t′)〉/c2r, (5.21)

whered⊥ is the projection of the dipole moment on a plane orthogonal to r and
t′ ≡ t − r/c. Hence, the directivity diagram has a usual ‘dipole’ shapeP ∼ sin2 ϑ,
whereϑ is the angle betweenr and〈d〉.

Note that an atom that is initially in a coherent state emits field with a definite
phase. This means that another atom, being in a ground state at a distancer from
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the first one, with a certain probability, scaling asr−2, can get into a coherent state,
with the precession phase shifted byω0r/c.

5.2.2 Probability of a spontaneous transition

Emission (5.20) will lead to a constant decrease in the stored energy and the os-
cillation amplitude of the dipole moment, so that the systemwill eventually come
into the ground state. The Bloch vectorR will then move along a spiral con-
verging to the South pole (in a fixed reference frame), and theamplitude of the
dipole moment〈d〉 oscillations in (5.18) and (5.20) will slowly (asA � ω0) de-
cay, see Fig. 4.9. Similar behavior will take place after exciting the system with
any pulse, except forπn or 2πn pulses, which yield〈d〉 = 0. Thus,an atom in
a non-stationary state has an oscillating dipole moment and, according to the
classical electrodynamics, it spontaneously emits a quasi-monochromatic wave
with the frequency equal to the transition frequencyω0. The angle of precession
gradually tends to zero in this case, due to the radiative energy loss.

The semi-classical expression (5.4) for the powerPcoh emitted in the case of
a coherent state allows one to estimate the probability of a spontaneous transition
per unit time,A. To do this, let us postulate that the power of the atom emission
decays exponentially,

P(t) = P(0)e−At, (5.22)

then the total energy is

E =
∫ ∞

0
P(t)dt = P(0)/A. (5.23)

Assuming that it is equal to the initial energy of the atom,~ω0/2, we find, with
the help of (5.20), that

A = 4ω3
0d2

0/3~c
3, (5.24)

which coincides with the result of a more consistent calculation (Sec. 7.7).
In addition to using an arbitrary numerical coefficient,c this reasoning has

other, more serious, flaws. Namely, it does not result in an exponential decay and
predicts the stability of an excited energy state (∆ = −1, ρ12 = 0) with 〈d(t)〉 = 0.

One can try to improve the situation by substituting into (5.19)〈d2〉 instead of
〈d〉2. However, thed2 operator is proportional to the unity operator,

d2 =

(

0 d0

d0 0

) (

0 d0

d0 0

)

=

(

d2
0 0

0 d2
0

)

= d2
0I , (5.25)

cRecall that we voluntarily assumeddcl/〈d〉 =
√

2.
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therefore〈d2〉 = d2
0 regardless of the state of the atom; this also follows from

(4.107). For instance, in this model the atom should emit even in the ground
state, which contradicts the energy conservation law. Instead of a stable excited
state we have obtained an unstable state. The same problem arises in the well-
spread interpretation of spontaneous transitions as caused by zero-point vacuum
fluctuations.

A consistent theory of the spontaneous emission, as well as statistical optics
in general, should be based on the quantum description of thefield (Chapter 7).

5.2.3 ◦Normally ordered emission

However, spontaneous emission can still be described correctly in the frame-
work of semiclassical theory, provided that the squared dipole moment in (5.19)
is replaced by the mean value of thenormally orderedsquared dipole moment
(Sec. 7.7),

P = (2/3c3)〈: (d̈) :2〉 = (4/3c3)〈d̈(−)d̈(+)〉. (5.26)

The colons denote normal ordering, i.e., placingpositive-frequency operators f(+)

on the right ofnegative-frequency operators g(−). By definition, anf (+) operator
in the Heisenberg picture contains only positive-frequency harmonics,

f (+)(t) =
∑

n

fn exp(−iωnt), ωn > 0.

Similarly, the Fourier transform of ag(−)(t) is only nonzero for negative
frequencies.

Any operator can be represented as a sum of positive- and negative-frequency
parts (disregarding the constant component),d = d(+) + d(−); for Hermitian opera-
tors,d(+) = (d(−))+. Hence,

: d2 := d(+)2 + 2d(−)d(+) + d(−)2 = 2d(−)d(+), (5.27)

while according to (5.25),

d2 ≡ d(+)2 + d(−)d(+) + d(+)d(−) + d(−)2 = d2
0I (5.28)

(in what follows, we will show thatd(±)2 = 0).
During a spontaneous transition, thed(t) dependence in the Heisenberg repre-

sentation can be approximately considered as unperturbed,sinceA� ω0,

d(t) = d0

(

0 exp(−iω0t)
exp(iω0t) 0

)

, (5.29)
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whered0 ≡ d21 = d12, ω0 = ω21 > 0. Hence,d̈ = −ω2
0d and, by definition,

d(+)(t) = d0 exp(−iω0t)

(

0 1
0 0

)

≡ d0σ
(+)(t),

d(−)(t) = d0 exp(iω0t)

(

0 0
1 0

)

≡ d0σ
(−)(t),

(5.30)

whereσ(±) ≡ σx ± iσy (Sec. 4.4). By multiplying these matrices, we find

: d2 := 2d2
0

(

0 0
0 1

)

= d2
0(I − σz); (5.31)

recall thatd = d0σx. To justify this procedure, let us point out that it is namely
the normally ordered square of the field,E(−)E(+) ∼ d(−)d(+) that determines the
‘useful’ energy, which can be absorbed by the other atom (Sec. 7.7). Also, note
that this procedure does not require time averaging over high-frequency oscilla-
tions of the power (see (5.19)).

From (5.26), with an account for (5.31), it follows thatP = 2ω4
0d2

0〈I−σz〉/3c3,
or

P = ~ω0Aρ22. (5.32)

Let us stress that this result is valid for any state of the atom, including a purely
energy or coherent one. In the latter case,ρ22 = 1/2, and (5.32) coincides with
(5.20). Thus,power of the spontaneous emission of a two-level atom at a given
time moment scales as the upper level population.d

Due to the energy conservation law, evidently, the following equality should
hold true:

~ω0∆̇ = 2P. (5.33)

The factor 2 takes into account that each transition changesthe population differ-
ence by a value of 2. Hence, replacingρ22 in (5.32) by (1− ∆)/2, we find the
kinetic equation,

∆ = (1− ∆)T/T1nat, T1nat ≡ 1/A. (5.34)

Thus, we have confirmed the exponential law (5.22) of the excited state decay,

∆(t) = 1+ [∆(0)− 1]e−At. (5.35)

A more rigorous description of the interaction between a two-level system and
the vacuum can be obtained using the Heisenberg equations (4.125) for the Pauli

dThis conclusion becomes evident in Dirac’s notation,σ(+) = |1〉〈2|,σ(−) = |2〉〈1|,σ(−)σ(+) =

|2〉〈2|, 〈σ(−)σ(+)〉 = ρ22.
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vector, by substituting, for the external field, the emission field in the zeroth-order
approximation, i.e., thereaction field(for more detail, see Ref. [Allen (1975)]).
Such equations describe the effect of radiation-induced damping, well known
from classical electrodynamics [Landau (1973)]. Forσz, they lead to an equa-
tion of the form (5.34), while forσ(±), to harmonic-oscillator equations with the
eigenfrequencyω0 + δω ∓ iA/2, whereδω is the correction to the transition fre-
quency, called theLamb shift, δω ∼ A. For instance, for the resonant lineLα of
a hydrogen atom,δω/2π ∼ 109 Hz. The imaginary correction to the transition
frequency has the meaning of the inverse time 1/T2 of transverse relaxation due
to the radiation reaction. Thus, for an isolated atom,T2nat = 2T1nat = 2/A.

5.2.4 Relation between spontaneous and thermal emission

According to the semiclassical theory, spontaneous transitions in atoms lead to the
emission of exponential wave ‘trains’. Then, the field depends on the time as

E(t) = θ(t)E0e−At/2 cos(ω0t + ϕ0), (5.36)

whereθ(t) is the Heaviside step function. The Fourier transform of (5.36), giving
the spectrum of the radiation, has a Lorentzian (dispersion) shape,

E(ω) =
iE0

4π

(

exp(−iϕ0)
ω − ω0 + iA/2

+
exp(iϕ0)

ω + ω0 + iA/2

)

. (5.37)

A similar result follows from the quantum theory. The spectral line width∆ωnat =

A due to the spontaneous emission is called thenaturalone.
Emission spectra observed in practice are usually created by a large number

of atoms excited at random time moments into states with random phases. (The
opposite case, leading to superradiance, will be considered later.) For instance,
in a heated gas at low pressure the atoms are excited through collisions. During
a collision, an atom is in the pulsed field created by the neighboring atom, and
this field changes its state according to the general formulas of the perturbation
theory (Sec. 2.1). After the collision, atoms, according tothe semiclassical theory,
emit exponential wave trains of the form (5.36) with random initial phases. The
average length of a train is determined by the spontaneous life time 1/A or the
timeτ between collisions.

Usually, radiation cooling of a gas is compensated for by theexternal heating,
so that the superposition of all trains creates the stationary field of thermal radia-
tion. In the case of a small optical density of the gas,αl � 1, the intensity will
scale as the upper level population. Ifαl ≥ 1, one has to take into account not only
spontaneous transitions but also stimulated ones, leadingto the absorption and fur-
ther re-emission of photons (theradiation trappingeffect). In the limitαl � 1,
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the gas emits equilibrium Planck’s radiation. In Sec. 7.1 wewill consider a simple
qualitative model of this process, also covering the case ofamplified spontaneous
emission atα < 0.

5.2.5 On the emission of fractions of a photon

Let us mention here an interesting paradox, namely, the apparent contradiction
between our theory and the traditional picture of photons. For a coherent state
with the precession angleϑ, according to (5.14), the energy stored by the atom
is E = ~ω0 sin2(ϑ/2). As a result of spontaneous emission, this energy after a
certain time will be transferred to the field. At the same time, in the ‘photon’
language this means that the atom emits a fraction of the photon energy, equal to
E/~ω0 = sin2(ϑ/2). For instance, after an atom is excited by aπ/2 pulse into a
coherent state on the equator, it emits an exponential trainwith the energy equal
to half a photon, in contradiction with the initial postulates by Planck and Bohr.

However, this conclusion by no means contradicts to quantumelectrodynam-
ics, which states thata field contains an integer number of photons N only in pure
energy states. This class of states with a definite photon number is a very special
one, and even exotic from the viewpoint of its experimental preparation, with the
exception for the vacuum state withN = 0. As to coherent, as well as mixed states
of the field,〈N〉 = 〈H〉/~ω0 can be any non-negative number.

The paradox, as usual, originates from a terminology confusion: E = ~ω0/2
is the energy att = 0 averaged over the atomic ensemble,〈H(0)〉 = E, it has
no relation to the result of asingleenergy measurement,Ei , which yields either
E1 = 0 or E2 = ~ω0 with equal probabilities. Att � 1/A, the energy of the
field is ~ω0/2 only on the average; a single measurement of the photon number,
i.e., of the field energy, yields, according to the basic postulate of the quantum
mechanics, only an average number of photons 0, 1, 2, . . . .

Thus,the energy exchange between the atoms and the field is still possible via
fractions of quanta, but only if ‘energy’ is understood as the ensemble-averaged
one,E = 〈H〉. As to the energy that is transferred in a single interactionevent, it
is not definite, as the initial state of the atom is almost always not an energy one.

5.2.6 ◦Quantum beats

In the case of a multi-level system, the natural bandwidth can be explained by the
finite lifetimes of all excited levels,

∆tm = 1/Am ≡ 1/
∑

n<m

Anm, (5.38)
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due to spontaneous transitions to all lower levels. The probabilities Anm are de-
termined by (5.24) withω3

0d2
0 → ω3

mn|dnm|2. Due to the uncertainty relation
∆E∆t = ~, the lifetime∆tm of the system on a certain level corresponds to the
broadening of this level, which is equal, in circular frequency units, to the inverse
lifetime,

∆ωm ≡ ∆Em/~ = 1/∆tm =
∑

n<m

Anm. (5.39)

Finally, the linewidth of emission or absorption corresponding to a certain pair
of levels is obviously given by the sum of the widths of the twolevels,

∆ωmk = ∆ωm + ∆ωk. (5.40)

Hence, it follows that a weak line withd23 ≈ 0 can have a large natural width due
to larged12 andd13.

Spontaneous emission of a multi–level system excited by coherent radiation
has an interesting feature: its power oscillates in time. Let us consider the time
dependence of the dipole emission power.

According to the ‘upgraded’ semiclassical formula (5.26),the power of radi-
ation emitted by an atom at a given time moment scales as the mean value of the
normally ordered square of the dipole moment second derivative,

P(t) =
4

3c3

∑

klm

ρkld̈
(−)
lm (t)d̈(+)

mk(t). (5.41)

(For simplifying the notation, we assume that the dipole moments of all transitions
are parallel.) Here,ρkl is the density matrix of the atom at the initial time moment
t0 ≡ 0. It is determined by the excitation, which should be pulsedfor observing
quantum beats, i.e., the duration of the excitation pulse should be much smaller
than the beat period, 2π/ω32. In the case of a gas, this is achieved using a pulsed
laser or discharge while in the case of an atomic beam the latter should be passed
through a thin foil. As a result, a considerable number of atoms are in the same
pure non-energy state ˆρ(0), so that the beat signal has a definite phase and a large
power.

After the excitation pulse is over, the dynamics of a given atom is determined
by its unperturbed HamiltonianH0. (Relaxation can be neglected provided that
the beat frequency is sufficiently large,ω32T2 � 1.) The matrix elements in the
energy representation will then depend on time harmonically,

dmn(t) = dmnexp(iωmnt), d̈mn(t) = −ω2
mndmn(t). (5.42)

Let us number the levels according to increasing energy. Then the matrices of
positive- and negative-frequency operators have ‘triangular’ shapes,

d(+)
mn(t) = dmn(t)θnm, d(−)

mn(t) = dmn(t)θmn, (5.43)
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(a) (b)

Fig. 5.4 Quantum beats: (a) dipole moment of a three-level system in a coherent state with indefinite
energy (dashed line) oscillates with the frequenciesω21 andω31; (b) as a result, the powerP of the
spontaneous emission is modulated with the beat frequencyω32 = ω31− ω21.

whereθmn ≡ 1 at m > n and 0 atm < n (see (5.30) for the case of a two-level
system). As a result, the only nonzero terms in the sum (5.41)are the ones with
m< k, m< l,

P(t) =
4

3c3

∑

m<k,m<l

ω2
lmω

2
mkρkldlmdmkexp(iωlkt). (5.44)

In particular, the power of radiation emitted by a three-level system contains
four terms,

P(t) = ~(ω31A13+ ω32A23)ρ33 + ~ω21A12ρ22

+ 2~(ω31ω21A13A12)1/2|ρ32| cos(ω32t + ϕ), (5.45)

where

Anm ≡ 4ω3
mn|dmn|2/3~c3, ϕ ≡ arg(ρ23d31d12).

The first three terms in Eq. (5.45) scale as the populations ofthe excited levels and
correspond to usual spontaneous emission with the power constant in the frame-
work of our approximation. To take into account radiative energy losses, one
should add factors exp(−Amnt) to these terms. The last term in (5.45) describes,
at Amn� ω32 � ω21 ∼ ω31, quantum beats, the periodic modulation of the total
power of spontaneous emission from two close levels 2 and 3, with the difference
frequencyω32 = ω31 − ω21 (Fig. 5.4).e

Let us represent (5.45) in the form

P(t) = P0[1 +mcos(ω32t + ϕ)],

P0 ≡ ~ω21A12ρ22+ ~ω31A13ρ33, (5.46)

m≡ 2~(ω31ω21A13A12)
1/2|ρ32|/P0,

eNote that if superscripts ‘±’ are omitted in (5.41), then (5.45) will contain beats with the frequency
ω21, not observed in experiment.
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where we have neglected the weak radiation at the difference frequencyω32, which
is usually in the microwave range. If the atom is in a pure state, thenρmn = cmc∗n,
and

m= 2/(ε + 1/ε), ε ≡ |ω2
31c3d31/ω

2
21c2d21|. (5.47)

Thus, the modulation coefficientm reaches a unity atA31 ≈ A21, provided that
the atom is excited into a coherent state,|t0〉 = (|2〉 + |3〉)/

√
2. From the classical

viewpoint, the atom emits two sine waves, which interfere, so that at some time
moments the radiation is completely canceled while at otherones it is doubled.
However, one should keep in mind that it is impossible to observe quantum beats
by measuring the field energy in the case of a single atom: multiple measurements
are required, with differentt. In practice, one uses many atoms in the same state.

Usually, levels 2, 3 correspond to the fine or superfine structure, or Zeeman’s
sublevels, so that the beat frequency is in the microwave range and the modula-
tion can be discovered by radio electronic methods. (For instance, PMTs enable
observing modulation up to frequencies on the order of 100 MHz.) It is important
that quantum beats are a single-atom phenomenon; therefore, the Doppler effect
has nearly no influence on the beat frequency, which allows one to measure small
splitting of levels [Aleksandrov (1972)].

Note that there is another method, developed in the 1960-s, which also uses
the spectral analysis of the photocurrent rather than the direct analysis of light,
but in a stationary regime. This method, called spectroscopy of optical mixing
or spectroscopy ofintensity fluctuations, allows one to observe extremely small
frequency splittings on the order of 1 Hz [Cummins (1974)].

5.2.7 ◦Resonance fluorescence

Consider now the case of a cold gas, whereκT � ~ω0, and the atoms are excited
by external directed radiation. The total secondary field ofa macroscopic sample
can be divided in two parts, the one that is coherent with the incident field, and
the scattered one.

The coherent part is determined by the space-averaged atom density, it inter-
feres with the incident primary field, and a joint resulting field propagates through
the medium in the same direction. Homogeneous matter, i.e.,the constant compo-
nent in the space Fourier distribution of the matter mass, only slows the wave down
and, if the energy dissipation is taken into account, reduces its amplitude. These
effects are described by the macroscopic susceptibility of matter (Chapter 4).

The secondary radiation that is scattered sideways is caused by the atomic in-
homogeneity of the matter. The fields of different atoms are not coherent with
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each other; therefore, the total power of the scattered radiation is additive, i.e.,
equal to the number of atoms times the emission powerP of a single atom (pro-
vided that multiple scattering is negligible — theBorn approximation). Due to the
optical anharmonicity of the matter (Sec. 6.2), the spectraof the secondary radi-
ation contain, in addition to the elastic (unshifted) component, new components,
providing valuable information about the structure of the matter (fluorescence,
Raman scattering, etc.).

Here, using the gyroscopic model, we will considerresonance fluorescence
(resonance scattering), which is emission of radiation with a frequency close to
the transition frequencyω0, provided that the excitation frequencyω is close to
ω0 as well. This phenomenon, discovered by R. Wood in Na vapor asearly as at
the beginning of the 20th century, attracts much attention nowadays in connection
with its two interesting features.

First, resonance fluorescence of single atoms brings the field into states with
unusual statistics, which cannot be described in terms of classical statistical optics.
These are states withphoton anti-bunchingandsqueezed states(for more details,
see Chapter 7).

Second, in the case of a large intensity of the incident light(the pump), the
spectrum of the scattered light contains, near the elastic (Rayleigh) component,
two satellites with the frequenciesω andω± Ω̃ (Fig. 5.5). Here,̃Ω ≡ [Ω2 + (ω0 −
ω)2]1/2 is the generalized Rabi frequency andΩ ≡ d0E0/~. Besides, amplification
of weak probe light at these frequencies due to the pump energy is observed.

Fig. 5.5 Resonance fluorescence. A monochromatic external field modulates the wave function of
a two-level system with the frequenciesω andω ± Ω̃. Therefore, the spectrum of the scattered field
consists of three components. The following cases are shown: (a) small mismatch and strong field; (b)
large mismatch; (c) in the case of a large mismatch, satellites appear due to the four-photon process in
which two pump photons (thick lines) become two photons withfrequenciesω0 and 2ω − ω0.
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The spectrum of the scattered light is observed under stationary conditions.
In this case, a quantitative theory requires an account for the relaxation and
quantization of the field (see, for instance, Ref. [Grishanin (1981)]); however, the
emerging of the satellites can be easily explained qualitatively in the framework
of the semiclassical theory and neglecting the relaxation.According to (5.3), a
monochromatic field, in addition to the precession of theR(t) vector with the field
frequencyω, also causes its nutation with the frequencyΩ̃ (Fig. 5.1). As a result,
the mean dipole moment of the atom〈d(t)〉 ∼ Rx(t), and the emitted field should
contain frequenciesω andω ± Ω̃. Therefore, the nonlinearity of a two-level sys-
tem leads to the modulation of the field scattered by it, with the generalized Rabi
frequencyΩ̃. (This should be compared with the Raman scattering, where the
modulation frequency coincides with one of the frequenciesof the system, so that
the satellites have frequenciesω±ω0, and with the optical nutation, see Sec. 5.1.)

Consider two limiting cases. Let|ω0 − ω| � Ω, thenΩ̃ ≈ Ω, and the spec-
trum of resonance fluorescence is a triplet symmetric with respect to the transition
frequency,ω0, ω0 ± d0E0/~ (Fig. 5.5(a)). In the opposite case,Ω̃ ≈ |ω0 − ω|,
and the spectrum consists of the central elastic componentω, a line at the transi-
tion frequencyω0, and the ‘mirror’ component at 2ω − ω0 (Fig. 5.5(b)). From
the photon viewpoint, radiation at frequenciesω0 and 2ω − ω0 is a result of
a single four-photon elementary process, i.e., absorptionof two photons of the
incident light and emission of two secondary photons, according to the scheme
2~ω→ ~ω0 + ~(2ω − ω0) (Fig. 5.5(c)).f

Note that in a non-resonance case, emission in the vicinity of a transition is
not exactly at frequencyω0 but shifted. LetΩ � ω0 − ω > 0, then the frequency
of the anti-Stokes satellite (the right-hand one, on the frequency scale) is

ω′0 = ω + [Ω2 + (ω0 − ω)2]1/2 ≈ ω0 + (d0E0/~)
2/2(ω0 − ω). (5.48)

This shift of the observed transition frequency, dependenton the intensity of
the exciting radiation, is called thehigh-frequency shift, or theoptical Stark effect.
It follows from (5.48) that on the order of magnitudethe shift is equal to the
squared excitation energy in frequency units,Ω, divided by the mismatch.

Let us estimate the total power of emission. According to (5.7) and (5.32),

P(t) ≈ ~ω0Aρ22(t) = ~ω0A(Ω/Ω̃)2 sin2(Ω̃t/2). (5.49)

Thus, if the relaxation is negligible,P oscillates with the frequencỹΩ, i.e., the
process is non-stationary and the notion of the spectral density is non-applicable.
It is noteworthy that in the non-resonant case,P scales asd4

0/(ω0 − ω)2.

f Editors’ note: in modern terms, this process is calledspontaneous four-wave mixing; for more details,
see Chapter 7.
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Above, we did not take into account relaxation. It is intuitively clear that it
should lead to the broadening of discrete spectral components up to a width of
about 2/T2 (Fig. 5.5). Hence, the condition for observing the satellites in the case
ω = ω0 is Ω > 2/T2, i.e., strong saturation should take place, which is only
possible with the help of lasers. (The effect was first observed in 1974 [Delone
(1975)].) Note that according to the Bloch equations with anaccount for relax-
ation (Sec. 4.4), nutation of theR vector disappears under stationary conditions,
so that the above-given explanation of the effect seems to be not valid. However,
the kinetic Bloch equations do not describe the fluctuationsof R caused by the
thermostat and containing the frequencyΩ̃.

If we put aside the rotating-wave approximation, the two-level model will de-
scribe other nonlinear effects, for instance, emission at the frequency 3ω. In the
case of a polarized atom (or molecule) with nonzero diagonalmatrix elements of
the dipole moment,dnn , 0, or in the case of the magnetic resonance, the model
will describe two-photon absorption and the Raman effect, i.e., emission at fre-
quenciesω ± ω0. Thus,according to the simplest two-level model of an atom, the
matter can scatter the incident light with changing its spectrum, which is a mani-
festation of the nonlinear properties of the matter, i.e., the optical anharmonicity.
Another simple nonlinear effect, saturation, has been considered in Sec. 4.3.

5.3 Collective emission

As we have already mentioned, emission from macroscopic matter depends
strongly on the conditions of its excitation. Under usual, chaotic (incoherent)
excitation, the states of different atoms are statistically independent, the matter
is described by a diagonal density matrix, and as a result, the emission powerP
depends on the total number of atomsN linearly. (We assume that the linear size
of the sample is much smaller than the free path of a photon,αl � 1.) In the case
of a coherent excitation, allN atoms are in the same state, and the sample can
be described by a joint wave function. Then, as one can easilyverify using the
semiclassical theory,P can depend onN quadratically, which should drastically
change the situation. In what follows, we will consider two unusual optical effects
originating from the quantum coherence formed in a macroscopic sample.

5.3.1 Superradiance

Let at the initial time moment there beN identical atoms in independent coherent
states,

ψ j = {|1〉 j + |2〉 j exp[−i(ω0t + ϕ j)]}/
√

2. (5.50)
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This is a particular case of a possible state of a system containing N particles
distinguishable through their coordinatesr j , with the wave function of the system
being factorable,

ψ = ψ1ψ2 . . . ψN =

N
∏

j=1

ψ j . (5.51)

The mean dipole moment of the system is

〈d〉 = 〈ψ|
∑

j

d j |ψ〉 =
∑

j

〈ψ j |d j |ψ j〉 = d0

∑

j

cos(ω0t + ϕ j), (5.52)

where the transition dipole momentsd0 ≡ d12 are considered as real and oriented
along a certain axis. Here, the phaseϕ j of the j-th atom coherent state has a clear
meaning: this is the phase of the Bloch vector precession. Ifthe state is prepared
by means of aπ/2 pulse, this phase is determined by the phase of the field at the
point r j of the atom. IfN = 2, then, according to (5.52), the oscillation amplitude
of the total dipole moment is doubled atϕ1 = ϕ2 and turns into zero atϕ1−ϕ2 = π.
In the case ofN atoms with the sameϕ j ,

〈d〉 = Nd0 cos(ω0t + ϕ).

Suppose then that the linear size of the system is much smaller than the wave-
length,l � λ0 = 2πc/ω0, so that formula (5.19) for the dipole emission power is
valid. Replacing theredcl by 〈d〉, in the case of equal phases we getPcoh ∼ N2, i.e.,
the power emitted by dipoles oscillating with equal phases scales as the square
of their number. This effect of coherent (collective, cooperative) spontaneous
emission of a multi-atomic system is calledsuperradiance. Although its classical
interpretation is trivial, the quantum theory has been firstconsidered only in 1954
by Dicke [Fain (1972); Allen (1975)].

A close phenomenon had been observed earlier in the microwave range, in
nuclear magnetic resonance (NMR) experiments. In such experiments, a para-
magnetic sample is placed between two crossed inductance coils (the magnetic
inductionmethod). A resonance current in one of the coils excites the stimulated
precession of the macroscopic magnetic momentM of the sample around the di-
rection of a constant magnetic field (see (4.139)). The rotating momentM induces
the induction electromotive force in the other coil, the receiver one. As a result,
the power of the observed signal scales as the squared numberof nuclei in the
sample.

Coherent emission of phased dipoles is observed in many nonlinear optical
effects such as generation of optical harmonics. However, here, similarly to the
effect of nuclear induction, emission is at the frequency of theexternal force,
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which in optics can be very different from the eigenfrequencies of the transitions.
It is important that the conditionl � λ is not necessary: at an appropriate phase
of stimulated or free precession along some direction, so that ϕ j = kzj , where
k is the wave vector andzj is the j-th atom coordinate (spatial phase matching
condition), the emission along this direction will be coherent. Thus, superradiance
of extended systems is not isotropic; it has a maximum along the phase matching
directionz.g

The semiclassical approach, based on the formula (5.19) forthe power of co-
herent radiation withdcl replaced by〈d〉, yields an exact result only atN � 1.
Recall that atN = 1, we had to introduce an additional factor of 2 into formula
(5.20). As we have mentioned above, in the general case we have to use, instead
of d2

cl, the normally-ordered square 2〈d(−)d(+)〉, which leads to the replacement of
N2 by N(N + 1),

〈d(−)d(+)〉 =
∑

jk

〈d(−)
j d(+)

k 〉

=
∑

j

〈ψ j |d(−)
j d(+)

j |ψ j〉 +
∑

j,k

〈ψ j |d(−)
j |ψ j〉〈ψk|d(+)

k |ψk〉

= d2
0

















N +
∑

j<k

cos(ϕ j − ϕk)

















/2 = d2
0N(N + 1)/4. (5.53)

Substituting (5.53) into (5.26), we obtain the superradiance power ofN atoms in
coherent states,

Pcoh = ~ω0AN(N + 1)/4. (5.54)

The last equality in (5.53) implies that all phasesϕ j are equal, i.e., the states are
mutually coherent.

Otherwise, if the precession phases are independent randomvariables, dis-
tributed uniformly within the 0..2π interval, then all cosines will turn into zero
after averaging, and (5.53) will only containN diagonal terms,

Pincoh = ~ω0AN/2. (5.55)

Here, the subscript ‘incoh’ indicates that separate atoms,each of them being in a
coherent state on the equator of the Bloch sphere, emit incoherently.

Apparently, in addition to the limiting cases (5.53) and (5.56) considered here,
there are many other states of anN-atom system. In particular, as one can see from
the above-givenexample for two atoms,emission-free statesare possible, in which
collective effects suppress dipole spontaneous emission.
gIn Sec. 5.1, we have already come across such a phenomenon, free polarization decay.
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Due to the energy losses accompanying the emission, spontaneous superradi-
ance has fast decay. The pulse duration of superradiance canbe estimated as the
ratio of the energy~ω0N/2 stored by the system to the initial power of coherent
emission (5.54),

τcoh ≈ 2/A(N + 1). (5.56)

Thus,at N� 1 and l� λ the radiative lifetime of the coherent state of an N-
atom system is reduced N/2 times due to the collective effect. However, as it has
been already mentioned, superradiance in extended systemsis directive, i.e., only
part of the field modes ‘work’ efficiently and take the energy, and this leads to an
increase ofτcoh. The increase is approximately 4π/∆Ω times, with∆Ω being the
effective solid angle into which the emission is directed. For astretched sample
with the Fresnel numberα2/λl ∼ 1, this slowing down of the superradiance is on
the order of (a/λ)2 ∼ l/λ � 1, wherea2 is the sample cross section andl is the
length.

Consider now the case where the initial state of anN-atom system is an energy
one,ψ(0) =

∏ |2〉 j. The Bloch vector of each atom is directed up, towards the
North pole. Initially, the atoms emit independently,

P ∼ 2〈ψ|d(−)d(+)|ψ〉 = Nd2
0, (5.57)

and gradually pass from the energy state into coherent ones,with some precession
anglesϑ j and phasesϕ j .

However, one can expect that the atoms influence each other through the trans-
verse field, and therefore the precession phases should mutually synchronize, pro-
vided that the atom density is sufficiently high [Andreev (1980)]. As a result, after
a certain delay timet0 the system will pass by itself into a superradiance coherent
state with phased dipoles. At this moment, slow spontaneousemission will turn
into a short strong superradiance pulse with a definite phaseof the field (Fig. 5.6).

5.3.2 Analogy with phase transitions

A consistent theory, as well as the experiment (see Ref. [Andreev (1980)]), per-
formed for the first time in 1973, confirm this qualitative picture. Often, it is
this surprising effect that is called superradiance. Spontaneous emerging of an or-
dered coherent state from an initially chaotic state of a macrosystem is generally
of huge interest in physics. Let us mention the analogy between the spontaneous
formation of a superradiance state in a system of excited atoms and phase tran-
sitions in equilibrium matter. Another example of such a phase transition in a
non-equilibrium system is emerging of auto-oscillations with a certain phase and
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Fig. 5.6 Time dependence of the emission power for atoms excited at timet = 0: 1, usual (incoherent)
spontaneous emission, observed at low atom density; 2, superradiance of atoms that are initially in a
coherent state; 3, superradiance in the case of an energy initial state occurs with a typical delayt0.

a macroscopic amplitude in a laser operating above the threshold [Haken (1977);
Klimontovich (1980); Arecchi (1974)]. In this case, again,the interaction of atoms
through the field of the cavity makes the chaotic noise field become a regular one
and leads to the formation of regular macroscopic alternating polarization. Note
that in equilibrium systems, phase transitions are also caused by the interaction
of atoms or molecules through the field, but a static one. A rough description of
the ferroelectric transition is provided by the Lorentz model: according to (4.50),
the frequency of the polarization resonance turns into zeroprovided that the atom
density is sufficiently high. In this case, susceptibility at zero frequency turns into
infinity and a macroscopic static polarization is created inthe system.

Superradiance in a system with a population inversion should be distinguished
from superfluorescence(stationary or pulsed), amplified spontaneous emission
(Sec. 7.1). During superfluorescence, emission-free relaxation processes (such as
collisions in gases or interaction with phonons in solids) prevent a macroscopic
volume from emitting coherently, and therefore the emission depends on the num-
ber of particles linearly, and not quadratically.

5.3.3 Photon echo

In the case of inhomogeneous broadening, different atoms have slightly differ-
ent eigenfrequencies due to the Doppler effect, inhomogeneous static fields, etc.
Then the observed linewidth∆ω ≡ 2/T∗2 of a transition is much greater than the
collision-induced or radiation-induced width 2/T2.

Let a short (τE � T∗2) resonantπ/2 pulse drive the atoms of the sample from
the ground state into the same coherent state on the equator of the Bloch sphere



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

132 Physical Foundations of Quantum Electronics

Fig. 5.7 Photon echo. After being excited by two short light pulses (dashed lines, top), the matter
emits a flash of light (solid line) delayed by a timet0 equal to the interval between the pulses. The
effect is explained by the fact that at time 2t0, different molecules have the same phase of charge
oscillations (bottom).

(Fig. 5.7). It creates a polarization

P(t) =
N

∑

j=1

〈d j(t)〉 = d0

∑

j

R( j)
x (t) = d0

∑

j

sin(ω( j)
21t). (5.58)

Here,N is the particle number density,d0 ≡ d( j)
12 the transition dipole moment,

R( j) the Bloch vector of thejth atom, with the components 2ρ( j)′
21 , 2ρ

( j)′′
21 , ρ

( j)
11−ρ

( j)
22.

At the initial stage, whent � T∗2, the difference between the eigenfrequencies
ω

( j)
21 can be neglected, so that

P(t) = Nd0 sin(ω0t), (5.59)

with ω0 ≡ ω( j)
21 being the mean transition frequency. The macroscopic polarization

(5.59) is accompanied by strong superradiance. However, ina short timeT∗2, the
dipoles in (5.58) get out of phase,P(t) becomes close to zero, and only slow
spontaneous emission remains, with a typical decay timeT1 = 1/A.

The dephasing process can be illustrated with the help of thevector model
(Sec. 5.1). In the frame of reference rotating with the frequencyω0, theR( j)

0 vec-
tors will undergo precession clockwise or anti-clockwise,with the angular rates
∆ω j ≡ ω( j)

21−ω0, which are within the interval−∆ω · · ·+∆ω. Prior to theπ/2 pulse,

all R( j)
0 are directed down along thezaxis, while immediately after the pulse, they

are directed along they axis,R( j)
0y (0) = 1. (We assume the pulse to be very short.)

Let T∗2 be much smaller than the superradiance timeτcoh andt � T1, then the
radiative energy losses can be neglected and each Bloch vector is precessing with
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its own velocity in the equatorial plane. The Bloch vectors will be unfolding like
a fan (Fig. 5.7), and at timest > T∗2 they will uniformly fill the equatorial plane.

The precession of thejth atom can be described analytically in the rotating
frame of reference by the formula

ρ
( j)
0 = (i/2) exp(−i∆ω j t), (5.60)

whereρ( j)
0 ≡ ρ

( j)
21 exp(iω0t) is the ‘slow’ amplitude of the density-matrix non-

diagonal element.
At first sight, this decay of the macroscopic order is irreversible. However,

there exists a smart way to restore the coherent state of the system provided that
t < T2, whereT2 is the typical time of irreversible precession dephasing caused by
collisions. The idea is that a second resonant pulse, with the ‘area’π, is incident
on the system at a timet0.

According to the gyroscopic Bloch equation (5.3), theπ pulse ‘turns’ anR( j)
0

vector by 180◦ around thex axis (5.7). SinceR( j)
0 is in the equatorial plane, the

rotation is equivalent to the mirror reflection with respectto thexzplane or to the
change of theR( j)

0y sign, i.e., complex conjugation ofρ( j)
0 (t0).

One can easily see that after this operation, the ‘fan’ orR( j)
0 vectors starts

folding, and at the timet = 2t0 all vectors will be parallel once again (5.7), this
time along−y : R( j)

0y (2t0) = −1, ρ( j)
0 (2t0) = −i/2. Again, we consider the pulse to

be very short.
At this time moment, a superradiance pulse is emitted again,its duration about

T∗2 (Fig. 5.7). It is this pulse of emission from the sample, appearing in a timet0
after the second external pulse, that is called thephoton, or spin, echo. As the
intervalt0 increases, the amplitude of the echo signal reduces as exp(−2t0/T2).

The appearance of echo att = 2t0 can be illustrated by an analogy with runners
at a stadium, who start running att = 0 with different speeds. Att = t0 they
simultaneously turn round and run back with the same speeds.Clearly, att = 2t0
they will cross the start line simultaneously.

The coherence recovery under aπ pulse can be also described analytically.
Before the pulse,

ρ
( j)
0 (t0 − 0) = (i/2) exp(−i∆ω j t0), (5.61)

while immediately after the pulse,h

ρ
( j)
0 (t0 + 0) = ρ( j)

0 (t0 − 0)∗ = −(i/2) exp(i∆ω j t0). (5.62)

hNote that a similar operation of amplitude complex conjugation, or time reversal, forms the basis of
thephase conjugationeffect (Sec. 6.5).
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Further, att > t0, free precession takes place again, with the initial amplitude
given by (5.62),

ρ
( j)
0 (t) = ρ( j)

0 (t0 + 0) exp[−i∆ω j(t − t0)] = −(i/2) exp[−i∆ω j(t − 2t0)]. (5.63)

Hence, att = 2t0 all ρ( j)
0 become equal.

This effect, one of the most beautiful phenomena in quantum electronics, has
been discovered by Hahn in 1950 in NMR experiments, with inhomogeneous
broadening caused by the magnetic field inhomogeneity, and named as the spin
echo. In optics, it was first observed in ruby by Kurnit et al. in 1964 using a ruby
laser. Photon and spin echo are used for the measurement of relaxation parameters
and fine structure of transitions (echo spectroscopy, see Ref. [Manykin (1984)]).
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Chapter 6

Nonlinear Optics

Some nonlinear optical phenomena have been already considered above (satura-
tion, resonance fluorescence). This chapter will present a more systematic de-
scription of these effects.

Although most nonlinear optical phenomena are well described by the semi-
classical radiation theory and do not require the quantization of the field, many
effects have a clear interpretation and classification in termsof photons. For in-
stance,frequency doublingcan be represented as resulting from elementary three-
photon processes where, due to the interaction between the field and the matter,
two photons of the incident light (pump) are destroyed and a photon with the
double energy 2~ω is created (Fig. 6.1(a)). It is clear from the figure that, since
the process does not change the energy of the matter (such processes are called
parametricones), the energy of the created photon is exactly twice as large as the
energy of the pump photon.

In the case of a biharmonic pump with the frequenciesω1, ω2, the matter
emits photons with the combination frequencies,ω0 = ω1 ± ω2. These aresum-
and difference-frequency generationeffects, see Figs. 6.1(b) and 6.1(c). A simi-
lar description can be suggested for four-photon and higher-order processes. The
processes that take place in aparametric oscillatorand in the corresponding spon-
taneous effect,spontaneous parametric down-conversion, are inverse to the sum
frequency generation. Namely, a pump photon is split in two photons with frac-
tional frequencies,ω0 → ω1 + ω2 (Fig. 6.1(d)).

The efficiency of parametric processes in a macroscopic material isdramati-
cally increased under the condition of photon momentum conservation,k1+ k2 =

k0. This equality is called thespatial phase-matching condition.
In non-parametric processes, the matter changes its energy and passes to other

energy levels. For instance, in two-photon absorption, twopump photons are
annihilated and an atom goes to an excited level (6.1(e)). Such effects lead to

135
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nonlinear absorption scaling as the square of the light intensity. In aRaman two-
photon transition, a photon is annihilated and another one, with a different energy,
is created (6.1(g) and 6.1(h)).

All these effects, both parametric and non-parametric, are widely used in non-
linear spectroscopy, as well as for the variation of laser radiation frequency. An
important role is played by nonlinear optical effects in laser thermonuclear synthe-
sis, laser separation of isotopes, laser chemistry, and many other fields of quantum
electronics. Also, note thatthe possibility of quantum amplification is princi-
pally related to the nonlinearity of the material, since in a linear system the lev-
els are equidistant and the stimulated emission is always compensated for by the
absorption.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6.1 Elementary multi-photon processes. Solid horizontal lines show real energy levels of the
matter; dashed horizontal lines denote virtual levels. Arrows pointing upwards are absorbed photons;
arrows pointing downwards, emitted ones. Bold arrows correspond to the photons of the primary
radiation (the pump), thin ones, to the secondary or spontaneous radiation. Top row: three-photon
parametric (coherent) processes; bottom row: two-photon non-parametric processes; (a) second har-
monic generation; (b, c) sum- and difference-frequency generation; (d) parametric down-conversion;
(e) non-resonance and resonance (cascaded) two-photon absorption; (f) two-photon emission (stimu-
lated, spontaneous-stimulated, and spontaneous); (g, h) Stokes and anti-Stokes Raman processes.
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In the quantitative description of nonlinear optical effects, similar to the case
of linear optics, the theory is divided in two parts, the microscopic and the macro-
scopic ones. The microscopic theory is aimed at calculatingthe polarizationP(E)
induced by a given fieldE. (In the general case, the magnetic fieldH should be
taken into account as well.) The equations of motion of charged particles are non-
linear; therefore, the function, or, rather, the functional P(E) can be written as a se-
ries expansion containing the quadratic termχ(2)E2, the cubic one,χ(3)E3, etc. At
the macroscopic stage of calculations, one substitutes thefunction P(E) into the
Maxwell equations, and a self-consistent solutionE, H is searched at given field
sources and boundary conditions. According to this scheme,Sec. 6.1 discusses
the general properties ofχ(n), Sec. 6.2 considers various models of the optical
anharmonicity of the matter, which allow one to estimateχ(n). Sections 6.3–6.5
describe the basic problems of macroscopic nonlinear optics, as well as the ways
to solve them, and some observable effects.

It should be stressed that nonstationary problems of nonlinear optics are solved
by writing joint equations for the field and the matter, without using the sus-
ceptibilities. For instance, a quantitative analysis of self-induced transparency
(Sec. 5.1) requires a joint solution to Maxwell’s and Bloch’s equations.

Nonlinear optics can be studied in more detail by reading Refs. [Vino-
gradova (1979); Akhmanov (1981); Fain (1972); Apanasevich(1977); Landau
(1982); Akhmanov (1964); Bloembergen (1965); Kielich (1980); Fabelinsky
(1965); Klyshko (1980); Letokhov (1975); Akhmanov2 (1981); Delone (1978);
Dmitriev (1982); Butylkin (1977); Schubert (1973); Zernike (1973); Walther
(1976); Letokhov (1983)].a Currently, there is also a new rapidly developing field,
nonlinear optics of the surface[Chang (1981)]. One of the most interesting phe-
nomena in this field isgiant Raman scattering of lightby molecules adsorbed on
a rough metal surface. Cross section of this scattering is byorders of magnitude
greater than the cross section of usual bulk scattering per one molecule.

6.1 Nonlinear susceptibilities: definitions and general properties

Before analyzing various models of optical anharmonicity,it is reasonable to find
out the general properties, such as the symmetry of the nonlinear response of the
matter, which do not depend on the choice of the model. For this, let us generalize
the notion of the phenomenological susceptibility (Sec. 4.1) to the nonlinear case.

aEditors’ note: See also [Agrawal (2007); Boyd (2008)].
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6.1.1 Nonlinear susceptibilities

Let a field with a discrete spectrum,

E(t) = (1/2)
∑

n

En exp(−iωnt) + c.c., n = 1, 2, . . . , (6.1)

be incident on the matter. Equations of motion for the charged particles of the
matter are nonlinear. As a result, charge displacements induced by the field (6.1)
and, hence, the polarizationP(t) will contain not only the Fourier components
with the frequencies of the external forceωn but also the ones with the combina-
tions of these frequencies,ωn ± ωm, including multiple frequencies 2ωn and the
zero frequency,ωn − ωn = 0.

Let us first reduce the consideration to the case of the nonlinearity quadratic
in the external field. Then, the phenomenological relation between the spectral
components of the polarization and the electric field has theform

P(2)
0 = χ

(2)(ω1, ω2)E1E2, (6.2)

whereP0 is the complex amplitude of polarization oscillations withthe frequency
ω0 = ω1 + ω2, and we are so far assumingω1 , ω2. Thequadratic susceptibility
(or quadratic polarizability) χ(2) defined this way sets a relation between three
vectors and is therefore a third-rank tensor. Notation (6.2) is not based on a certain
frame of reference (often, the relation is written with a colon, P0 = χ

(2) : E1E2).
If some Cartesian frame of reference is chosen, (6.2) takes the form

P(2)
0α =

∑

βγ

χ
(2)
αβγ

(ω1, ω2)E1βE2γ. (6.3)

In what follows, as usual, we will omit the summation over ‘dumb’ indicesβ, γ.
Each of the 27 componentsχ(2)

αβγ
(ω,ω′) of theχ(2) tensor is a function of two

independent argumentsω,ω′ taking values from−∞ to +∞. Since the Fourier
components of the field and the polarization are complex,χ

(2)
αβγ

is also complex,
and in total, there are 54 real functions of these variables.However, as we will
show below, there are many relations between these functions, and the number of
independent variables is reduced.

By analogy with (6.3), the nonlinear susceptibility of an arbitrary order is
defined as

P(m)
0α = χ

(m)
αα1...αm

(ω1, . . . , ωm)E1α1 . . .Emαm,

ω0 = ω1 + ω2 + · · · + ωm.
(6.4)

For instance, the cubic susceptibilityχ(3)
αβγδ

(ω1, ω2, ω3) is a fourth-rank tensor, and
each of its 81 complex components depends on three continuous variables. Note
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that the Cartesian indicesα, β, . . . can be also considered as arguments ofχ(m),
each of them taking three discrete values.

The relation between the polarization and the field can be written symbolically
as a power series,

P(E) =
∞
∑

m=0

χ(m)Em. (6.5)

In the spectral representation, this relation is an algebraic one, while in the time
representation,χ(m) should be understood as integral operators. Their kernels,
χ(m)(t1, . . . , tm), calledmulti-time Green’s functionsor response functionsof the
matter, are defined in terms of the spectral susceptibilityχ(m)(ω1, . . . , ωm) using
the m-fold Fourier transformation (form = 1, see (4.7)). By analogy with the
linear case (Sec. 4.1), the causality principle leads to integral relations between
the real and imaginary parts ofχ(m), similar to the Kramers-Kronig relations.

The effect of the magnetic field can be taken into account by doing a double
power-series expansion in (6.5),

∑

χ(mn)EmHn. Some nonlinear optical effects
reveal spatial dispersion, which can be described as the dependence ofχ(m) not
only onω1, . . . , ωm but also on the wavevectorsk1, . . . , km.

6.1.2 ◦Various definitions

Often, one uses the definition of spectral amplitudesẼn that differs from (6.4) by
the absence of the 1/2 factor,

E(t) =
∑

n

Ẽn exp(−iωnt) + c.c., Ẽn ≡ En/2. (6.6)

Similarly, atω0 , 0, P̃0 = P0/2, so (6.2) leads to the following relation for the
quadratic nonlinearity:

P̃
(2)
0 = (1/2)χ(2)E1E2 = 2χ(2)Ẽ1Ẽ2 ≡ χ̃(2)Ẽ1Ẽ2. (6.7)

Thus, two different definitions for the field and polarization spectral ampli-
tudes correspond to two differently definedm-th-order susceptibilities, related as

χ̃(m) = 2m−1χ(m), ω0 , 0. (6.8)

An exception from this rule are even-order susceptibilities atω0 = 0, describing
theoptical rectificationeffect. For this case,̃P0 = P0, and

χ̃(m) = 2mχ(m), ω0 = 0.

Assume now that the inertia of the material response can be neglected. This
is the so-calledinertia-free, or Kleinman’s, approximation, which is valid in the
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case where the field frequencies and their combinations are in the transparency
windows of the matter. In this case, the polarization follows the field instanta-
neously, and form= 2,

P(2)
α (t) = χ̄αβγEβ(t)Eγ(t), (6.9)

whereχ̄ is some real constant tensor. In particular,

P(2)
x (t) = χ̄xxxE

2
x(t) + χ̄xxyEx(t)Ey(t)

+ χ̄xyxEy(t)Ex(t) + χ̄xyyE
2
y(t) + . . . (6.10)

From this example, one can see that only the sum ¯χαβγ + χ̄αγβ has a physical
meaning; these components cannot be measured separately, and therefore thēχ
tensor is symmetric in the last two indices while theχ̄(m) tensor is symmetric in
all indices except the first one.b Assuming the field in (6.9) to be biharmonic, we
obtain

P(2)
α (t) = (1/2)χ̄αβγRe{

∑

n=1,2

[EnβE
∗
nγ + EnβEnγ exp(−2iωnt)]

+ 2E1βE2γ exp[−i(ω1 + ω2)t] + 2E1βE
∗
2γ exp[−i(ω1 − ω2)t]}. (6.11)

The first term here describes optical rectification, the second one, harmonic gen-
eration, the third and the fourth ones correspond to the generation of sum and
difference frequencies.

On the other hand, from the definition of the susceptibility (6.3) it follows that

P(2)
α (t) =

∑

n=1,2

χαβγ(ωn,−ωn)EnβE
∗
nγ

+Re{
∑

n=1,2

χαβγ(ωn, ωn)EnβEnγ exp(−2iωnt)

+ χαβγ(ω1, ω2)E1βE2γ exp[−i(ω1 + ω2)t]

+ χαβγ(ω1,−ω2)E1βE
∗
2γ exp[−i(ω1 − ω2)t]}. (6.12)

(Here we have omitted the order index of the susceptibility,which we will some-
times do in what follows.)

Comparing (6.11) and (6.12), we see that in the dispersion-free approximation,

χ(ω,ω′) = 2χ(ω,ω) = 2χ(ω,−ω) = χ̄, (6.13)

whereω , ω′ , 0. Similarly, one can show thatχ(ω, 0) = 2χ̄. The first equality
in (6.13) is obviously still valid in the presence of dispersion, provided thatω and
ω′ are sufficiently close. Thus,every component of thēχ(ω,ω′) tensor, considered

bBelow, we show from the energy considerations that theχ̄(m) tensors are fully symmetric.
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as a function of two variables,ω andω′, has a peculiarity on the linesω′ = ±ω
where its values are twice as small as at the neighbouring points.

Higher-order susceptibilities have similar peculiarities at coincident frequency
arguments. The corresponding coefficients can be found by repeating the deriva-
tion of (6.13).

6.1.3 ◦Permutative symmetry

Definitions (6.3), (6.4) lead to the invariance of theχ(m) tensors to permutations
of their frequency arguments together with the corresponding Cartesian indices,

χαβγ(ω1, ω2) ≡ χαγβ(ω2, ω1), (6.14)

χαβγδ(ω1, ω2, ω3) ≡ χαβδγ(ω1, ω3, ω2) ≡ . . . (6.15)

Indeed, (6.3) can be rewritten in other equivalent forms,

P(2)
0α = χαβγ(ω2, ω1)E2βE1γ = χαγβ(ω2, ω1)E2γE1β.

Comparison of the latter with (6.3) yields (6.14).
It follows from (6.14), (6.15) thattensors describing the generation of har-

monics are symmetric with respect to all indices except the first one.
Another general property of susceptibilities follows fromthe fact that both

the polarization and the field are real values, which requires that the amplitudes
should turn into their complex conjugates as the frequencies change their signs.
Changing all frequency signs in (6.4) and doing complex conjugation, we obtain

P0 = χ
∗(−ω1, . . . ,−ωm)E1 . . .Em.

Comparing this with (6.4), we find (see (4.5))

χ∗(−ω1, . . . ,−ωm) = χ(ω1, . . . , ωm). (6.16)

6.1.4 ◦Transparent matter

Note that spatio-frequency permutative relations (6.14),(6.15) do not concern the
first index. Usingχ(2) as an example, let us show that its permutation is possible
in the non-resonant case where all frequencies are away fromthe resonances of
the matter. For the sake of symmetry, we introduce the third argument into the
notation of the susceptibility,

χ(ω1, ω2) ≡ χ(−ω0;ω1, ω2) ≡ χ0̄12 = χ01̄2̄∗, (6.17)

where the minus sign by the combination frequencyω0 = ω1 + ω2 provides that
the sum of all three arguments of the susceptibility is zero.In the last equality, we
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took into account relation (6.16). Note that sometimes, other notation can be used
as well,

χ(−ω0;ω1, ω2) ≡ χ(ω0 = ω1 + ω2).

Let us find the power absorbed in a unit volume of the matter dueto the
quadratic nonlinearity in the case of a three-frequency field. According to (4.13),

P(2) = E · Ṗ
(2)
= (1/2)

2
∑

n=0

ωnImE∗n · P(2)
n ≡ P0 + P1 + P2. (6.18)

Hence, according to definition (6.3), the partial powers are

P0 = (1/2)ω0Imχ
0̄12
αβγE0αE1βE2γ,

P1 = (1/2)ω1Imχ1̄02̄
βαγE

∗
1βE0αE∗2γ, (6.19)

P2 = (1/2)ω2Imχ2̄1̄0
γβαE∗2γE

∗
1βE0α.

Note that the signs and the values of the powersPn depend on the field phases.
With the help of (6.16), we find from (6.19) that

P(2) = (1/2)Im[ω1(χ0̄12
αβγ − χ10̄2

βαγ) + ω2(χ0̄12
αβγ − χ210̄

γβα)]E∗0αE1βE2γ. (6.20)

If all three frequencies are far from resonances, then the absorption is absent and
the matter only redistributes the energy between the three frequency components
of the field. According to (6.19), the share of thenth component scales asωn.

In a transparent matter,P = 0, and since the complex amplitudesEna are arbi-
trary, the expression in the square brackets of (6.20) should turn to zero. Provided
that the dispersion is weak, the frequencies can be also considered as arbitrary,
so that each of the coefficients byω1 andω2 is zero as well. Hence, in addition
to the automatic symmetry relations (6.14), (6.15), which do not concern the first
index, a medium that is transparent at all three frequenciesimposes the following
bounds:

χ0̄12
αβγ = χ

10̄2
βαγ) = χ

210̄
γβα. (6.21)

In the general case of anarbitrary-order non-resonant susceptibilityχ(m), there
is complete permutative symmetry with respect to all indices. A possibility to have
the permutation of the first indices leads to the Manley-Rowerelations (Sec. 6.3):
P0/ω0 = P1/ω1 = P2/ω2. Resonance nonlinear susceptibilities have symmetries
more limited than given by (6.21) (Sec. 6.3). For instance, the Raman susceptibil-
ity satisfies the relation

χ1̄2̄12
xxxx= χ

2̄1̄12∗
xxxx .
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In the dispersion-free approximation,χ(m) have no frequency dependence at
all, and the susceptibility tensors are therefore symmetric in all indices.

As an example of using Eq. (6.21), consider the caseω2 = −ω1. Then, with
an account for (6.13),

4χαβγ(0 = ω1 − ω1) = χγβα(ω1 = ω1 + 0). (6.22)

The presence of the factor 4 here can be verified by repeating the derivation of
(6.13) in the presence of a constant field. The susceptibility on the left-hand side
describesoptical rectification, while the one on the right-hand side is responsible
for thelinear electrooptic effect(thePockels effect), i.e., variation of the refractive
indexn(ω1) at the frequencyω1 scaling as the static fieldE0. Indeed, polarization
at the frequencyω1, with an account for linear and quadratic susceptibilities, is

P1α = [χαβ(ω1) + χαβγ(ω1 = ω1 + 0)E0γ]E1β ≡ (χαβ + ∆χαβ)E1β. (6.23)

The susceptibility increase∆χ will manifest itself in an anisotropic variation of
∆n(ω1). Thus, (6.22) sets a quantitative relation between two different phenom-
ena, the Pockels effect, which has been known for a long time, and the optical
rectification, which has only been discovered after the invent of lasers. Another
example of such a pair of related phenomena is given byFaraday’s direct and
inverse effects. (The inverse Faraday effect is the emerging of static magnetization
scaling as the intensity of a circularly polarized light wave.)

Thus, according to (6.14), (6.15), and (6.21),nonlinear susceptibility tensors
χ(m) of a transparent material are invariant to all(m+ 1)! permutations of their
space-frequency arguments.

The absence of dissipation in the transparency windows enables one to define
the energyv of the polarization of the matter (Sec. 4.1). If dispersion,i.e., delay
of the response, is completely neglected, then, by analogy with (4.28),

v(2)(t) = −(1/3)χ̄αβγEαEβEγ, (6.24)

whereE ≡ E(t). In the thermodynamic approach, this energy should be added
to the free energy density of the matterF and to other thermodynamic potentials
(Sec. 4.1). Then,P,χ(1), andχ(2) are determined, respectively, by the first, second,
and third derivatives ofF(E) at the pointE = 0, see (4.32), (4.33).

Let the field contain three harmonics,

E(t) = (1/2)
∑

n

En exp(−iωnt), (6.25)

where

n = ±0,±1,±2, ω0 = ω1 + ω2, ω1 , ω2, ωn , 0,

ω−n ≡ −ωn, E−n ≡ E∗n,
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then the time-averaged polarization energy is

v(2) ≡ v(2)(t) = −(3!/3 · 23)χ̄αβγE∗0αE1βE2γ + c.c. (6.26)

Dispersion should be taken into account by replacing ¯χ with χ(ω,ω′), which
is possible due to the symmetry (6.16), (6.21). As a result,

v(2)({En}) = −(1/4)(χ0̄12
αβγE

∗
0αE1βE2γ + χ

01̄2̄
αβγE0αE∗1βE

∗
2γ). (6.27)

This relation allows one to calculate the nonlinear polarization, as well asχ(2), in
terms ofv(2) (see (4.36)),

P(2)
nα = −4∂v(2)/∂E∗nα. (6.28)

6.1.5 The role of the material symmetry

In different reference frames, the components of the fieldE and polarizationP
vectors, as well as the tensorsχ(m) relating them, are of course different. Under
the rotation of a Cartesian frame of reference, the susceptibility transforms as

χ̃
(m)
α′β′... =

∑

α,β,...

aα′αaβ′β . . . χ
(m)
αβ...

, (6.29)

with the tilde denoting the components in the new frame of reference. Here,a is
the matrix describing the transformation from the old components to the new ones,
and we assume thatrotationalso includes the sign changes in some or all coordi-
nates, i.e.,inversionandmirror reflection. For instance, in the case of inversion,
aα′α = −δα′α, and

χ̃(m)αβ... = (−1)m+1χ
(m)
αβ...

, (6.30)

wherem+ 1 is the rank of the tensor. Thus,as a result of the reference frame in-
version, the components of odd-rank tensors (in particular, vectors and quadratic
susceptibility tensors) change their signs,Ẽα = −Eα, χ̃

(2)
αβγ
= −χ(2)

αβγ
, . . . .

For tensors describing the physical properties of a material, there is a special
frame of reference where the tensor has its simplest form, with the maximal num-
ber of zero or equal components. In crystals, this ‘natural’frame of reference
coincides with the crystallographic one. For instance, real tensors of rank two are
diagonal in the natural frame of reference,χ

(1)
αβ
= χαδαβ.

Any unbounded medium, either amorphous or crystalline, hasa certain sym-
metry of particles’ positions averaged over their thermal motion. Formally, this
symmetry of the medium is determined by a set (group) of a certain number of
symmetry elements. In particular, the elements of a pointc group of symmetry are
cThe term ‘point’ is due to the fact that rotations leave one point (the origin) fixed, unlike translational
transformations of the coordinates.
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all rotationsa of the reference frame, including mirror reflections and inversion,
which leave the structure of the medium unchanged. For instance, many crys-
tals, as well as optically non-active liquids and gases, areinvariant with respect to
inversion. Such media are calledcentrally symmetric.

Similarly, any macroscopic property of a medium, which is characterized by a
certain tensor, has its own group of symmetry elements. The symmetry elements
of a tensor are all rotationsa(i) that act according to rule (6.29) and do not change
the components of the tensor. For instance, according to (6.30), all even-rank
tensors are invariant with respect to inversion.

It seems obvious that the symmetry of a macroscopic propertyof a medium
cannot be lower than the symmetry of its structure (the von Neumann principle,
Ref. [Nye (1957)]). In other words,the symmetry group of a property should in-
clude all symmetry groups of the structure, i.e., the latter is asubgroupof the sym-
metry group of the property. Hence, ifa is an element of a point symmetry group
of a medium, then the tilde in (6.29) can be omitted. Then, (6.29) becomes a rela-
tion between different components of theχ(m) tensor. By substituting into (6.30)
all symmetry elementsa(i) of the medium one by one, we obtain a homogeneous
system of equations forχ(m)

αβγ
. In isotropic media and in crystals, such equations

greatly reduce the number of susceptibility nonzero components, as well as make
many components equal, sometimes up to the sign.

The most bright example follows from (6.30) in the case of centrally sym-
metric media. According to the von Neumann principle, all tensors describing
the physical properties of such media should be also centrally symmetric, i.e., the
tilde in (6.30) can be omitted. Hence, for evenm, it should beχ(m)

αβ...
= −χ(m)

αβ...
,

which leads toχ(m) = 0. Thus,in centrally symmetric media, all even-order sus-
ceptibilities are equal to zero.

Note that this conclusion is not valid in the case of susceptibilities describing
magnetic effects. This is because the magnetic field and the magnetization are
pseudovectors (axial vectors, as they do not change their signs under the inversion
of the coordinates). As a result, the corresponding susceptibilities are pseudo-
tensors and do not transform according to (6.30) under inversion. In particular,
the Faraday effect, described by the relationP1 = η(ω1 = ω1 + 0)E1H0, is also
possible in centrally symmetric media.

6.2 Models of optical anharmonicity

Depending on the features of the matter, its state, the frequencies of the incident
fields, and other experimental conditions, various mechanisms can contribute in
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the observable effects. Below we will consider several particular classical models
of optical anharmonicity and then present the general quantum scheme of calcu-
lating nonlinear susceptibilities.

6.2.1 Anharmonicity of a free electron

Let an electron (or any charged particle) be in the field of a plane monochromatic
waveE polarized linearly along thex axis and propagating along thezaxis. With
an account for the magnetic part of the Lorentz force, non-relativistic equations of
motion for the electron have the form (e< 0)

Ẍ + 2γẊ =
e
m

(

Ex −
1
c

ŻHy

)

=
e
m

(

1− 1
c

Ż
)

E,

Z̈ + 2γŻ =
e

mc
ẊE, (6.31)

whereγ is a phenomenological damping constant providing that after the periodic
field is switched off, the motion proceeds with a stationary amplitude, and

E ≡ Ex(Z, t) = ReE1 exp[ikZ(t) − iωt] = Hy(Z, t) (6.32)

is the field at the particle location. Damping can be caused bycollisions, as well as
by the reaction of the radiation, i.e., radiation losses (radiation friction). Suppose
that the transverse displacementZ of the electron is small, then in (6.32) one can
assumeZ = 0 (dipole approximation, i.e., zero-order approximation in kZ).

Let us search the stationary solution to (6.31) in the form ofa Fourier expan-
sion using the method of successive approximations in the field amplitude,

R = R(1) + R(2) + · · · = Re(R1e−iωt + R2e−2ωt + . . . ), (6.33)

whereR ≡ {X,Y,Z}. In the first approximation, one can neglect the effect of the
magnetic field, so that the response of the electron is linear,

X(1)
1 = −

e/m

ω2 + 2iωγ
E1. (6.34)

Hence, the linear polarisability tensor of an electron, which defines the relation
between the amplitudes of the dipole momentd1 = eR1 and the fieldE1, is

ααβ(ω) = − e2

mω(ω + 2iγ)
δαβ. (6.35)

In our model, there is no neutralizing positive charge, and the dipole moment is
defined with respect to the origin,R = 0. After multiplyingα by the densityN
of electrons, we find the linear susceptibilityχ(1) of cold (free of Doppler effect)
plasma, see (4.52).
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Thus, atω� γ, the linear polarisability of an electron is

α = − e2

mω2
= −reo

2, (6.36)

wherere ≡ e2/mc2 ≈ 3 · 10−13 cm is the classical radius of the electron. Note that
re is related to other typical length parameters through thefine structure constant
e2/~c2 ≈ 1/137,

o0/2 = 137a0 = 1372
oc = 1373re, (6.37)

whereλ0 ≡ 2πo ≡ 1/R ≈ 10−5 cm is the wavelength corresponding to the ion-
ization potential of the hydrogen atom 13.6 eV, R ≡ me4/4π~3c is the Rydberg
constant,a0 ≡ ~2/me2 ≈ 5 · 10−9 is Bohr’s radius andoc ≡ ~/mc≈ 4 · 10−11 cm is
the Compton wavelength. Letλ = λ0, then

−α = 4a3
0 ≈ 6 · 10−25cm3, (6.38)

i.e.,polarisability of a free electron in the UV range is, on the order of magnitude,
equal to the hydrogen atom volume, i.e., to the polarisability of a bound electron
in the absence of a resonance.

In order to find the second approximation, one should replaceR by R(2) in
the left-hand sides of (6.31) and byR(1) in the right-hand sides. Then the Lorentz
force will have components with both zero and double frequency,

F(2)
z = (e/c)Ẋ(1)E = (1/2)kImα(|E1|2 + E2

1e−2iωt). (6.39)

The double-frequency force causes longitudinal oscillations of the electrons with
the frequency 2ω. Their amplitude, according to (6.31) and (6.39), is

Z(2)
2 =

e2E2
1

8im2cω(ω + iγ)(ω + 2iγ)
≡ 1

e
βzxxE

2
1. (6.40)

In the last equation, we have introduced the quadratic polarisability tensorβ of a
free particle, which provides the relation between the amplitudes of the field and
the dipole momenteZ(2)

2 at the double frequency. Thus, the quadratic polarisability
of a free electron atω � γ is

|β| ≈ e3/m2cω3 = (eo/mc2)α ≡ α/E f ree
NL . (6.41)

Here,ENL is a typical parameter equal to the field amplitude at which the linear
and quadratic responses are equal,Z(2) = X(1). At λ = λ0,

E f ree
NL = e/reo0 ≈ 109G, (6.42)
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Fig. 6.2 Due to a plane monochromatic wave, an electron movesalong a Lissajous pattern.

which corresponds to the intensity 1020 W/cm2.d Below, we will show that the
anharmonicity of a bound electron is two orders of magnitudeas large as that of a
free electron even in the absence of a resonance,

Ebound
NL /E f ree

NL ≈ ω0/137ω,

where

Ebound
NL ≈ e/2a2

0 ≈ 107G. (6.43)

Multiplying β by the density of the electrons, we get the quadratic susceptibility
of the plasma,

|χ(2)| = e3N/m2cω3 = |χ(1)|/E f ree
NL . (6.44)

Thus, one of the fundamental sources of the matter anharmonicity is the
Lorentz force. Note that the denominator of (6.44) contains the speed of light,
which is typical for magnetic effects.

According to (6.41), the ratioZ(2)/X(1) has an order ofE1/ENL, while kZ(2) ∼
(E1/ENL)2. This justifies for using the dipole approximation in the calculation of
β at E1 � ENL.

If the static force of light pressure is not taken into account, then, accord-
ing to (6.34) and (6.40), an electron in a magnetic field movesin the xz plane
along a figure of eight trajectory (Fig. 6.2). Stimulated oscillations of the elec-
tron along the field,X(1)(t), are accompanied by dipole emission in all directions,
except the exactx one. This is what is calledThomson scatteringor, taking into
account recoil,Compton scattering. At the same time, longitudinal oscillations of

dIn the Gaussian system of units,E andH have the same dimensionality; therefore,E can be measured
in Gausses (1G= 300 V/cm).
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the electron,Z(2)(t), lead to dipole emission at the frequency of the incident field
second harmonic, i.e., the effect of frequency doubling. The second-harmonic
emission is maximal in the transverse plane,xy, and absent along the primary
field propagation direction. This structure of the free-electron quadratic polaris-
ability tensor prevents the second-harmonic amplitudes ina macroscopic sample,
such as plasma or a semiconductor, from adding up coherently.

Thus, electrons in a plasma, metal, or semiconductor provide, in addition to
Thomson scattering, also non-coherent scattering with thedouble frequency and
the intensity scaling asβ2N. Bound electrons in atoms or molecules also have
quadratic polarizability, which leads to a non-coherent scattering at the double fre-
quency, termedhyper-Rayleigh scattering. From the quantum-mechanical view-
point, it is interpreted as the absorption of two incident photons and the emission
of a double-energy photon (Fig. 6.1(a)). If the phase velocities of the incident
wave and its second harmonic are equal,n(ω) = n(2ω) (the so-called phase match-
ing condition), then, provided that the structure of theχ(2) tensor is appropriate,
weak nearly isotropic hyper-Rayleigh scattering is accompanied by a much more
intense longitudinal emission, scaling asβ2N2 = χ(2)2 (Sec. 6.5).

6.2.2 ◦Light pressure

The constant component of the Lorentz force (6.39) determines the static light
pressure forceF0 acting on the electron due to the traveling wave. According to
(6.39),F0 scales as the imaginary part of the electron linear polarisability, α′′, i.e.,
the power of the scattered light,P = ωα′′|E1|2/2 (see (4.15)), or the interaction
cross-section,

σ ≡ P/I = 4πkα′′, (6.45)

whereI = c|E1|2/8π is the intensity of the plane wave. Therefore, the force of
light pressure can be represented in the form

F0 = kα′′|E1|2/2 = P/c = σI/c. (6.46)

This force accelerates the electron; however, collisions in plasma will lead
to a constant speed of electron drift,Ż0 = F0/mγ̃, whereγ̃ = 1/τ andτ is the
time between collisions. (Recall thatγ is the oscillation damping rate, which can
exceed ˜γ). The constant current emerging along the beam, scaling as|E1|2, can be
interpreted in terms of optical rectification. (In dielectrics, the term ‘rectification’,
or ‘dc-effect’, means the appearance of a static fieldE0 ∼ |E1|2.)

Letω � γ, then, according to (6.35),α′′ = 2γe2/mω3. Let us estimateF0 in
the case where the damping of electron oscillations is only due to radiation losses
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(radiation friction). According to (6.31), the friction force, in the first order, is
−2γmẊ(1). Multiplying it by the velocityẊ(1) and averaging over a single period,
we find the power of losses,P = γmω2|X(1)

1 |2. Setting equality between this
expression and the power of dipole emission (5.19), we obtain

2γ/ω = α′′/α′ = 2re/3o. (6.47)

The same result follows from (5.24) with a unity oscillator strength (4.62). Now,
(6.46) takes the form

F0 = r2
e|E1|2/3. (6.48)

Comparing (6.46) and (6.48), we find the Thomson cross-section of scattering by
a free electron,

σT = 8πr2
e/3. (6.49)

From the photon viewpoint, light pressure is due to the fact that an electron ac-
quires the momenta of absorbed photons, which are then symmetrically re-emitted
in all directions via Thomson’s (or Compton’s) scattering. Let us stress that we
have only considered the average value of the force, which has quantum fluctua-
tions [Minogin (1986)].

We have found the force of light pressure acting on a free electron in the case
of a traveling wave. Similar analysis can be carried out for amore complicated
spatial configuration of light. For instance, an electron will be displaced in the
field of a standing wave, which is theKapitsa-Dirac effect. It is important that
in a non-homogeneous field, the Lorentz force has a nonzero value averaged over
the period even atα′′ = 0. In this case,F0 is determined byα′, which is much
greater thanα′′, so that the latter can be assumed to be zero. This force is caused
by the exchange between different plane waves and is called thestimulatedone
(in contrast to thespontaneousforce (6.46)).

Displacement of an electron∆R(t) due to a monochromatic field is
αE(R0, t)/e, whereα = −me2/ω2 is the polarisability andR0 is the non-perturbed
coordinate of the electron. Hence, we find the averaged Lorentz force,

F0 = αĖ × H/c = kImαEω × H∗ω/2, (6.50)

where the last equality is also valid for the case of a complexpolarisability. Note
that in a plane traveling wave,̇EH ∼ sinωt cosωt → 0, and that in the general
case the forceF0 does not scale as the averaged Poynting vector,S0 = cReEω ×
H∗ω/8π.
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Consider first the case of two plane waves,

Eω =

2
∑

n=1

En exp(ikn · R0 + iϕn),

Hn = k̂n × En, kn = k̂nω/c.

At α′′ = 0, (6.50) contains only ‘cross’ components,

F0 = (1/2)αkIm (E1 × H∗2 − E∗2 × H1)eiψ

= (1/2)αIm[−∆k(E1 · E∗2) + E1(E∗2 · k1) − E∗2(E1 · k2)]eiψ, (6.51)

whereψ ≡ ∆k × R0 + ϕ, ∆k ≡ k1 − k2, ϕ ≡ ϕ1 − ϕ2.
It is easy to see that the part ofF0 scaling as∆k can be represented in the

‘gradient’ form with the effective potential−αE2/2 (from (4.28) it is clear why
the factor 1/2 appears),

FM = α∇|Eω|2/4. (6.52)

Note that this part ofF0, called theMiller force, disappears, according to (6.51),
in the case where the waves are orthogonally polarized. For counter-propagating
waves (k2 = −k1) with the same linear polarization,F0 = FM:

F0 = −αk1E1E2 sin(2k1 · R0 + ϕ). (6.53)

Due to this force, charged particles tend to bunch in the nodes of a standing wave.
In the general case, a field consists of a continuum of plane waves, and the light

pressure force can be found by integrating (6.51) ink1 andk2. Note that in this
case, the gradient part (6.52) maintains its form. It shouldbe stressed that in the
presence of the electron recoil, the interacting waves havedifferent frequencies.
The corresponding phenomenon is called thestimulated Compton effect.

Consider further the pressure of light acting on bound electrons in an atom or
a molecule, i.e., on neutral polarisable particles. As the starting point we take the
effective potentialV = −d · E(r), whered is the induced dipole moment andr is
the coordinate of the particle center of mass. Hence (see(4.39)),

F = ∇d(t) · E(r, t), (6.54)

or Fα = dβ∂Eβ/∂xα. Assuming

Ex = (1/2)E1e
i(kz−ωt) + c.c.≡ E(+) + E(−),

dx = α(ω)E(+) + c.c.

and selecting the constant component, we find (6.46) once again.
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Consider first resonance pressure. Let, as before, the damping be only due to
the emission by the particle, i.e., the resonance fluorescence (Sec. 5.2), then the
width of the resonance is minimal (the natural width), 2γrad = A. Then, according
to (2.55),σ = 2πo2, and it follows from (6.45), (6.46) thatα′′ = o3/2 and

F0 = o
2|E1|2/4. (6.55)

Thus,the resonance light pressure on a bound electron iso2/r2
e = 1376 times

as great as on a free one, provided that the damping is only caused by radiation.
This huge difference is due to the high ratio of the resonance and Thomson’scross
sections.

Estimate (6.55) relates to the case where only the lower level is populated. In
the general case,

α′′ = (1/2)o3∆ = o3∆(0)/2(1+ 2W0T1), (6.56)

where∆ and∆(0) are relative population differences with an account for saturation
and without it, respectively (Sec. 4.3),W0 is the transition probability andT1 is
the time of longitudinal relaxation. In the case of radiation relaxation,T1 = 1/A.
According to (6.56),in the presence of population inversion the light pressure
force is directed oppositely to the light beam, which in the photon language can
be explained in terms of the recoil of photons emitted via stimulated transitions
forward.

At strong saturation, the powerP absorbed by the atom, according to (4.102),
is ~ω∆(0)/2T1, so that (6.46) leads to

F0 = ~k∆
(0)/2T1, (6.57)

the force scales as the momentum of the incident photon timesthe number of
photons scattered per unit time. Let λ = 1µ andA = 106 s−1, thenF0 = 3 · 10−17

dyn, and atm= 3 · 10−23 g the acceleration is as high as 106 cm/s2. The intensity
of saturating light is in this case much greater than 10−4 W/cm2.

Resonance pressure of laser light provides quite unusual applications. With its
help, one can accelerate, displace, and focus beams of neutral molecules, separate
isotopes, ‘trap’ molecules within a small space domain, andreduce their thermal
velocities [Minogin (1986)].

6.2.3 Striction anharmonicity

Now, let all frequencies of the field be in the transparency range of the matter.
Then the dispersion can be neglected and the polarisabilityof a particle can be
considered as a real constant. In this case, the force takes the form

F = α∇E2/2 = α∇E(+) · E(−). (6.58)
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Here, the bar denotes averaging over high-frequency components. Indeed, we are
only interested in the static part of the force acting on a molecule as a whole, or at
least in the part that is varying slowly compared with the frequencies of the field
and the molecule. For notationE(±), see Sec. 7.2.

The gradient force (6.58) corresponds to the effective potential of the molecule
V = −αE2/2.

The additional energy density of the matter and the force density in an optical
field will be N times as high (see (4.35)),

v = −χE2/2 = −(n2 − 1)E2/8π, (6.59)

f = χ∇E2/2, (6.60)

whereχ ≡ χ(1) ≈ αN, N is the density of molecules, which is assumed to be
uniform, andn =

√
ε is the refractive index.

Here, we have neglected the interaction between molecules,which is only
possible for a sufficiently smallN. One can show that in the general case (see
Ref. [Landau (1982)]), one should make a substitution into (6.60),

χ→ ρ

(

∂χ

∂ρ

)

T

=
ρ

4π

(

∂ε

∂ρ

)

T

, (6.61)

whereρ is the density of the matter. For instance, from the Clausius-Mossotti
relation, which can be easily obtained from (4.48),

ε − 1
ε + 2

=
4πα
3m

ρ, (6.62)

it follows that

1
ρ

(

∂ρ

∂ε

)

T

=

(

∂ ln ρ
∂ε

)

T

=
3

(ε − 1)(ε + 2)
,

so that in the case of a dense medium, (6.60) should be multiplied by the Lorentz
correction (ε + 2)/3.

In a traveling plane wave,∇E2 has no constant component, henceF = 0.
(Note that we are considering a range whereα′′ = 0 and thespontaneousforce
(6.46) related to the dissipation is absent.) However, in a standing plane wave,
E = 2E1 cos(kz) cos(ωt), and from (6.58), it follows that (compare with (6.53))

Fz = −αkE2
1 sin(2kz). (6.63)

Thus,at α > 0 particles gather in the anti-nodes of a wave. The force (6.63),
scaling as the polarisability, is called thestimulatedforce.

In limited beams of light, there is a static transverse gradient of the field
square, and atα > 0 the particles tend to move towards the beam axis. Under
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stationary conditions, the force density (6.60) should be compensated for due to
the increase in the pressure,∆p, and the density of particles,∆N, in the central
part of the beam,

∆p = −v = χE2/2, (6.64)

∆N/N = ∆ρ/ρ = βT∆p, (6.65)

whereβT is the isothermic compressability of the medium. These equations de-
scribeelectrostriction in a light field.

The increased density of particles in the light beam will cause a change in the
susceptibility of matter,

∆χ = α∆N = βTχ
2|E1|2/4. (6.66)

At the same time, by definition,

P(3)
1 = χ

(3)(ω = ω − ω + ω)|E1|2E1 = ∆χE1,

so that the electrostriction contribution to the cubic susceptibility is

χ(3) = βTχ
(1)2/4. (6.67)

Hence, we find the typical nonlinear parameter

E2
NL ≡ χ(1)/χ(3) = 4/βTχ

(1). (6.68)

In liquids,n ≈ 1.5 (χ ≈ 0.1), andβT ≈ 10−10 dyn. (Recall thatβ ≈ 1/ρv2, wherev
is the speed of sound.) Hence,χ(3) ≈ 10−13 cm2/erg,ENL ≈ 106 G.

The gradient force (6.58) and the corresponding pressure 6.64 are very im-
portant for applications: they enable one to generate strong ultra-sound waves
using bi-harmonic laser fields. The same force causesstimulated Mandelshtam-
Brillouin scattering(see below). Striction nonlinearity (6.67) is one of the reasons
for theself-focusing of light. Another important mechanism,the optical Kerr ef-
fect, i.e., orientation of anisotropic molecules of a liquid in alinearly polarized
light beam, will be considered further.e

6.2.4 Anharmonic oscillator

In classical Lorentz’s dispersion theory (Sec. 4.2), electrons in atoms are assumed
to be harmonic oscillators. It is natural to consider the optical nonlinearity of mat-
ter in terms of the anharmonic oscillator model. Let a particle be in the potential

V(x) = mω2
0x2/2−mηx3/3− eEx, (6.69)

eEditors’ note: The same mechanism is used in the atom optics,namely, in making atomic beams
scattered by an optical lattice.
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wheree is the particle charge andη is a small parameter defining how much the
shape of the potential well differs from a parabolic one. (For simplicity, we con-
sider a one-dimensional model.) From (6.69), we find the equation of motion

D̂x ≡ ẍ+ 2γẋ+ ω2
0x = eE/m+ ηx2. (6.70)

Let the external fieldE be a bi-harmonic one. We search the stationary solution
as a perturbative series,

x(t) =
∑

m

x(m)(t), x(m) ∼ ηm−1Em, (6.71)

wherem = 1, 2, 4, 8, . . . . Substituting (6.71) into (6.70) and setting equalities
between terms of the same order of magnitude, we find the solution in the form of
iterations,

D̂x(1) = eE/m, D̂x(2m) = ηx(m)2. (6.72)

In the first order,

x(1) = Re(x1e−iω1t + x2e−iω2t),

xn = α(ωn)En/e, α(ω) = e2/mD(ω),
(6.73)

where

D(ω) ≡ ω2
0 − ω2 − 2iγω = D∗(−ω).

In the second order, according to (6.72), there are components of x(t) with
frequencies 0, 2ω1, 2ω2, ω1 ± ω2. Consider the responsex3 at the frequencyω3 ≡
ω1 + ω2. It follows from (6.72) atm= 1 that

x3 = ηx1x2/D(ω3) ≡ β(ω3 = ω2 + ω1)E2E1/e,

where

β(ω3 = ω2 + ω1) = ηe3/m2D(ω3)D(ω2)D(ω1). (6.74)

At ω1 = ±ω2, β contains an additional factor of 1/2 (see (6.13)). According to
(6.14), (6.15), (6.16), polarisabilityβ is invariant to the permutation of the last two
arguments, as well as to a simultaneous change in the signs ofall three frequencies
and the imaginary unity. However, according to (6.74), the first argument can be
interchanged with the second or the third ones only in the absence of a resonance
at one of the frequencies, with|ωn − ω0| � γ (compare with (6.21)). From the
polarisabilityβ of a single oscillator one can pass to the susceptibilityχ(2) of the
medium by multiplying the polarisability by the densityN of the particles.

Thus, the model of an anharmonic oscillator predicts a dramatic increase
in the quadratic polarisabilityβ (by a factor of Q≡ ω0/2γ) in the vicinity of
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resonances, where one of its three arguments is close to the eigenfrequencyω0.
In this case,β becomes a complex value. From the comparison of (6.72) and
(6.73), it follows thatβ scales as the product of the linear susceptibilities at the
corresponding frequencies,

β(ω3 = ω2 + ω1) ∼ ηα(ω3)α(ω2)α(ω1). (6.75)

Note that the quadratic susceptibilities of many dielectric crystals in the trans-
parency range (between the lattice and electron eigenfrequencies) satisfy the rela-
tion

χ(2) ∼ n(ω3)n(ω2)n(ω1), (6.76)

with the same scaling factor for different crystals (Miller’s empirical rule).
Our model does not take into account the difference between theactual (lo-

cal) field Eloc and themacroscopicfield E, which is averaged over the atomic
inhomogeneities. According to Lorentz, in a cubic crystalEloc/E = (ε + 2)/3.
(This correction is only valid for dielectrics, while in metals and semiconductors,
Eloc = E.) PolarizationP of the medium, caused by a given external polarization
Pext, is also (ε+2)/3 times as large asPext. As a result, the quadratic susceptibility
χ(2), defined with respect to macroscopic parameters, is

χ(2) =
ε(ω3) + 2

3
ε(ω2) + 2

3
ε(ω1) + 2

3
χ

(2)
loc, (6.77)

whereχ(2)
loc is defined for local parameters. In non-cubic crystals, thiscorrection is

a tensor. Equations (6.75)–(6.77) indicate thatthere is a close connection between
the linear and nonlinear properties of a medium.

Let a displacementx = a0 correspond to the case where the linear part of the
force in (6.70),eE0 = mω2

0a0, is equal to the nonlinear one,ηma2
0. (Here,E0 is a

typical field keeping the charge near the equilibrium position.) Then,η = ω2
0/a0,

and forγ, ωn � ω0 we have an estimate

ENL ≡ α/β ∼ mω4
0/ηe∼ mω2

0a0/e= E0. (6.78)

Thus, the ratio of the quadratic polarization and the linearone is on the order of
E1/E0 (compare with (6.42)). For a hydrogen atom,a0 should be understood as
Bohr’s radius,~2/me2, andω0, as the ionization edge frequency,e2/2~a0. Then,
E0 = e/2a2

0 ≈ 107 G.
The cubic potential (6.69), according to (6.72), creates only even harmonics,

2ω, 4ω, 8ω, . . . . For the formation of odd harmonics, it is necessary that thepoten-
tial has a term∼ x4. Note that even atE = 0, the potential (6.69) is not centrally
symmetric: it changes its sign under the coordinate inversion,x→ −x. It is useful
to consider a three-dimensional model using the potential [Akhmanov (1964)]

V(r) = mω2
0αxαxα/2− ηαβγmxαxβxγ. (6.79)
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6.2.5 Raman anharmonicity

Spontaneous Raman effect, or spontaneous Raman scattering(SpRS)f was dis-
covered by Raman and, independently, by Mandelshtam and Landsberg, in 1928,
much ahead of the advent of lasers. The corresponding stimulated effect (StRS)
was first observed only in 1962.

In SpRS, monochromatic light (the pump) incident on the matter polarizes
molecules with an optical frequencyω1. As a result, the molecules acquire the
dipole moment

d(t) = α1E1 cosω1t, (6.80)

where, for simplicity, we assume the linear polarisabilityof a moleculeα1 ≡
α(ω1) to be a real scalar. Emission of molecular dipoles (6.80) leads to the
Rayleigh scattering.

Let us now take into account the intra-molecular oscillations of the nuclei with
the eigenfrequencyΩ0 � ω1, which are excited due to collisions. Oscillations
of the nuclei near the equilibrium positions,Q(t), slowly modulate the electron
‘cloud’ surrounding them. In this case, all electronic parameters of the molecule
are modulated as well, including its optical polarisability, α(t) = (∂α/∂Q)Q(t).
This picture is based on the so-calledadiabatic approximation, which implies that
the electron eigenfrequenciesω0 much exceedΩ0 (usually,ω0/2πc ∼ 105 cm−1,
Ω0/2πc . 103 cm−1). With the oscillations of the nuclei taken into account, (6.80)
takes the form of an amplitude-modulated oscillation,

d(t) =

(

α1 +
∂α

∂Q
Q0 cosΩ0t

)

E1 cosω1t, (6.81)

whereQ0 is the amplitude of the nuclei oscillations.
As a result, the radiation scattered by the dipoles contains, in addition to the

‘carrier’ (Rayleigh’s) frequencyω1, two sidebands: theStokesone,ω1 −Ω0, and
the anti-Stokesone,ω1 + Ω0. In the case of a multi-atom molecule, the Raman
spectrum contains its normal oscillations (some oscillations do not influenceα
due to symmetry). With an account for the anisotropy ofα and the rotations of
molecules, the induced dipole momentd(t) will be also modulated by the typical
rotational frequencies.

This modulation approach is based on a single nonlinear parameter,∂α/∂Q,
introduced by Placzek, and provides an explicit description of the sponta-
neous effect. (Here, the term ‘spontaneous’ relates to the field components with

f Editors’ note: in the original text, the Russian term is used, which is ‘spontaneous combination
scattering’.
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the frequenciesω1 ± Ω0, which are absent in the incident field and appear
‘spontaneously’.)

In order to describestimulatednonlinear effects caused by the parametric cou-
pling between nuclei and electrons, it is useful to considerthe model of two cou-
pled oscillators, with the potential

V(x,Q) = mω2
0x2/2+ MΩ2

0Q2/2− ηx2Q− eEx. (6.82)

Here,x andω0 are the coordinate and the eigenfrequency of the electron,Q and
Ω0 are the corresponding values for the nuclei,η is the coupling parameter scaling
as∂α/∂Q. It follows from (6.82) that

ẍ+ 2γẋ+ ω2
0x = eE/m+ 2ηQx/m, (6.83)

Q̈+ 2ΓQ̇+ Ω2
0Q = ηx2/M. (6.84)

This model was proposed for the description of StRS by Platonenko and Khokhlov
in 1964. According to (6.84), the force acting on the the nuclei scales as the square
of the electron displacement; therefore,the nuclei oscillations will be enhanced in
the case where the difference between the two field frequencies is close toΩ0. Let
the incident field be a biharmonic one, andω1 − ω2 ≡ Ω ∼ Ω0.

In the linear approximation in the field,Q(1) = 0, and

x(1)
n = eEn/mDn, Dn ≡ ω2

0 − ω2
n − 2iγωn, n = 1, 2. (6.85)

In the expression for the force,ηx2, we only leave the resonance terms with
the frequencyΩ scaling asx(1)

1 x(1)∗
2 , then the amplitude of stimulated molecular

oscillations with the frequencyΩ is

QΩ =
ηx(1)

1 x(1)∗
2

2M(Ω2
0 − Ω2 − 2iΓΩ)

=
(η/M)(e/m)2

2D0D1D∗2
E1E∗2. (6.86)

Thus,an optical biharmonic field with a proper frequency difference ‘excites’
the intra-molecular nuclei oscillations through the electron shell. These oscil-
lations, coherent with the incident light, add to the equilibrium thermal ones and
cause additional incoherent scattering at the anti-Stokesfrequency,ω3 = ω1+Ω =

2ω1 − ω2, and at the second Stokes frequency,ω4 ≡ ω2 − Ω = 2ω2 − ω1. In ad-
dition, cubic polarization is induced at the initial field frequencies, leading to the
amplification of the fieldE2 with the lower frequency and attenuation of the field
E1 with the higher frequency. It is namely the effect ofRaman amplificationthat
causes stimulated Raman scattering.
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By substituting (6.85) and (6.86) into (6.83), (6.84), we find

x(3)
1 =

ηx(1)
2 QΩ

mD1
=
η2e3/2Mm4

D0D2
1D2D∗2

|E2|2E1,

x(3)
2 =

ηx(1)
1 Q∗

Ω

mD2
=
η2e3/2Mm4

D0D1D∗1D2
2

|E1|2E2, (6.87)

x(3)
3 =

ηx(1)
1 QΩ

mD3
=
η2e3/2Mm4

D0D2
1D∗2D3

E2
1E∗2.

After multiplying x(3)
n by eN, we find the cubic polarisability. As a rule, in

experiment the frequencies of the fieldωn (n = 1, 2, 3) are much less than the elec-
tron transition frequenciesω0; therefore,Dn ≈ ω−2

0 (non-resonanceRS). Within
this approximation, (6.87) leads to

χ(3)(ω1 = ω1 − ω2 + ω2) = χ(3)(ω2 = ω2 − ω1 + ω1)∗

= χ(3)(ω3 = 2ω1 − ω2)

= C/[Ω2
0 − (ω1 − ω2)2 − 2iΓ(ω1 − ω2)], (6.88)

whereC ≡ η2e4N/Mm4ω8
0

These nonlinear susceptibilities describe, respectively, Raman absorption
(since χ(3)(ω1)′′ > 0 at ω1 > ω2), Raman amplification(χ(3)(ω2)′′ < 0)
andcoherent anti-stokes Raman scattering(CARS) with the intensity scaling as
|χ(3)(ω3)|2I1I2. Besides, it follows from (6.88) that in the presence of a monochro-
matic wave with a fixed frequencyωL within the transparency range, another
monochromatic wave, with a variable frequencyω, will have resonance disper-
sion in two regions,ωL ± Ω0 (Fig. 6.3). The width 2Γ of these resonances is
determined by the decay rate of molecular oscillations, andthisRaman (induced)
dispersionis anomalous in the Stokes range.

Let us find the relation between the nonlinear parametersη and∂α/∂Q. We
substituteQ = Q0 cosΩ0t into Eq. (6.83). In the first order inη, it leads to the
relationx2 = ηeE1Q0/m2D1D2. Comparing it with (6.81), we get

∂α

∂Q
=

2e2

m2D1D2
≈ 2e2

m2ω4
0

η. (6.89)

By means of the two-oscillator model, one can also describe the spontaneous
Raman scattering. To this end, the right-hand side of (6.84)should be replaced by
thestochastic Langevin force f(t) causing thermal (and quantum) fluctuations of
Q(t). This force is delta-correlated, and one can find its spectral density by setting
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Fig. 6.3 Raman susceptibility. Due to the effect of the pump with the frequencyω, the susceptibility
of matter acquires additional resonances at frequenciesωL ±Ω0, whereΩ0 are the eigenfrequencies of
the molecules. It is important that the Stokes resonance hasnegative losses (bottom left) and anoma-
lous dispersion of the refractive index (top left).

equality between the fluctuation energyQ and the equilibrium energy of the os-
cillator. Another method of describing SpRS is based on the Raman analogue of
the FDT (Sec. 7.7), stating that the polarization fluctuations of matter at frequency
ω are determined by the imaginary part of the cubic susceptibility [Fain (1972);
Klyshko (1980)],

〈P∗(ω)P(ω′)〉 = (~/π)δ(ω− ω′)N(−Ω)χ(3)(ω = ω − ωL + ωL)′′|EL|2, (6.90)

where

N(Ω) ≡ [exp(~Ω/κT) − 1]−1 = −N(−Ω) − 1, Ω ≡ ωL − ω. (6.91)

Here, atΩ < 0 (the anti-Stokes range),N has the meaning of the equilibrium
number of phononsN0, while atΩ > 0 (the Stokes range),N = −(N0 + 1). In
the last expression, the unity describes the quantum fluctuations of the nucleus
coordinateQ, which cause the Stokes scattering even atT = 0, when the anti-
Stokes scattering is absent. The elementary process corresponding to the Stokes
scattering is a two-photon one. It includes the annihilation of a pump photon and
the creation of a Stokes photon and a phonon (Fig. 6.1(g)).

Certainly, the two-oscillator model, similarly to the anharmonic-oscillatorone,
is only qualitative. A quantitative calculation of the susceptibility, even the linear
one, is very complicated and requires the knowledge of the wave functions and
eigenfrequencies of the system (see below).
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Inelastic scattering can be also due to the excitation of other degrees of free-
dom of the medium, for instance, electronic ones. In this case, the radiation fre-
quency changes by a quantity equal to the frequency of some electron transition
in an atom or a molecule,ω1 − ω2 = ωmn ≡ (Em − En)/~. If the incident field
contains two frequencies such thatω1 + ω2 = ωmn > 0 and the molecule is at the
ground leveln, then two photons can be absorbed simultaneously. In the inverse
process, the excited molecule emits two photons, spontaneously or via stimulated
emission.

In macroscopic matter, light interacts not only with local internal oscillations
of the particles, but also with thecollective excitations, for instance, with acous-
tic, temperature, spin, plasma waves, and with the oscillations of the molecules’
orientations.

The equilibrium chaotic part of these waves modulate the refractive index (see
(6.66)), and the corresponding sidebandsω2 = ω1 ± Ω appear in the spectrum of
the scattered light. The scattering can be viewed as resulting from the diffraction
of the incident light by a traveling grating formed by waves of pressure, tempera-
ture, and so on. From the quantum viewpoint, a photon~ω1 of the incident light
(the pump) gets scattered with a simultaneous birth or annihilation of a matter
excitation quantum~Ω (a phonon, a magnon, a plasmon, an exciton, a polariton
etc.). For the scattering by propagating excitations, it istypical that the modulation
frequency depends on the observation direction, i.e., on the angle of scattering,
Ω = Ω(ϑ). This dependence follows from the diffraction Bragg’s condition or,
in other words, thephase-matchingcondition (the momentum conservation law),
k1− k2± q = 0, and the dispersion dependence for the scattering wave,q = q(Ω),
whereq is the wavevector of the matter excitation. The effect of phase matching
on the Raman anharmonicity can be formally taken into account by assuming the
cubic susceptibility to depend not only on the frequencies but also on the wave
vectors (spatial dispersion).

For describing stimulated scattering by acoustic waves (MBS,Mandelshtam-
Brillouin scattering) and other collective excitations, one should take into account
the non-equilibrium coherent part of these excitations caused by the biharmonic
pump. It is clear from (6.64) how sound can be excited by light: due to elec-
trostriction, there appears a source of alternating pressure in the matter, with the
difference frequencyΩ,

∆p(r, t) = (1/2)χ(1)















∑

n

(En/2) exp(−iωnt) + c.c.















2

= (1/8)χ(1)E1E∗2 exp(−iΩt) + . . . (6.92)
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This source creates density waves∆ρ, propagating with the speed of sound
v. If the pump waves are plane ones, then∆ρ ∼ exp[i(k1 − k2) · r], and the
stimulated sound wave will have the maximal intensity at|k1 − k2| = q = Ω/v.
This phase-matching condition ‘chooses’ from the continuous spectrum of acous-
tic excitations, spanning a range from zero to approximately 1011 Hz, one (or
two, considering the difference betweenv for transverse and longitudinal waves
in amorphous solids) discrete component, with the frequency

Ω = v|k1 − k2| ≈ 2vksin(ϑ/2). (6.93)

The width of this spectral component is determined by the sound absorption coef-
ficient.

6.2.6 Temperature anharmonicity

It follows from (6.93) that atϑ , 0, light scattering by acoustic waves, i.e., waves
of pressure,∆p, and density,∆ρ, is inelastic,Ω ∼ v , 0. (To be precise, the maxi-
mum of the scattering corresponds toΩ , 0.) According to (6.93), the scattering
can be centered aroundΩ = 0 only if it is due to non-propagating excitations, for
which v = 0 or which decay sufficiently fast. Such scattering can be caused by
temperature fluctuations,∆T, or entropy fluctuations,∆S ∼ ∆T, as well as by con-
centration fluctuations,∆C, in mixtures and solutions. The valuesx ≡ p,T,C, . . .
(or ρ,S, . . . ) are thermodynamic parameters describing the macroscopicstate of a
medium, and their oscillations, both thermal (‘spontaneous’) and stimulated (co-
herent) ones, break the optical homogeneity of the medium (∆n = (∂n/∂x)∆x)
and lead to the scattering of light, spontaneous or stimulated. All these types
of scattering occur with a frequency shift that is small compared with the case
of scattering by molecular oscillations and are called theRayleigh, or molecular,
scattering[Fabelinsky (1965)]. The last term emphasizes the difference from scat-
tering by macroscopic inhomogeneities, such as dust particles and other objects.

The integral intensity of spontaneous scattering by the parameterx scales as
the mean square∆x2, and it can be calculated thermodynamically. At the same
time, the spectral distribution od the intensity is determined by the kinetic equa-
tions describing the evolution of the fieldx(r, t). For instance, forx = T the
kinetics is given by the diffusion equation,

Ṫ − a∇2T = P/cpρ, (6.94)

wherea is the temperature conductance,P is the power of external heat sources
per unit volume,cp is the specific heat capacity at constant pressure. (Strictly
speaking, one should take into account not only∆T but also the simultaneous
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variation of pressure,∆p, due to heating; here, for simplicity, we ignore the rela-
tion between temperature and pressure waves.)

At P = 0, (6.94) describes spontaneous temperature scattering, and its solution
can be represented as a sum of plane waves exponentially decaying in time,

∆T(r, t) =
∑

q

Tqe
iq·r−γt, (6.95)

with γ ≡ aq2. Similarly to the case of scattering by acoustic waves, the scattering
of light with the wavevectork1 in the directionk2 is caused by the ‘temperature
grating’ with q = ±(k1 − k2). However, according to (6.95), this grating is not
moving, and diffraction by it results in anelastic(unshifted) line in the spectrum
of the scattered light, with the bandwidth

∆ω = 2γ = 8ak2 sin2(ϑ/2). (6.96)

In liquids, ∆ω ∼ 108 s−1 at ϑ = 90◦. The inverse linewidth of the temperature
(entropy) scattering,τT ≡ 1/γ = o2/a, has the meaning of the typical time of
temperature diffusion by a distance of one wavelengtho ≡ |k1 − k2|−1, i.e., the
relaxation time of the temperature grating.

The mechanism of the stimulated temperature scattering (StTR) and the corre-
sponding anharmonicity is evident in the presence of some absorption (StTR-2).
Indeed, in the case of a biharmonic field, the external force in (6.94) has a variable
component,

P(r, t) = ωχ′′E2(r, t) = ωχ′′ReE1 · E2ei(q·r−Ωt), (6.97)

which creates a temperature wave,

∆T = ReTΩei(q·r−Ωt). (6.98)

Its amplitude can be found by substituting (6.97) and (6.98)into (6.94),

TΩ =
ωχ′′/cpρ

γ − iΩ
E1 · E∗2. (6.99)

Here,ω ≈ ω1 ≈ ω2 � |Ω| andχ′′ ≡ χ′′(ω).
The traveling coherent wave of temperature (6.98) modulates the susceptibility

χ (mainly due to the density decrease caused by temperature expansion),g

∆χ =

(

∂χ

∂T

)

p

∆T ≈ −χ∆T
T
, (6.100)

gIn an ideal gas,N = p/κT, therefore,χ = αp/κT and, if the dependence ofα on T is neglected,
(∂χ/∂T)p = −χ/T.
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therefore, the wave of the susceptibility has the amplitude

χΩ =
ωχ′′/cpρ

γ − iΩ

(

∂χ

∂T

)

p

E1 · E∗2. (6.101)

As a result, cubic polarization emerges, with the frequenciesω1, ω2, ω3 ≡
2ω1 − ω2, ω4 ≡ 2ω2 − ω2,

P(3)(t) = ∆χ(t)E(t)

= ReχΩ(E2e−iω1t + E∗1eiω2t + E1e−iω3t + E∗2eiω4t)/2. (6.102)

Let E1, E2 be parallel to thex axis, then, from the definition of the cubic suscep-
tibility we find that

χ1̄21̄2
xxxx= χ

21̄2̄1
xxxx= χ

3̄11̄2
xxxx= χ

42̄2̄1
xxxx=

ωχ′′

2ρcp[aq2 + i(ω2 − ω1)]

(

∂χ

∂T

)

p

. (6.103)

Note that StRS-2 has an interesting feature: here,the anti-Stokes components
are amplified(compare with (6.88)), i.e., the energy of the field is transferred,
in the course of propagation, from the low-frequency components into the high-
frequency ones, since (∂χ

∂T )p < 0.
In order to estimate the temperature anharmonicity, assumethat

(

∂χ

∂T

)

p

= − χ
T
, cpρ =

5
2
κN, ωχ′′ ≡ n2

4πτE
, aq2 ≡ 1

τT
, (6.104)

whereτE = n/αc is the relaxation time of the field. Then, at|ω1 − ω2|τT � 1,

E2
NL ≡

χ(1)

χ(3)
≈ 40πUτE

3n2τT
, (6.105)

whereU = 3κT N/2 is the internal energy density. Thus, ifτT = τE, which
at τE = 10−8 s corresponds toα = 0.003 cm−1, then the nonlinear polarization
becomes equal to the linear one when the field energyn2E2

1/8π equals the thermal
energy of the matter. Note that if one passes from the temperature conductancea
to the heat conductanceλ = aρcp, thenE2

NL can be represented as 8πλq2TτE.

6.2.7 Electrocaloric anharmonicity

Temperature anharmonicity can take place even in a completely transparent ma-
terial, due to theoptical electrocaloriceffect. The corresponding stimulated scat-
tering is called StTS-1.

Consider the simplest model describing the effect of the electric field on the
temperature of a non-absorbing material. After the field (continuous or alternat-
ing) is switched on, the energy levels of the molecules get shifted due to the Stark
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effect, and their populations do not correspond any more to the temperature of
the thermostat. (The role of the thermostat is usually played by the translational
and rotational degrees of freedom of the molecules, or vibrations of the crystal
lattice.) During the relaxation timeT1, populations are re-distributed, which is
accompanied by the change of the thermostat energy.h As a result, the thermostat
temperature is changed. Note that an analogousmagnetocalorical effect is used
for obtaining ultra-low temperatures (adiabatic demagnetization). A more rigid
explanation follows from the definition of the temperature for a closed system
(microcanonical ensemble),

1/T ≡ ∂S/∂U ≡ κ∂(ln g)/∂U, (6.106)

whereS is the entropy,U the internal energy andg(U) the density of energy states.
The latter depends on the configuration of the levels and hence changes after the
field is turned on.

Let us estimate the contribution of the electrocaloric effect in the temperature
anharmonicity. According to (4.35), when a dielectric is polarized, its thermody-
namic potentials get an increasev = −χ|E1|2/4 per unit volume. Let us chooseT
andρ as independent parameters, then the entropy is determined in terms of the
temperature derivative of the Gibbs’ potentialΦ(T, p); therefore, the variation of
S due to the polarization is

∆S = −
(

∂∆Φ

∂T

)

p

=
1
4

(

∂χ

∂T

)

p

|E1|2. (6.107)

After multiplying∆S by T, we obtain the increase of the heat∆Q, and after mul-
tiplying it by −T/cpρ, we find the temperature increase,

∆T = − T
4cpρ

(

∂χ

∂T

)

p

|E1|2. (6.108)

Comparing this with (6.94), we see that the role of the absorbed power in a
transparent material is played by

Pequiv= −
d∆Q
dt
= −T

4

(

∂χ

∂T

)

p

d|E1|2
dt

. (6.109)

In the case of a biharmonic field, we obtain

Pequiv(r, t) = −
ΩT
2

(

∂χ

∂T

)

p

Im E1 · E∗2 ei(q·r−Ωt). (6.110)

hHere, the finite heat capacity of the external degrees of freedom is taken into account.
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Comparing (6.110) and (6.97), we find the ratio of the electrocaloric anharmonic-
ity and the anharmonicity (6.103) due to the dissipation,

χ
(3)
ec

χ
(3)
ab

∼ ΩT
2ωχ′′

(

∂χ

∂T

)

p

=
2πΩT
αcn

(

∂χ

∂T

)

p

. (6.111)

Hence, it follows that the absorption coefficient equivalent to the electrocaloric
effect is not high,

αequiv≡
2πΩT

cn

∣

∣

∣

∣

∣

∂χ

∂T p

∣

∣

∣

∣

∣

∼ 10−4 cm−1, (6.112)

where we assumedΩ = 108 s−1, T = 300 K, (∂χ/∂T)p = −10−4 K−1.
Finally, note that due to the relation between the density and tempera-

ture waves, electrostriction also contributes into the temperature anharmonicity
(see [Apanasevich (1977)]).

6.2.8 Orientation anharmonicity

As we have already mentioned, rotation of anisotropic molecules in a gas also
modulates the scattered light, which leads, due to the quantization of the rota-
tional motion, to the appearance of discrete sidebands nearthe Rayleigh (non-
shifted) and Raman lines in the spectrum of spontaneous scattering. However, if
the density of the particles is high, a molecule cannot make afull rotation during
the orientation relaxation timeτ; therefore, in liquids the rotational lines overlap
and the Rayleigh line acquires a broad ‘pedestal’ spanning tens of inverse centime-
ters, the so-calledRayleigh wing. Light scattering by orientation fluctuations of
molecules is also calledanisotropic (depolarized) scattering. In the framework of
the macroscopic description, one can assume that anisotropic scattering is caused
by the symmetry breaking of the medium (which is otherwise isotropic), i.e., the
scattering is due to the symmetry fluctuations. A schematic shape of the scattered
spectrum, with an account for the matter excitations considered above, is shown
in Fig. 6.4.

Interaction of light with the orientation motion of molecules is another source
of optical anharmonicity. This type of anharmonicity manifests itself in theKerr
effect, discovered as early as in the 19th century, in which∆n ∼ E2

0, theoptical
Kerr effect andself-focusing, with ∆n ∼ |E1|2, and instimulated Rayleigh-wing
scattering.

Let us estimate the contribution of the orientation anharmonicity in the cubic
susceptibility. Consider first a non-polar molecule. In a field E(t) it acquires
induced dipole momentd(t) ≈ α(ω) · E(t) (we neglect the absorption) and the
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Fig. 6.4 Main types of scattering, the corresponding nonlinearities and typical frequencies: 1, tem-
perature (entropy) scattering by temperature fluctuationsis related to the electrocaloric anharmonicity
(∆Ω ∼ 108 s−1); 2, Mandelshtam-Brillouin scattering (∆Ω ∼ 1010 s−1) by pressure fluctuations is
related to striction anharmonicity; 3, the Rayleigh wing iscaused by anisotropy fluctuations and is re-
lated to the orientation anharmonicity (∆Ω ∼ 1011 s−1); 4, Raman scattering by the internal vibrations
of molecules (∆Ω ∼ 1014 s−1). The first three types are calledmolecular, or Rayleigh, scattering.

time-averaged energy (see (4.35))

V = −ReE(−) · α · E(+). (6.113)

Hence,an anisotropic molecule tends to turn with respect to the field to max-
imize its polarisability. However, in equilibrium matter, rotation of molecules by
the field is hindered by their interaction with the neighbors: relaxation processes
restore the equilibrium state with chaotic orientations ofthe molecules, which the
field tends to order. Competition between the field and the thermal motion results
in a dynamic equilibrium, with the degree of orientation being on the order of
V/κT. In this case, the liquid becomes birefringent, similarly to a uniaxial crystal
with the axis parallel toE (if the field is linearly polarized). This phenomenon is
called theoptical Kerr effect.

Let the polarisability anisotropy be∆α(ω). For instance, for a linear molecule,
∆α = α||−α⊥. Then the susceptibility variation∆χ(ω2) at a frequencyω2 induced
by the field at a frequencyω1 will be equal, on the order of magnitude, to∆α(ω2)N
times the degree of orientation,

∆χ ≈ ∆α(ω1)∆α(ω2)N|E1|2/κT. (6.114)

Thus, the cubic susceptibility for non-polar molecules canbe estimated as

χ(3) ≈ ∆α(ω1)∆α(ω2)N/κT. (6.115)

Assuming that the anisotropy is high,∆α ≈ α = χ(1)/N, we get

E2
NL ≡ χ(1)/χ(3) ≈ κT/α. (6.116)

Let α ≈ a3
0 ≈ 10−24 cm3 andT = 300 K, thenENL = 2 · 105 G, and ifχ(1) = 0.1,

thenχ(3) = 10−12 cm3/erg (compare with (6.42), (6.43), (6.68)).
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If a molecule has a constant dipole momentd0 and the orienting field is a static
one or it varies slowly compared with the orientation relaxation time (τ ∼ 10−12 s),
then the effective energy isV = −d0 · E. (The induced moment can be neglected
in this case.) The degree of orientation will then scale as (V/κT)2 since linear
electrooptic effect is forbidden in liquids (Sec. 6.1). As a result,

χ(3)(ω,−0, 0) ≈ ∆α(ω)N(d0/κT)2 ∼ 10−10cm3/erg, (6.117)

ENL ≈ κT/d0 ∼ 104G. (6.118)

(Here, we assumedd0 = 1 D.) Thus, the Kerr effect in polar liquids is much
stronger than in non-polar ones.

Suppose now that the orienting field is an optical biharmonicone, with
Ω ≡ ω1 − ω2 < 1/τ, thenV and, correspondingly, the degree of orientation
V/κT will contain an alternating component with the frequencyΩ. As a result,
the polarization at the probe field frequencyω3 (which, in principle, can coin-
cide withω1 or ω2) will be modulated, i.e., the matter will emit coherent field
with the frequenciesω3 ± Ω. Thus, orientation anharmonicity provides a reso-
nance contribution with the width 2/τ to the cubic susceptibilityχ(3)(ω3,−ω2, ω1)
at (ω1 − ω2) ≤ 1/τ. If the orientation relaxation is taken into account, this con-
tribution becomes complex. Its imaginary part correspondsto the amplification
of theω2 field, with the maximum atω2 = ω1 − 1/τ, and leads to the stimulated
Rayleigh-wing scattering.

Orientation anharmonicity can be quantitatively described in terms of the
molecular orientation distribution function, which is stationary atΩτ� 1:

P(θ) = Ce−V/κT = C















1− V
κT
+

1
2

(

V
κT

)2

− . . .














, (6.119)

whereC is a normalization factor (depending, of course, on the temperature and
the field), the energyV(θ) is defined in (6.113) andθ is a set of three angles
determining the orientation of the molecule in a laboratoryframe of reference (the
Euler angles).

In the case of non-polar molecules, it is sufficient to do the expansion up to
the linear in 1/κT term,

C = P(0)(1+ 〈V〉(0)/κT), P(θ) = P(0)
[

1− (V− 〈V〉(0))/κT
]

, (6.120)

where

〈V〉(0) ≡
∫

d3θP(0)V, P(0) ≡ 1/
∫

d3θ = 1/8π2. (6.121)
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The angle-averaged induced dipole moment has the form

〈d〉 = 〈α(θ)〉 · E + 〈β(θ)〉 : EE + . . . (6.122)

The angular brackets denote averaging with the perturbed distribution function
P(θ). If we neglect the intra-molecular anharmonicity (β = 0), then〈d〉 = α · E,
where

α ≡ 〈αθ〉 ≡
∫

d3θP(θ)α(θ)

= α(0) − (〈α(θ)V(θ)〉(0) − α(0)〈V〉(0))/κT, (6.123)

α
(0)
αβ
≡

∫

d3θP(0)ααβ(θ) = δαβ(αxx+ αyy+ αzz)/3. (6.124)

Here,α(0) is the linear polarisability averaged over the equilibriumdistribution
function. Hence, we find the correction to polarisability,

α − α(0) =

∫

d3θ[α(θ) − α(0)] ReE(−) · α(θ) · E(+)/8π2κT. (6.125)

Here,α(θ) is the linear polarisability tensor in the laboratory frame of reference
for a molecule with a given orientationθ.

At Ωτ & 1 it is necessary to take into account the variation of the distribution
function in time,P = P(θ, t), which is described by the kinetic equation [Apanase-
vich (1977)] or a Focker-Planck-type equation. Within the exponential-relaxation
approximation, these equations yield a usual dispersion dependence with a pole at
ω1 = ω2,

χ(3)(ω2 = ω2 − ω1 + ω1) ∼ 1/[1 + i(ω1 − ω2)τ]. (6.126)

Hence, the low-frequency (Stokes) component of the field is amplified,χ(3)′′ < 0,
and this amplification is maximal at|Ω| = 1/τ.

6.2.9 ◦Quantum theory of nonlinear polarization

Nonlinear polarisabilitiesβ, γ, . . . of molecules and the susceptibility of matter
χ(2) ≈ Nβ, χ(3) ≈ Nγ, . . . can be calculated similarly to the linear polarisability
(Sec. 4.2), using the density-matrix equation with the phenomenological damping
constants. However, it is easier to use the general formula (3.75) for the response
〈 f (t)〉 of a quantum system to an external perturbation with the energyV(t); the
damping should be added from general considerations at the final stage of the
calculation.

We are interested in the stationary response of the system toa periodic pertur-
bation; therefore, the lower integration limits in (3.75) should be chosen as−∞.
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The upper limits can be chosen as+∞ provided that the causality is taken into
account by introducing the step functionsθ(t − t1), . . . , θ(tk−1 − tk) into the inte-
grand. Let us introduce the damping, which is necessary for achieving a stationary
regime and practically inevitable in any system (see Fig. 6.5),

θ(t) = e−εt (t > 0), θ(t) = 0 (t < 0), (6.127)

whereε is some positive constant, which will be further replaced byνmn.
Assuming in (3.75)f = dα andV = −d · E, for the induced dipole moment of

orderk we obtain (see also Ref. [Fain (1972)])

〈dα(t)〉(k) = (i/~)k
∫

dt1 . . .
∫

dtk θ(t − t1) . . . θ(tk−1 − tk)

×Tr {ρ[. . . [d′α(t), d′α1
(t1)], . . . , d′αk

(tk)]}Eα1(t1) . . .Eαk(tk). (6.128)

Here,ρ is the equilibrium density operator and the operatorsd′α(t) are considered
in the interaction picture. The integrand in (6.128) depends onk + 1 time argu-
ments, onlyk of them being independent, as one can easily verify. This tensor
function is called theresponse functionof the system or itsGreen’s function. One
also says that it is acausalGreen’s function and, atk > 1, amulti-timeone.

Let the field have a discrete spectrum,

E(t) =
∑

p

Ep exp(−iωpt)/2, p = ±1,±2, . . . , (6.129)

then the integration in (6.128) is elementary. For instance, for k = 1 we find

〈dα(t)〉(1) =
i

2~

∫ t

−∞
dt1Epβ exp[−iωpt1 + ε(t1 − t)]

× ρnn

[

d(α)
nmd(β)

mnexp(iωnmt + iωmnt1) − d(β)
nmd(α)

mn exp(iωnmt1 + iωmnt)
]

=
ρnn

2~













d(α)
nmd(β)

mn

ωmn− ωp − iε
− d(β)

nmd(α)
mn

ωnm− ωp − iε













Epβ exp(−iωpt). (6.130)

Here, summation over the state indicesm, n and over the Cartesian indicesα, β =
x, y, z (which are sometimes written as superscripts, to make the notation more
compact), as well as over the frequency indexp, is implied. If the damping is
taken into account by changingε to the damping rateγmn of the density matrix
non-diagonal element, then the linear susceptibilityχ

(1)
αβ

defined by (6.130) will
coincide with (4.57).
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Similarly, atk = 2, (6.128) yields

〈dα〉(2) = − 1
4~2

∫ t

−∞
dt1

∫ t1

−∞
dt2EpβEqγ exp[−i(ωpt1 + ωqt2) + ε(t2 − t)]

× ρnn

[

d(α)
nmd(β)

ml d
(γ)
ln exp[(iωnmt + iωmlt1 + iωlnt2)] + . . .

]

=















ρnnd
(α)
nmd(β)

ml d
(γ)
ln

4~2(ωmn− ωp − ωq − iε)(ωln − ωq − iε)
+ . . .















×EpβEqγ exp[−i(ωp + ωq)t]. (6.131)

This expression contains only the contribution of the first term of the double com-
mutator [[d(t), d(t1)], d(t2)], since the other three differ only in signs and in the
permutations of the state indicesl,m, n.

Consider sum-frequency generation,ω1 + ω2 = ω0. At ω1 , ω2, the double
sum over frequencies contains two terms oscillating with the frequencyω0: the
one withq = 1, p = 2 and the one withq = 2, p = 1. Therefore, theω0 component
of the dipole moment can be represented as a sum of two terms differing by a
permutation of indices 1, γ and 2, β,

d(2)
0α = E2βE1γ

21
∏

βγ

ρnn

2~2















d(α)
nmd(β)

ml d
(γ)
ln

D(0)
mnD

(1)
ln

+ . . .















, (6.132)

where

D(p)
mn ≡ ωmn− ωp − iγmn,

∏

is the operator of summing over various permutations, andε has been replaced
by γmn. Note that the dispersion function 1/D is the Fourier transform of the step
functionθ(t) (Fig. 6.5).

Fig. 6.5 The Heaviside step function multiplied bye−εt and its Fourier transform are used for taking
into account the effects of causality and damping on the response of a system.
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Thus, the quadratic susceptibility of matter consisting ofN similarly oriented
non-interacting molecules can be written in terms of the unperturbed level popu-
lationsNn = ρnnN, frequenciesωmn, and the transition momentsdmn as

χ0̄12
αβγ =

1
2~2

21
∏

βγ

∑

lmn

Nn















d(α)
nmd(β)

ml d
(γ)
ln

D(0)
mnD

(1)
ln

+
d(γ)

nmd(β)
ml d

(α)
ln

D(0)
nl D(1)

nm

−
d(β)

nmd(α)
ml d

(γ)
ln

D(0)
lm D(1)

ln

−
d(γ)

nmd(α)
ml d

(β)
ln

D(0)
lm D(1)

nm















, (6.133)

where the superscripts 0 and̄0 relate to the frequencies±ω0.
It is easy to see that expression (6.133) has all symmetry features described in

Sec. 6.1. The
∏

operator provides the spatio-frequency symmetry with respect to
the last two indices (6.14), (6.15). The property (6.16) follows from the relations
D(p)

mn = −D(p̄)∗
nm andd∗mn = dnm, so that changing the signs of all frequencies and the

imaginary units only interchanges the terms in (6.133): thefirst one is swapped
with the second one and the third one, with the fourth one.

The fact that in centrally symmetric mediaχ(2) = 0 also follows from (6.133).
The eigenstates of a system with a center of symmetry possessa certain parity:
ϕn(−r) = ±ϕn(r); therefore,dmn = 0 if ϕm andϕn have the same parity. Hence, at
least one of the three moments relating the statesl,m, n is equal to zero.

The symmetry property in the case of transparent matter, (6.21), also follows
from (6.133) atγmn = 0. In this case, the last terms in (6.133) can be combined in
pairs,

1

D(0)
lm D(1)

ln

+
1

D(0)
lm D(2)

nm

=
1

D(1)
ln D(2)

nm

.

As a result, out of 8 terms only 6= 3! are left, which differ by permutations
of index pairs (α, 0̄), (β, 2), (γ, 1),

χ0̄21
αβγ =

1
2~2

∑

lmn

Nn

0̄21
∏

αβγ

d(α)
nmd(β)

ml d
(γ)
ln

(ωmn− ω0)(ωln − ω1)
. (6.134)

Susceptibility of the next order is calculated similarly. In each new order of
the perturbation theory, factors of the formdln/~D

(p)
ln are added. Hence, we get an

estimate for the optical anharmonicity in the transparencyrange,

ENL ≡
χ(k)

χ(k+1)
≈ ~ω0

ea0
≡ E0, (6.135)

wherea0,ω0, E0 are the typical size, frequency, and internal field of the molecule.
For the hydrogen atom,E0 = 13.6V/a0 ≈ 107 G. Assumingχ(1) = 0.1, we obtain
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χ(2) = 10−8 G−1, χ(3) = 10−15 G−2. Even this crude estimate gives a correct idea
about the orders of magnitude of the susceptibilities. At resonance,χ(k) increases.

6.2.10 ◦Probability of multi-photon transitions

If we are only interested in energies, then the nonlinear interaction between ra-
diation and matter can be described in terms of probabilities or cross sections of
multi-photon transitions, as it was done in Chapter 2 for thecase of linear single-
photon interaction. Then, as a rule, the field does not have tobe quantized, i.e., one
can use the semi-classical theory, but the results of calculations can be interpreted
in the photon language.

As an example, let us find the probability of a two-photon elementary process
describing Raman scattering and two-photon (induced) absorption or emission.
Substituting the transition amplitude in the first-order approximation (2.24) into
(2.21), for the amplitude of the two-photon transition fromlevel a to levelb we
obtain

c(2)
ba(t) = (i~)−2

∫ t

t0

dt2V′bn(t2)
∫ t2

0
dt1V′na(t1). (6.136)

Here, then index, in which summation is implied, numerates all intermediate (vir-
tual) non-perturbed states through which the transition can occur. This expression
reflects an important feature of quantum dynamics: all possible virtual states par-
ticipate in a transition, even those seemingly violating the conservation laws, with
the only restriction, following from the causality principle: t > t2 > t1 > t0.

Let us substitute into (6.136) the dipole perturbationV′ = −d′ · E and the
biharmonic field (6.129), assuming thatt0, t = ±∞,

c(2)
ba = −(2~)−2

∑

nqp

dbn · Eqdna · Ep

×
∫ ∞

−∞
dt2

∫ t2

−∞
dt1 exp[i(ωbn − ωq)t2 + i(ωna − ωp)t1]

= −
∑

nqp

dbn · Eqdna · Ep

4~2i(ωna − ωp)

∫ ∞

−∞
dt2 exp[i(ωba− ωq − ωp)t2]. (6.137)

The lower integration limit in the integral overt1 makes no contribution due to the
adiabatic start of the perturbation or due to the damping (see (6.127) atε → +0).
The integral left in (6.137) is one of the delta-function representations:

∫

dt2 · · · =
2πδ(ωba − ωq − ωp). Thus, in the second order of the perturbation theory, the
field excites a molecule only provided that the algebraic sumof the two field
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frequencies coincides with the frequency of the transitiona→ b. This condition
generalizes Bohr’s postulate for a single-photon resonance.

Let two field frequenciesω1 andω2 satisfy the condition of the ‘combination’
resonance,ω1 + ω2 ≈ ωba, then (6.137) yields

c(2)
ba = i(2π/~)(E1 · M12 · E2)δ(ωba− ω1 − ω2),

M12
αβ = M21

βα ≡
1
4~

∑

n















d(α)
bn d(β)

na

ωna − ω2
+

d(β)
bnd(α)

na

ωna − ω1















. (6.138)

If ωba > 0, i.e., the initial state of the molecule is the lower one, then
(6.138) gives the probability amplitude for the molecule toabsorb two photons
(atω1, ω2 > 0) or to absorb one photon (ω1 > 0) and emit another photon, the
Stokes one (ω2 < 0). In the last case, (6.138) is the amplitude of a Stokes Raman
process. Similarly, atωba < 0, (6.138) describes two-photon emission or anti-
Stokes scattering. One can say that the two terms in (6.138) differ in the sequence
theω1 andω2 photons are absorbed (or emitted).

Note that there are four types of two-photon emission: stimu-
lated, spontaneous-stimulated, stimulated-spontaneousand purely spontaneous
(Fig. 6.1(f)). They correspond to the four terms in the expression (N1+1)(N2+1) =
N1N2+N1+N2+1, which follows from (6.138) after replacingEp with operators.
(Here,Np are the initial photon numbers.)

It follows from (6.138) that the maximal contribution to thetransition ampli-
tude is provided by virtual states with the minimal energy deficit ~(ωna − ωp).
Note that the various transition ‘paths’ (contributions ofvarious virtual states)
may differ in signs and cancel each other (quantum interference of states).

In order to find the transition probability from (6.138), it is necessary to define
the square of the delta function:

|δ(ω)|2 = δ(ω) lim
T→∞

∫ T/2

−T/2
dteiωt/2π = δ(ω)T/2π. (6.139)

From (6.138), (6.139), we obtain the probability of a two-photon transition per
unit time, i.e., the transition rate (compare with the derivation of (2.36)),

W(2)
ba = 2π|K(2)

ba |
2δ(ωba− ω2 − ω1)/~2, (6.140)

K(2)
ba ≡ E1 · M12 · E2. (6.141)

According to (6.140), the two-photon transitiona→ b is possible if the virtual
transitionsa→ n andn→ b are allowed. In a centrally symmetric medium, thea
andb levels should have the same parity; in this case, the single-photon transition
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between them will be forbidden (thealternative prohibition). Thus,two-photon
spectroscopy and, in particular, Raman spectroscopy enable the study of levels
that are not accessible for linear spectroscopy.

For taking into account the finite width of the resonance, oneshould re-
placeδ(ω) by the normalized form factorg(ω) (see (2.37)). The resulting ex-
pression coincides with the probability of a single-photontransition (2.37), with
the only exception that the Rabi frequency|dba · E1|/~ ≡ Ω is replaced by
2K(2)

ba . Probabilities ofk-photon transitions have a similar structure: each addi-
tional photonωp participating in the transition adds toK(k)

ba a factor of the form
dmn · Ep/~(ωna− ωp − · · · − ω1) ∼ Ω/ω0 ∼ Ep/ENL (compare with (6.135)).

As in the case of single-photon transitions (Sec. 2.3), the transition rateW(2)

determines the cross-sectionσ(2) and the absorption (amplification) coefficient
α(2), as well as the imaginary part of the cubic susceptibilityχ(3)(ω2,−ω1, ω1).
The cross section of a stimulated two-photon transition will be defined as the
transition rate in the case of unity densities of the photon fluxes,

σ
(2)
stim ≡

W(2)

F1F2
, Fp ≡

Ip

~ωp
=

c
8π~ωp

|Ep|2. (6.142)

For taking into account the finite transition linewidth, we replace the delta
function in (6.140) by the normalized form factorg (Sec. 2.2),

σ
(2)
stim = 128π3k1k2|e1 · M12 · e2|2g(ωba − ω2 − ω1), (6.143)

wherekn ≡ ωn/c.
The two-photon absorption coefficient for the field with the frequencyω2 in

the presence of the second field, with the frequencyω1, is (compare with (1.4))

α(2)(ω2) = ±σ(2)
stim∆NF1, (6.144)

where∆N ≡ Na − Nb is the population difference per unit volume.
The power absorbed from the fieldω2 by a unit volume of matter is

P2 = ω2ImP(3)
2 · E

∗
2/2 = ω2Imχ2̄1̄21

αβγδE
∗
2αE∗1βE2γE1δ/2. (6.145)

On the other hand,P2 = α
(2)I2. Comparing (6.145) and (6.144), for the case of a

real transition dipole momentdmn we find that

Imχ2̄1̄21
αβγδ = ±4π~−1∆NM21

αβM21
δγg(ωba− ω1 − ω2). (6.146)

Finally, the complete expression for the cubic nonlinearity follows from (6.146)
after replacingg by 1/π(ωba − ω1 − ω2 − iγ). It is not difficult to verify that a
straightforward calculation ofχ(3) from (6.128) in a single-resonance approxima-
tion yields the same result.
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Equations (6.140)–(6.143) describe purely stimulated two-photon transitions.
In the case of spontaneous-stimulated transitions (leading to the spontaneous Ra-
man scattering), the role of|E2|2 is played by the quantum fluctuations of the
field, which provide an equivalent photon flux density ofF2vac = c/L3 in each
field mode in the vicinity of the frequencyω2, with L3 being the quantization vol-
ume (Sec. 7.3). After summing over all modes in the vicinity of the frequency
ωba − ω1, we find

σ
(2)
sp.st ≡W(2)

sp.st/F1 = (c/L3)
∑

k2

σ
(2)
stim =

∫

dω2

∫

4π
dΩ2k2

2

∑

ν2

σ
(2)
stim/(2π)3

≡
∫

4π
dΩ2

∑

ν2

(dσ(2)
2 /dΩ)sp.st, (6.147)

whereν2 is the polarization index. After substituting here (6.143), we obtain the
differential cross-section per unit solid angle and a single polarization type of the
fieldω2,

(dσ(2)
2 /dΩ)sp.st = 16k1k

3
2|e1 · M12 · e2|2. (6.148)

Further, substitutingF1 by c/L3 and summing over all modesω1 of the field,
from 0 up to the transition frequencyωab, we find the rate of a purely spontaneous
transition,

W(2)
sp = (c/L3)

∑

k1

σ
(2)
sp.st = (2/π3)

∫ ωba

0
dω1

∫

4π
dΩ1dΩ2

∑

ν1ν2

k3
1k3

2|e1 · M12 · e2|2.

(6.149)
For a rough estimate of the two-photon decay probability in the optical range,

assume that all frequencies in (6.149) are equal toω0 = e2/2~a0 = αc/2a0, and
the polarisabilityM of the transition is equal toa3

0, with α = 1/137. Neglecting
all other numerical factors, we obtain

W(2)
sp ∼ ω0(a/2)6 ≈ 50 s−1.

An accurate calculation for the 2s→ 1s in a hydrogen atom yields 8 s−1.
Thus,W(2)

sp is 1373 ∼ 106 times as small asW(1)
sp . Despite the small probability,

two-photon decay can be easily observed using two PMTs and a coincidence cir-
cuit. Note thatspontaneous (as well as thermal) two-photon emission, in contrast
to the single-photon one, has a continuous spectrum, which has no relation to the
discrete spectrum of an unperturbed atom. For the emission from a heated body,
the statistics of two-photon radiation also differs from the one of single-photon
radiation, which is caused by the fact that photons are emitted in pairs. Thus,
the anharmonicity of matter leads, in principle, to the deviation of the thermal
radiation statistics from a Gaussian one [Klyshko (1980)].
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6.2.11 Conclusions

Thus, a large number of mechanisms contributes to the optical anharmonicity of
macroscopic matter. Quadratic susceptibilityχ(2), as a rule, is related to the non-
linearity of bonded electrons. It differs from zero only in piezoelectric crystals
and is on the order of 10−7 – 10−9 G−1 provided that all frequencies belong to the
optical transparency window. The cubic susceptibilityχ(3) in condensed transpar-
ent matter is also caused by the electronic nonlinearity (χ(3) ∼ 10−15 G−2) if all
frequencies belong to the optical range. However, if the differenceΩ of two fre-
quencies coincides with the frequency of a molecular vibration, thenχ(3) becomes
as high as 10−12 – 10−13 due to the combined electron-nuclear (Placzek or Raman)
nonlinearity. AtΩ ∼ 0, the main contribution in the case of solids is that of elec-
trostriction (χ(3) ∼ 10−13); in liquids, the orientation (Kerr’s) nonlinearity is added
(χ(3) ∼ 10−12). Electrocaloric anharmonicity, usually, results inχ(3)

. 10−13. Ex-
tremely strong nonlinear optical effects can be observed in liquid crystals and in
plasma. Note that the nonlinear electrodynamics of plasma is well described by
the Landau-Vlasov kinetic equations (see [Silin (1961)]).

6.3 Macroscopic nonlinear optics

Thus, using classical or quantum macroscopic models, we have found polarization
P of matter in a given fieldE, i.e., we have excluded the variables of the medium.
By substitutingD = E + 4πP into macroscopic Maxwell’s equations, we obtain
a closed system of equations forE, H describing the emission and propagation of
electromagnetic field in matter with an account for the matter nonlinearity. Mani-
festations of nonlinearity in the optical range are extremely diverse and depend on
the properties of both the medium and the initial field, such as the amplitude, the
spatial and temporal spectra. The most important parameteris of course the ratio
E/ENL, which, as a rule, is much less than the unity.

6.3.1 Initial relations

Below, we consider the main types of stationary effects. The field can be repre-
sented as a sum of independent spectral components,

E(r, t) = (1/2)
∑

n

En(r) exp(−iωnt),

E−n = E∗n, ω−n = −ωn, n = ±1,±2, . . . .
(6.150)
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The amplitudes of monochromatic wavesEn(r) satisfy the system of
Helmholtz wave equations that are related to each other due to the anharmonicity
of the medium, which is considered to be non-magnetic,

c2∇ × ∇ × En − ω2
nεn · En = 4πω2

nPNL
n (r). (6.151)

These relations can be easily obtained from Maxwell’s equations (4.9)–(4.12).
Here, the linear part of the polarization is included intoεn. The amplitude of the
nonlinear polarization at the frequency−ωn, which is the source of the macro-
scopic fieldE∗n1

, is defined through the nonlinear polarisability (Sec. 6.1),

PNL
−n1

(r) =
∞
∑

m=3

χ(m−1)(ωn1;ωn2, . . . , ωnm)
...En2(r) . . .Enm(r), (6.152)

where
m

∑

i=1

ωni = 0. (6.153)

For describing non-coherent (noise) fields, such as thermalor Raman radiation,
one should add Langevin random sources in the right-hand side of (6.151). Ac-
cording to the fluctuation-dissipation theorem (FDT), their spectral density scales
asχ(1)′′ orχ(3)′′, respectively (see (6.90)). Another method of calculatingthe noise
radiation from a nonlinear medium is based on Kirchhoff-type equations, which
directly express the noise intensity in terms of the medium temperature and the so-
lutions to the dynamic equations (6.150) (consider, for instance, (6.225), (6.307),
(7.6)).

6.3.2 Classification of nonlinear effects

It follows from Maxwell’s equations (see (4.13)) that the specific power of radia-
tion absorbed from the field by the matter at pointr due to anharmonicity within
a single period is

PNL(r) = (i/4)
∑

n

ωnEn · P−n = (i/4)
∞
∑

m=3

∑

n1

ωn1χ
(m−1)...En1 . . . Enm. (6.154)

Each termP(m)(r) in the last sum describesm-frequency interaction. If the field
amplitudes are represented in the form

En(r) ≡
∑

α

x̂α|Enα(r)| exp[iϕnα(r)], (6.155)

whereα = x, y, z, then both the sign and the absolute value ofP(m) will depend
on ϕ(m)(r) ≡ ϕn1α1 + · · · + ϕnmαm, i.e, on the relation between the field spectral



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

Nonlinear Optics 179

components. Such interactions are calledparametric. It is clear from (6.154) that
the parametric interaction ofm harmonics provides an effect that is accumulated
in space only under the conditionϕ(m)(r) = const, which is possible only for
plane waves, such thatϕnα(r) = kn · r, k−n ≡ −kn. Then, the wave vectors of the
interacting waves should form a closed polygon,

∆k(m) ≡
m

∑

i=1

kni = 0. (6.156)

This condition, with an account for (6.153), is called thespatial phase-
matching condition.

Often, it is only a single low-order term in (6.154) that is important (m = 3
or 4, i.e., three- or four-frequency interaction), with a certain combination of fre-
quency signssn. This combination can be put into correspondence to an elemen-
tary multi-photon process involvingm photons; then (6.153) and (6.156) can be
interpreted as the conservation laws of the field energy,

∑

~ωn, and momentum,
∑

~kn. In a parametric process, the energy of matter does not change, i.e., the
initial levelEa and the final levelEb coincide,ωba = 0 (Fig. 6.1(a)).

Further, one can considerresonanceparametric processes, for which one or
more virtual levels coincides with the real ones. Then, non-parametric effects
become also important (see below), i.e., there appears linear (or multi-photon) ab-
sorption (or emission),α , 0, and the energy of the field is not conserved. How-
ever, provided that the absorption is low, the phase-matching condition (6.156)
is still valid. Note that, for instance, atm = 4, single, double, and triple reso-
nances are possible. The efficiency of resonance interactions strongly depends on
the frequenciesωn (even without taking phase matching into account), and the
corresponding susceptibilities take complex values.

Outside of resonances,α ≈ 0, susceptibilities are real, and their dispersion
is weak; therefore, the efficiency of non-resonance parametric processes has only
indirect frequency dependence, through the phase-matching condition, which at
fixed directions ofkn is satisfied only for a particular set of frequencies and at
fixed frequencies, only for a certain set of directions. Therefore, the efficiency of
parametric interactions manifestsjoint frequency-angular dispersion.

Let us return to the sum (6.154). Among the terms of even orders m, there
are degenerate ones, containing subscript pairsni = −n j, for whichϕ(m) ≡ 0. The
corresponding interactions, depending only on theintensitiesof the field harmon-
ics, |En|2, are callednon-parametric. The phase-matching condition is satisfied
for them automatically. The power absorbed at the frequencyω1 due to the non-
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parametric interaction with anl-frequency field, according to (6.154), is

P1(r) = (1/2)ω1Imχ(2l−1)(−ω1;ω1 · · · − ωl , ωl)
...E∗1E1 . . .E∗l El . (6.157)

It has a constant sign for a given set of frequencies and slowly (compared toeik·r)
varies in space for any configuration of the field, since the phases of the harmonics
do not influence Eq. (6.157).

In non-parametric elementary processes, such as, for instance, two-photon ab-
sorption or a Raman transition, the final energy of the matterdiffers from the
initial one (Fig. 6.1), and therefore, the field energy is notpreserved.i For a non-
parametric process, in addition to the trivial (in this case) condition (6.153) there
is a resonance at

l
∑

n=1

ωn = ωba. (6.158)

In the presence of additional intermediate resonances, a non-parametric pro-
cess is called acascadedor resonanceone. Such processes have complicated
dispersion dependence on each field frequencyωn separately. Examples are reso-
nance Raman scattering and cascaded two-photon absorptionin a three-level sys-
tem (Fig. 6.1(e)).

In the case of non-resonance (non-cascaded) processes,α(1) = 0, and the ef-
ficiency of non-parametric interaction depends, accordingto (6.158), only on the
sum of all field frequencies,

∑

ωn. This case can be called a single-resonance one.
Note that in non-parametric processes, new spectral components appear only

due to spontaneous or spontaneous-stimulated transitions, and in the absence of
a feedback the radiation is noisy,non-coherent, even if the pump is coherent and
has a fixed phase. An example is inelastic scattering of light. At the same time,
parametric processes can lead to the generation ofcoherentfields with new fre-
quencies (generation of harmonics).

The effects of nonlinear optics can be additionally classified according to the
number of essential spectral components or according to thenumber of plane
waves (modes). For instance, single-frequency non-parametric (degenerate) ef-
fects includenonlinear absorption and dispersion(lω1 = ωba) and saturation
(ω1 − ω1 + · · · + ω1 = ωba). Examples of two-frequency non-parametric effects
are induced absorption and dispersion(ω1 + ω2 = ωba) andRaman interaction
(ω1−ω2 = ωba), leading to thestimulated Raman scattering(StRs) and theinverse
Raman effect, i.e., induced absorption at the anti-Stokes frequency.

iNote, however, thatinduced dispersion, accompanying multi-photon absorption, similarly to linear
dispersion, corresponds to a virtual process withωba = 0.
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The second harmonic generationis a degenerate case of three-frequency
parametric interaction (ω1 ± ω2 ± ω3 = 0). Four-frequency parametric effects
include third-harmonic generation andcoherent anti-Stokes Raman scattering
(CARS), which forms the basis ofactive spectroscopy. CARS is determined
by the resonance part of the cubic susceptibilityχ(3)(ω4 = ω3 − ω2 + ω1) at
ω1 − ω2 = ω4 − ω3 ≈ ωba. An example of a parametric single-frequency four-
wave interaction isoptical phase conjugationdue toχ(3)(ω = ω − ω + ω) at
k2 = −k1, k4 = −k3.

All these effects will be considered in more detail below. Sometimes, several
effects can be manifested simultaneously; for instance, StRS can be accompanied
by self-focusing and CARS. However, often, by choosing the experimental condi-
tions one can select a single effect. In our analysis, for simplicity we will assume
that this is the case.

It is also convenient to distinguish between the effects according to other pair-
wise features: spontaneous – stimulated, stationary – non-stationary (Chapter 5).

It should be stressed that the terms ‘spontaneous’ and ‘stimulated’ have no
rigid definitions in quantum electronics. In linear optics,spontaneous and stim-
ulated emission is considered to be a non-stationary process involving a single
molecule, while the joint stationary radiation from heatedmatter is called thermal
radiation. At the same time, the term ‘spontaneous scattering’ is understood as
scattering by thermal (or, at~Ω/κT � 1, quantum) fluctuations of various param-
eters of the matter (Sec. 6.2) at small pump intensityI1, although this process is
explained in terms of spontaneous-stimulated two-photon transitions (Sec. 6.2). If
I1 is increased, the intensity of the scattered light grows first linearly and then, at
|α(2)|l > 1, exponentially (for the Stokes component). As a result, the efficiency
of frequency conversion can be as high as tens of per cent, andit is to this sponta-
neously emitted and amplified radiation that the term StRS isusually applied. The
same term is sometimes used for the effect of external Stokes field amplification.

The termcoherentis even more ambiguous, even if we restrict ourselves to
nonlinear optics. It is used, on the one hand, for the effects of non-stationary
resonance interaction, like SIP (Sec. 5.1), and on the otherhand, for parametric
stationary effects like second harmonic generation. In the first case, it means that
the field and the matter have the same phase and in the second case, that different
components of the field have the same phase.

6.3.3 The role of linear and nonlinear dispersion

The nonlinearity of the wave equations of hydrodynamics andgas dynamics is
most apparent in the appearance of shock waves, i.e., in the transformation of sine
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acoustic waves into sawtooth ones. (A well-known example iswave breaking in
shallow water.) In spectral language, this effect is explained by higher-harmonic
generation, which enriches the spectrum of an excitation inthe course of its prop-
agation.

However, due to the refractive-index dispersionn(ω), light shock waves do
not emerge: harmonics with the frequenciesω1, 2ω1, . . . propagate with differ-
ent phase velocitiesc/n(pω1), so that the sign of the interaction energy and,
correspondingly, the amplitudes of the harmonics have fastspatial oscillations
(see (6.154)). As a result, the amplitudes of higher harmonics do not in-
crease in the course of propagation (‘non-accumulating interaction’), and an-
other small parameter appears in the theory, the ratio of thecoherence length
lcoh = π/∆k to the length of the mediuml. Here,∆k is the wave mismatch
(6.156), which is equal, in the case of collinearpth-harmonic generation, to
kp − pk1 = [n(pω1) − n(ω1)]pω1/c.

It is only under special conditions that the phase velocities of two or three har-
monics can be matched, using birefringence or anomalous dispersion. Thus,the
phase matching condition (6.156) restricts the number of efficiently interacting
spectral components of the field in parametric interactions. For non-parametric
processes, the restriction is due to the resonance condition (6.158), i.e., the dis-
persion ofχ(3), χ(5), . . . .

The efficiency of nonlinear processes is usually increased by usingpulsed
pumping with Q-switched (τ ∼ 10 ns) or mode locked (τ ∼ 10 ps)j lasers. Clearly,
for the interaction of several light pulses with different central frequencies to ac-
cumulate in space, it is also necessary that their group velocities coincide,

up = dω/dkp = c(np + ωpdnp/dω)−1

(thegroup matchingcondition); otherwise, the pulses will separate in the course
of propagation.

6.3.4 ◦One-dimensional approximation

Further, as a rule, we will apply theone-dimensional approximation, which is
most useful in nonlinear (as well as linear) optics. Also known as plane-waves
approximation, it allows one to pass from partial-derivatives equations (6.151) to
usual equations. It reflects correctly the main features of many effects involving
pump beams not too much convergent or divergent and samples with the lengthl
not too large. The divergence can be often taken into accountin the final formulas,

jEditors’ note: At present, mode locking provides pulse durations as small as tens of femtoseconds.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

Nonlinear Optics 183

at least qualitatively, by summing up the contributions from all essential plane
waves. We will go beyond this approximation only in the description of self-
focusing in the end of Sec. 6.4.

An arbitrary field can be represented as a four-dimensional Fourier integral,

E(r, t) = (L/2π)3
∫

d3kdωE(k, ω) exp[i(k · r − ωt)], (6.159)

and similarly forH. The factor (L/2π)3 is added from dimensionality considera-
tions, see (7.100). This is the so-calledk, ω-representation. Here,k andω are in-
dependent real variables. In the case of a homogeneous transparent linear medium
without internal sources,k andω are not independent any more (Sec. 4.2). Then,

E(k, ω) = (1/2)
∑

ν=1,2

∑

s=±
eν(k)E(s)

ν (sk)δ(ω − sων(k)), (6.160)

E(+)
ν (k) = E(−)

ν (k)∗. (6.161)

We assume the medium to be non-gyrotropic; therefore,ε andeν are real. Substi-
tuting (6.160) into (6.159), we find

E(r, t) =
1
2

( L
2π

)3 ∫

d3k
∑

νs

eν(k)E(s)
ν (k) exp[iψs(k)], (6.162)

where

ψs(k) ≡ s[k · r − ω(k)t], s= ±, ν = 1, 2.

For instance, in the case of a plane monochromatic polarizedwave,

E(s)
ν (k) = (E1δs+ + E∗1δs−)δνµδ(3)(k − k1).

Unit polarization vectorseν(k) and the dispersion lawων(k) are determined by the
ε(ω) tensor,

c2k × [k × eν] + ω2
νε(ων) · eν = 0. (6.163)

Hence, ifε is real,

ων(−k) = ων(k), eν(k) = eν(−k) = e∗ν(k).

The wave vectork and the type of polarizationν define a plane monochromatic
wave, or amode. It is convenient to make the set of modes countable using a cube
with periodicityL3 (Sec. 7.3); then the Fourier integral turns into a series, inwhich
a mode is labeled by a single subscriptk ≡ {k, ν, s} (which also includes the sign
sof the frequency),

E(r, t) = (1/2)
∑

k

ekEk exp(iψk), Ek ≡ E(s)
ν (k). (6.164)
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In a transparent linear medium without sources, the mode amplitudesEk are inde-
pendent complex numbers defined by the boundary conditions.

Consider now a nonlinear absorbing plane layer (0< z < l) in the medium,
which has the sameε′, and a stationary field incident on it from both sides. Then,
since the model has no dependence onx, y, t, the amplitudesEk are only func-
tions of z. They are called theslowly varying amplitudes(SVA). Actually, the
transition from the real fieldE(r, t) to thez-dependent mode amplitudesEk(z) is a
three-dimensional Fourier transform in the variablesx, y, t (a non-complete trans-
formation, unlike (6.159)) or the transition to theω, k⊥, z-representation.

Note that a mode can be defined by fixing, instead ofk, the frequency,
ω = ων(k), k⊥, and the signσk of the longitudinal componentkz. Then,kz is deter-
mined by the dispersion law (for an isotropic medium,kz = σk(ε′ω2/c2 − k2

⊥)1/2).
In experiment, mode expansion is achieved by placing a spectral device into the
far-field zone of the emitter; in this case, the spherical anglesϑk, ϕk of k are also
fixed (taking into account refraction). Thus, the subscriptk stands for one of the
following sets of values:

k ≡ {k, ν, s} = {ω, k⊥, σ, ν, s} = {ω, ϑ, ϕ, ν, s}. (6.165)

As we will show in what follows, in the case of sufficiently small nonlinearity and
absorption, Fourier transformation of the Helmholtz equations (6.151) w.r.t.x, y
leads to a system of ordinary equations for SVA (forσk > 0),

(

d
dz
+
αk

2

)

Ek(z) =
2πiωk

cnk
PNL

k (z) exp(−ikzz). (6.166)

Here, the following notation was introduced:

αk ≡ ωkek · ε′′ · ek/cnk, nk ≡ nk cosθk cosρk ≈ ckz/ωk, (6.167)

whereθk is the angle between the ray (Poynting) vectorsk of the mode and thez
axis,ρk is the anisotropy angle, i.e., the angle betweenk andsk, andPNL

k is the
Fourier component of the nonlinear polarization with the frequencyωk > 0 and
the transverse wave vectork⊥ ≡ {kx, ky}, which is parallel to theek vector. It can
be written as

PNL
k ≡ (4π|ukz|/L)PNL(ωk, q, z)

= (2|ukz|/L3)
∫

dx dy dtek · PNL(r, t) exp[i(ωkt − kxx− kyy)], (6.168)

q ≡ {kx, ky}, r ≡ {x, y, z}, ukz ≡ ∂ων(k)/∂kz. (6.169)

According to (6.166), linear absorbtion results in an exponential dependence
of the mode amplitude onz, while nonlinearity leads to a coupling (mixing) of
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modes. Let us stress that in a one-dimensional model, a modek can be only ex-
cited by a component of the source field having the same frequency and transverse
wavevector. The source field can have any dependence onz but the most efficient
component is the one that has the propagation constantKz close tokz, due to the
phase matching condition (compare with (4.23)).

The boundary conditions for system (6.166) are given by the amplitudesEk(z0)
of the plane waves incident from the left and from the right:z0 = 0 forσ = + and
z0 = l for σ = −. The solution to (6.166) yields the rule of mode transformation
by the nonlinear layer, i.e., thescattering matrixof the layer. Certainly, for de-
scribing real experiments the model should include reflection and refraction at the
boundaries (with an account for the nonlinearity, see Ref. [Bloembergen (1965)]),
as well as consider the limited interaction cross-section in x andy. In this case,
even in the linear approximation one gets the ‘diffraction’ coupling between the
modes having close directions. This effect is more conveniently described in the
ω, r representation (6.151) (see the self-focusing section in 6.3).

Let us find, with the help of (6.166), the variation rate of theenergy flux lon-
gitudinal component carried by the modek, in ~ωk units:

Fkz ≡ Ik cosθk/~ωk = c[Ek × H∗k] · ẑ/16π~ωk + c.c.

= cnk|Ek(z)|2/8π~ωk, (6.170)

whereẑ is a unit vector along thez axis. For calculatingFkz, we multiply (6.166)
by E∗k and sum with the complex conjugated expression,

(d/dz+ αk)Fkz = −ImPNL
k E∗k exp(−ikzz)/2~. (6.171)

The right-hand side has, according to (6.154), a simple meaning: this is the energy
(in ~ωk units) absorbed by a unit volume of the matter per unit time due to the
nonlinear polarization, i.e., this is the rate of the photondensity decrease,−Ṅk, in
modek. In other words, (6.171) is thetransfer equation(or continuity equation)
for the photons of the macroscopic field,

∇Fk + Ṅk = 0, Fk = ukNk. (6.172)

The nonlinear polarizationPNL
k in the right-hand side of (6.166) or (6.171) is

given by equations (6.152) and (6.158) through the hierarchy of susceptibilities
χ(m), m1 2. In the case of anm-frequency interaction, equation (6.166) takes the
form

(d/dz+ αk/2)E∗1 = (2πs1ω1/icn1)χ(m−1)...e1E2 . . .Em exp(i∆kz), (6.173)
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where

∆k ≡
m

∑

i=1

sikiz, Ei ≡ eνi E
(si)
νi

(ki), (6.174)

and integration w.r.t. x, y, t in (6.168) yields the following restrictions for the
interacting modes and the sign indices:

∆k⊥ ≡
m

∑

i=1

si ki⊥ = 0, (6.175)

∆ω ≡
m

∑

i=1

siωi = 0. (6.176)

In addition, accumulation of the interaction alongz requires that the longitudinal
wave mismatches are sufficiently small,

∆k ≡
m

∑

i=1

sikiz . 1/l. (6.177)

Let us re-normalize the mode amplitudes so that their squares are equal
to the longitudinal photon flux density. (To simplify the notation, we assume
Fi ≡ Fkiz > 0.)

ai ≡ (cni/8π~ωi)1/2Ei , (6.178)

|ai |2 = Fi . (6.179)

As a result, (6.171) and (6.173) take the form

(

d
dz
+
α1

2

)

a∗1 =
s1

2i
β1...ma2 . . .am exp(i∆kz), (6.180)

(

d
dz
+ α1

)

F1 = s1Imβ1...ma2 . . .am exp(i∆kz), (6.181)

where

β1...m ≡
1
2~

(

8π~
c

)m/2 (

ω1 . . . ωm

n1 . . .nm

)1/2

χ(m−1)...e1 . . .em. (6.182)

These equations will be analyzed for several typical cases in Secs. 6.4, 6.5.
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6.3.5 The Manley-Rowe relation and the permutation symmetry

Suppose that only a single interaction betweenm-frequency field components
n1, . . . , nm (see (6.154)) is essential, corresponding to anl-photon process. (For a
parametric interaction,l = m, while for a non-parametric one,l = m/2.) Let this
interaction be non-resonance for some pair of frequenciesω1, ω2. To be more ex-
act, let the photons with these frequencies be created or annihilated only together,
simultaneously, which is the case if the corresponding virtual level is far from any
real one. Then,

s1Ṅ1 = s2Ṅ2, (6.183)

where

sn ≡ sign(n) ≡ sign(ωn). (6.184)

These relations are similar to the Manley-Rowe equations used in the oscil-
lation theory for describing nonlinear circuits [Migulin (1978)]. The signs of the
frequencies are determined by the energy conservation law (6.153) or (6.158),̇Nn

is the rate of the flux variation for photons with the frequency |ωn|. Apparently,
~|ωn|Ṅn + Pn = 0, wherePn = ωnImE∗nPn/2 is the power absorbed by matter at
frequencyωn.

From (6.154) and (6.183), it follows for the case of a parametric interaction
that

Im(χ12......E1E2 · · · − χ21......E2E1 . . . ) = 0, (6.185)

where

χ12... ≡ χ(ω1;ω2, . . . ) = (χ12...)∗. (6.186)

Let us substitute (6.155) into (6.185),
∑

αβ...

|E1αE2β . . . |Im{(χ12...
αβ... − χ21...

βα...) exp[i(ϕ1α + ϕ2β + . . . )]} = 0. (6.187)

Here, all amplitudes and phases of the field harmonics can be varied indepen-
dently; therefore, the expression in round brackets is identically equal to zero,

χ12...
αβ... = χ

21...
βα.... (6.188)

This permutation relation is more general than (6.21) wherethe medium was as-
sumed to be transparent at all frequencies.

In the case of a non-parametric interaction, the phases are irrelevant, and we
obtain from (6.157) and (6.183) that

Im(χ1̄12̄2......E∗1E1E∗2E2 · · · − χ2̄21̄1......E∗2E2E∗1E1 . . . ) = 0, (6.189)
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∑

αβ...

|E1αE1βE2γE2δ . . . | Im(χ1̄12̄2...
αβγδ... − χ2̄21̄1...

γδαβ...) = 0. (6.190)

Hence, we obtain the invariance to ‘block’ permutations,

χ1̄12̄2...
αβγδ... = χ

2̄21̄1...
γδαβ.... (6.191)

We have already observed such symmetry for Raman transitions and, in gen-
eral, two-photon transitions (Sec. 6.2). Assuming in (6.191)ω1 ≡ ωL > 0, ω2 ≡
−ωS < 0, we obtain, with the help of (6.16),

χL̄LSS̄
αβγδ (ωL = ωL + ωS − ωS) = χS̄ S L̄L

γδαβ (ωS = ωS + ωL − ωL)∗. (6.192)

Strictly speaking, (6.192) leads to the symmetry of only theimaginary parts
of the susceptibilities; however, using relations of Kramers-Kronig type (4.8), one
can show that the real and imaginary parts ofχ(m) have the same symmetry. Re-
lation (6.191) also follows from (6.188), if one considers aresonance parametric
process with the frequenciesω3 = −ω1, ω4 = −ω2:

χ121̄2̄...
αβγδ... = χ

211̄2̄...
βαγδ.... (6.193)

By performing complex conjugation and using partial symmetry (6.14), (6.15),
and (6.16), we obtain (6.191).

Permutation symmetry of susceptibilities, or the Manley-Rowe relations, lead
to several simple integrals of motion for SVA. For instance,in the case of non-
resonance interaction, the coupling coefficientsβ (6.182) are invariant to the per-
mutations of all indices; therefore, the right-hand sides of Eqs. (6.181) for the
intensities differ only in signs. Hence, it follows forαk = 0 that

s1dF1/dz= s2dF2/dz= · · · = smdFm/dz= Im(β1...ma1 . . .amei∆kz), (6.194)

where the sign factorssi = ±1 in the casekiz > 0 are determined by the en-
ergy conservation in the corresponding elementary process. Hence, for systems
(6.180), (6.181) we findm− 1 integrals of motion, which allow the intensities in
m− 1 modes to be expressed in terms of the intensity in a single mode,

Fk(z) = s1skF1(z) +Ck, C1 = 0, (6.195)

and the constantsCk are determined by the boundary valuesFk(0).
If all essential frequencies, including the combination ones, are in the trans-

parency windows (i.e., parametric processes are non-resonance), then there is no
dissipation of the field energy and there must exist one more integral of motion
corresponding to the conservation of the total light energyflux. However, one can
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easily see that the total energy flux is expressed in terms ofCk constants. To this
end, let us multiply relations (6.195) by~ωk and add them,

Iz(z) =
m

∑

k=1

~ωkFk(z) =
m

∑

k=1

~ωkCk. (6.196)

In parametric interactions, there is yet another integral,which defines the
phase difference

ϕ(z) ≡
m

∑

k=1

skϕk(z) (6.197)

of the complex amplitudesak ≡
√

Fk exp(iskϕk) in terms ofFk(z) andϕ(0),

snFn∆k+ 2β(F1 · · ·Fm)1/2 cos[ϕ(z) + ∆kz] = C. (6.198)

Here,n is any of the subscripts 1, . . . ,m. By differentiating the left-hand part of
(6.198), one can see, due to (6.180), (6.194), and the relation β = β∗, that it is
independent ofz.

6.3.6 ◦Derivation of one-dimensional equations

In order to derive equations (6.166) for SVA in theω, q, z-representation, let us
write the frequency components of the fieldEn(r),

E(ω, r) = (1/2)[En(r)δ(ω − ωn) + E∗n(r)δ(ω + ωn)],

which enter the Helmholtz equations (6.151), in terms of themode amplitudes
Ek(z) = 4π|ukz|E(ω, q, z)/L defined in (6.164). Letω > 0 and the polarization type
be fixed, then

2E(ω, r) =
∫

dt
2π

eiωt
∫

d3k
( L
2π

)3

Ek(z) exp(ik · r − iω(k)t)

=

( L
2π

)3 ∫

d3kEk(z) exp(ik · r)δ(ω − ω(k))

=

( L
2π

)3 ∫

d2q
∑

±
|ukz|−1Ek(z) exp[iq · ρ ± ikz(ω, q)z], (6.199)

whereq ≡ {kx, ky}, ρ ≡ {x, y}, ukz ≡ ∂ω(k)/∂kz. The functionkz(ω, q) ≡ kz > 0
is defined here indirectly, through the dispersion law,ω(q, kz) = ω. In deriving
(6.199), we have used the property of the delta function

δ[ f (x)] =
∑

i

aiδ(x− xi), f (xi) ≡ 0, ai ≡ |d f/dx|−1
x=xi

. (6.200)
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Further, assume that only a single mode with a certain sign ofkz is excited effi-
ciently, then

E(ω, r) =
L3

16π3

∫

d2q|ukz|−1Ek(z) exp(ik · r),

k ≡ {qx, qy, kz(ω, q)}.
(6.201)

While substituting (6.201) into (6.151), let us take into account that usually
both absorption and nonlinearity are low. Then,Ek(z) vary very little at a distance
of a wavelength, and the second derivatives can be neglected(for more detail on
the SVA method, see [Akhmanov (1964)]),

|d2Ek/dz2| � |kzdEk/dz|. (6.202)

As a result,

∇ × ∇ × eE(z)eik·r ≈ eik·r{−k × (k × e) + ik × (∇ × e) + i∇ × (k × e)}E(z),

(6.203)

where thek index is so far omitted. The first term here will be further canceled
due to (6.163). Let us take the inner products of (6.151) and (6.203) withe and
use the vector identity

e · {k × (∇ × e) + ∇ × (k × e)} = 2{e× (e× k)} · ∇, (6.204)

then (6.151) takes the form

(

iL3

16π3

)
∫

d2q|ukz|−1eik·r{2c2[e× (e× k)] · ∇ − ω2
ke · ε′′ · e}Ek(z)

= 4πω2
ke · PNL(ωk, r). (6.205)

Here, the vectore× (e× k) ∼ Ek × Hk is parallel to the ray vectorsk, i.e., to
the direction of the energy flux atε′′ = PNL = 0, and∇ = ẑd/dz. Let θ denote
the angle betweensk and ẑ andρ be the angle betweensk andk, which is usually
small; then,

[e× (e× k)] · ẑ= −kcosθ cosρ ≡ −nωk/c ≈ −kz. (6.206)

Equation (6.166) is obtained by acting on (6.205) by the operator
∫

d2ρ exp(−iq′ ·
ρ).
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6.4 Non-parametric interactions

Non-parametric (non-coherent) effects of nonlinear optics, i.e., effects like multi-
photon absorption, are described by odd-order susceptibilities of the form
χ(2m−1)(ω1 = ω1 − · · · − ωm + ωm). The rate of the modek1 amplitude varia-
tion scales then as the local amplitudeE1(z) of the same mode, there is no phase
matching factor exp(i∆kz), and one-dimensional SVA equations (6.166) can be
represented in the form

(

d
dz
+
α1

2
− 2πiω1χ1

cn1
|E2|2 · · · |Em|2

)

E1 = 0, (6.207)

χ1 ≡ χ(2m−1)(ω1 = ω1 − · · · − ωm + ωm)
...e∗1e1 . . .e∗mem. (6.208)

Thus, the real part ofχ1 determines the local variation of the propagation con-
stant (i.e., of the wavelength or the phase velocity) of modek1, which scales as the
local intensities of other modes (induced dispersioneffect), while the imaginary
part ofχ1 determines additional absorption or amplification due to the energy of
other modes (nonlinear or induced absorptioneffect).

Multiplying (6.207) byE∗1 or directly using (6.181), we find the system of
equations for the intensities (Fi ≡ Fiz),

[d/dz+ α1 + α
(m)
1 (z)]F1(z) = 0, (6.209)

where

α
(m)
1 ≡ β(m)

1 F2 · · ·Fm, β
(m)
1 ≡ 1

2~

(

8π~
c

)m
ω1 · · ·ωm

n1 · · ·nm
χ′′1 .

Recall that the signs ofFi andni coincide and are determined by the sign of theki

projection onto thezaxis; therefore,F1 can increase in the course of propagation
only if χ′′1 < 0.

Below, we will consider the basic types of non-parametric effects: nonlinear
absorption (including the saturation effect), Raman amplification and absorption,
spontaneous and stimulated scattering, self-focusing andself-modulation, as well
as their role in optics applications and in spectroscopy.

6.4.1 Nonlinear absorption

Consider the single-mode case. The imaginary part of the cubic susceptibility,

χ(3)′′ ≡ Imχ(3)(ω = ω − ω + ω)
...e∗ee∗e,
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Fig. 6.6 Variation of the intensity of light in the course of propagation and the limitation effect under
two-photon absorption:F̃ is the photon flux density timesβl, whereβ is the two-photon absorption
coefficient, andl is the thickness of the layer.

leads to the violation of the exponential Bouger’s law for the intensity variation in
matter. This effect can be related to two-photon absorption (see (6.146)), in which
χ(3)′′ > 0, and to the saturation of a single-photon resonance, where, according to
(4.99),

χ(3)′′ = −χ(1)′′d2
abT1T2/~

2[1 + (ω0 − ω)2T2
2].

Let a plane monochromatic wave be incident on a transparent (in the linear ap-
proximation) medium orthogonally to the boundary. Then, according to (6.209),

dF/dz+ βF2 = 0, β ≡ 32π2
~ω2χ(3)′′/c2n2 > 0. (6.210)

The solution to this equation can be easily found,

F(z) = F(0)/[1 + βzF(0)]→ 1/βz. (6.211)

The last equation takes place atF(0) � 1/βz and describes thelimitation effect
(Fig. 6.6), in which the intensityF(z) of the transmitted light does not depend on
the incident light intensityF(0).

If F(0) has fluctuations (in particular, due to the photon structure of the field),
the two-photon absorption will smear them, i.e., at the output of the layer photons
will be distributed in time and space more uniformly than at the input (theanti-
bunching effect, see Sec. 7.6).

For two-photon inter-band transitions in semiconductors like CdS,χ(3)′′ ≈
10−13 cm3/erg atλ0 ∼ 0.7 µ andn ∼ 2. Then,β/~ω ≈ 1 cm/GW, i.e., the limi-
tation level atl = 1 cm for I ≡ ~ωF is on the order of 1 GW/cm2. Note that at
such intensities, the structure of the matter can be changed, there can be a phase
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transition and plasma can be created. Suchoptical breakdownin a transparent gas
or condensed matter can start from multi-photon absorptionor ionization.

Ionization of an inert-gas atom requires the absorption of about 10 photons
from the neodimium laser (~ω ∼ 1 eV). According to (6.209), the number of such
transitions per unit volume and time is

Ṅ = dF/dz= (8π/c)10χ(19)′′I10/2~ ∼ (E1/ENL)20, (6.212)

with ENL ∼ ~ω0/d0. Although this value is extremely small, the effect can be ob-
served by focusing a Q-switched laser [Delone (1978)]. Notethat the high power
of the field in (6.212) increases the effect of its fluctuations. Indeed, according to
(7.41), radiation with Gaussian statistics is〈I10〉/〈I〉10 = 10! ∼ 3 · 106 times as
efficient as a non-fluctuating radiation with the same〈I〉.

As it was shown by Keldysh (see Ref. [Elyutin (1982)], Sec. 29), at very large
field valuesE1 or small frequenciesω, so that the conditiond0E1 < ~ω is violated,
the dramatic power dependence of (6.212) onE1 gets slower due to the factor
exp(−~ω0/d0E1), which is typical for the effect of tunnel ionizationin a constant
field.

Power dependence of the form (6.212) can be also violated dueto the dis-
sociation of multi-atom molecules in the field of IR-lasers under a single-photon
resonance with one of the vibrational frequencies of the molecule,ω ∼ Ωv. In the
case of a CO2 laser (λ ∼ 10µ, ~ω ∼ 0.1 eV), dissociation requires several tens
of photons. However, experiments with short pulses, where collision relaxation is
too slow to be revealed, manifest a weak dependence onE1. This effect is proba-
bly caused by the fast transfer of the absorbed energy to a large number of other
vibrations (‘intra-molecular relaxation’). Such effects are studied by a new field
in quantum electronics,IR photochemistry, and used for the laser separation of
isotopes.

In photochrome materials[Barachevsky (1977)], the limitation (darkening) ef-
fect is observed at much lower intensities, even in sunlight, whereI ∼ 0.1 W/cm2,
due to the ‘photochemical’ anharmonicity, which is very strong but inertial.

The lowest nonlinearity threshold is observed for the photographic process,
where the photochemical reaction (creation of blackening centers, silver particles
in AgBr microcrystallites) sometimes requires an energy density (exposure) as
low as It ∼ 10−8 J/cm2. It is noteworthy that for the creation of a single center,
several photons are required (m > 1), i.e., this is a highly nonlinear process. At
small exposures, the degree of blackeningD of a developed negative scales as the
number of centers; therefore,D = ηIm, whereη is the film sensitivity, and we
ignore the statistical variance ofm. The relative intensity decrease for the probe
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light after passing through a negative with a small thickness l is

∆I/I = −D = −α(m+1)l, (6.213)

whereα(m+1) ≡ ηIm/l.
Various types of photochemical nonlinearity are used for holography and, in

general, for information recording. More ‘fast’ optical nonlinearities form the
basis ofdynamical holographyand theoptical phase conjugationeffect (Sec. 6.5)
where recording and reading are simultaneous.

Thus, even a material that is transparent in the usual sense becomes absorbing
or reflecting at sufficiently high intensities. The study of such effects can have
very important applications in connection with the problemof laser thermonuclear
synthesis.

Saturation of a single-photon resonance (Sec. 4.3), on the contrary, leads to the
bleaching of matter (in the absence of the population inversion). In this case, the
intensity fluctuations become more pronounced, which is used for mode locking
in picosecond lasers. According to the two-level model, theabsorption coefficient
α(F) (or, atα < 0, the amplification coefficient) at large intensityF has the form
α0/(1 + F/Fs), with the parameterFs determined by the relaxation timesT1,T2

and the transition momentdab (see (4.96)). Hence, (6.210) is replaced by the
nonlinear transfer equation for a plane wave in the presenceof saturation (i.e., at
a single-photon resonance),

dF
dz
+

α0F
1+ F/Fs

= 0. (6.214)

Note that here, in contrast to (6.210), contributions of an infinite number of odd-
order susceptibilities are taken into account. The solution to (6.214) can be easily
obtained in an indirect form,

−α0z= ln(F/F0) + (F − F0)/Fs, (6.215)

whereF ≡ F(z), F0 ≡ F(0). The two terms in the right-hand side of (6.215) cor-
respond to the exponential and linearF(z) dependencies, respectively (Fig. 6.7).
At strong saturation, the exponential Bouger’s law becomeslinear,

F ≈
(

1− α0z
1+ F0/Fs

)

F0, (6.216)

and in the limitF0 � Fs the matter is completely bleached (compare with the
nonstationary SIT effect described in Sec. 5.1).
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Fig. 6.7 IntensityF of a wave versus the distancez in an amplifying or absorbing medium in the
presence of saturation. At strong saturation, the exponential variation ofF is replaced by a linear one
(the dashed line),α0 is the amplification coefficient for a weak signal,Fs is the signal intensity at
whichα0 is reduced twice.

6.4.2 Doppler-free spectroscopy

Induced absorption due to a two-photon transition and induced bleaching due to
the saturation of a single-photon transition form the basisfor two interesting spec-
troscopic methods that allow one to overcome Doppler’s broadening of resonances
masking the fine details of the spectra.

The scheme of a two-photon Doppler-free spectroscope is shown in Fig. 6.8.
The gas under study is placed into a standing wave with the frequencyω, which
is scanned in the vicinity of the transition half-frequencyω0/2. Due to the linear
Doppler effect, a traveling wave gets a frequency shiftω′ − ω = −k · v, where
ω is the field frequency in a laboratory frame of reference,ω′ is the same in the
reference frame of a molecule moving with the velocityv, k is the field wave vec-
tor. In a standing wave, half of the photons have the wavevector k and half have
the wavevector−k; therefore, their Doppler shifts differ in signs. As a result, if
a two-photon transition occurs through one photon absorbedfrom the ‘forward’
wave and the other photon, from the ‘backward’ one, the shifts are fully compen-
sated, so that the observed resonance will look like a sharp peak with the natural
or collision width, on a broad Doppler’s pedestal.
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(a) (b)

(c) (d)

Fig. 6.8 Doppler-free two-photon spectroscopy: (a) the levels (ω is the scanned laser frequency and
ω′ is the frequency of the observed fluorescence); (b) the scheme of the spectroscope; (c) the idea of
Doppler-shift compensation; (d) the signal as a function ofthe laser frequency.

(a) (b)

Fig. 6.9 Doppler-free saturation spectroscopy: (a) the scheme of the saturation spectroscope; (b) the
observed signal as a function of the laser frequency.

Note that it is convenient to register the resonance indirectly, by observing
single-photon fluorescence accompanying the transition ofa molecule from the
excited level to a third level. A disadvantage of the two-photon spectroscopy
is the necessity to use a strong field, because of the small transition probability,
which leads to a considerable shift of the resonance due to the optical Stark effect
(see (5.48)).

The Doppler-free saturation method [Letokhov (1975)] alsouses counter-
propagating waves with the same frequency (Fig. 6.9). The forward wave has
a larger intensity and causes strong saturation of molecules whose velocities have
appropriate projectionsvz = (ω − ω0)/k on the wave propagation direction. The
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backward probing wave atω , ω0 interacts with another group of molecules,
which have the opposite sign ofvz, and therefore is strongly absorbed. However,
atω = ω0, we havevz = 0, and the resonance is bleached for the probe wave due
to the saturation caused by the forward wave. Hence, the readings of the detector
registering the power of the probe wave after the sample willgrow atω ≈ ω0.
The width of the resonance will be determined by the natural,collision, or field-
induced (4.101) broadening.

For more detailed description of nonlinear spectroscopy, see Refs. [Letokhov
(1975); Akhmanov2 (1981); Bloembergen (1977); Steinfeld (1978); Walther
(1976); Letokhov (1983)]. Let us mention other types of Doppler-free spec-
troscopy: the methods ofquantum beats(Sec. 5.2),molecular beams, buffer gas.
In the last method, an inert gas is added to reduce the free path of the molecules
under study, so that the free path becomes much less than the wavelength. This
leads to a narrow peak with the homogeneous broadening appearing in the center
of a broad Doppler line.

6.4.3 Raman amplification

Consider now non-parametric interaction of two modes with different frequencies.
Here, the most interesting effect isRaman amplification, which is closely related
to the inelastic scattering of light. In the macroscopic description, the scattering
is explained by a resonance of the cubic susceptibilityχ(3)(ω2,−ω1, ω1) atω1 −
ω2 ≡ Ω ∼ Ω0 > 0. Here, the combination frequencyΩ is close to the frequency
Ω0 ≡ ωba of some matter excitation. Usually,Ω0 is one of the eigenfrequencies
of molecular vibrations (Ω0 ∼ 102 − 103 cm−1) or the frequency of an acoustic
wave (Ω0 ∼ 0−0.1 cm−1). In the first case, the scattering is called theRamanone,
in the second one, theMandelshtam-Brillouinone. In piezoelectric crystals, one
also observes light scattering by polaritons,Ω0 . 103 cm−1 (Secs. 4.2, 6.5). In
this case, similar to the case of acoustic-phonon scattering,χ(3) andΩ0 depend on
the angle betweenk1 andk2. Therefore these effects are actually resonance ones,
and they will be considered in more detail in Sec. 6.5.

It is important that the imaginary part of the cubic susceptibility is negative in
the vicinity of the Stokes resonance. As a result, the energyis transferred from
the high-frequency field components to the low-frequency ones. The spectrum
becomes ‘redder’ and the matter is heated; as a result, the population difference
Na − Nb for the transition with the frequencyωba reduces.

Let two polarized plane waves with the frequenciesω1,2 > 0 be incident on
a transparent medium, orthogonally to the boundary. From (6.209), we find the
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equations for the energy fluxes,

dF1/dz+ βF1F2 = 0, (6.217)

dF2/dz− βF1F2 = 0, (6.218)

where

β ≡ −32π2
~k1k2χ

(3)′′/n2
1n2

2 = σ
(2)
st (Na − Nb) > 0, (6.219)

χ(3)′′ ≡ Imχ(3)(ω2 = ω2 − ω1 + ω1)
...e∗2e2e∗1e1

= −Imχ(3)(ω1 = ω1 − ω2 + ω2)
...e∗1e1e∗2e2. (6.220)

The last equation follows from (6.88) (see also (6.146), (6.192)); it provides
conservation of the total number of photons in Raman two-photon transitions,

F1(z) + F2(z) = C. (6.221)

By substituting (6.221) into (6.217), (6.218), we find

F1 =
C

F10 + F20eβCz
F10, (6.222)

F2 =
C

F20 + F10e−βCz
F20, (6.223)

where Fi0 ≡ Fi(0) and C ≡ F10 + F20. At a sufficiently large distance,
F1 → 0, F2 → C, i.e., all photons become Stokes ones (Fig. 6.10). The re-
leased energy is then spent on the excitation of matter; thisphenomenon is used
for the generation of ultrasound via stimulated Mandelshtam-Brillouin scattering.
In practice, the energy conversion is not complete because of several effects we
did not take into account here. In particular, these are spontaneous-stimulated
transitions and the generation of new components with the frequencies 2ω1 − ω2

and 2ω2−ω1, as well as waves with the same frequenciesω1, ω2 but with different
polarization etc.

Let now F10 � F20, then at sufficiently smallz the variation of the high-
frequency field can be neglected (theundepleted-pump approximation). In this
case, (6.223) yields exponential Raman amplification,

F2 = F20 exp(α2z),

α2 ≡ βF10 = −32π2ω2χ
(3)′′I10/c

2n1n2 > 0.
(6.224)

In practice, for strong Raman resonances with molecular vibrations in liquids,α2

is as high as 1 cm−1 at I & 0.1 GW/cm2. Thus,Raman anharmonicity enables light
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(a) (b)

(c) (d)

Fig. 6.10 Raman interaction of two waves at various initial intensities. The horizontal axis is the
distancez in 1/βC units and the vertical one shows the intensitiesFi in units C = F10 + F20, i.e.,
the functionsF̃1 = (1 + αẽz)−1 and F̃2 = 1 − F̃1, whereα = F20/F10 is the relative initial intensity
of the Stokes wave. (a)α = 1/25, the dashed line shows the asymptotics describing the exponential
amplification of the Stokes wave in the undepleted-pump approximation; (b)α = 1/5; (c)α = 1; (d)
α = 5. The anti-Stokes wave, roughly, decays exponentially.

amplification without the population inversion. Raman amplification (or, for anti-
Stokes frequencies, attenuation) is used in spectroscopy,as well as for shifting
the frequency of lasers. If the feedback is added, with the help of a mirror, an
amplifier becomes an oscillator (aRaman laser).

6.4.4 Spontaneous and stimulated scattering

Even without a feedback or an external signal at frequencyω2, with F10 , 0 the
matter will emit incoherent radiation at frequenciesω1 ± Ω0. At α2l � 1, the
radiation at Stokes frequenciesω2, i.e., the intrinsic noise of the Raman amplifier,
can be comparable with the pump,F2 ∼ F1. This effect is calledstimulated
Raman scattering(StRS). The emerging noise field with the central frequency
ω1 − Ω0 plays the role of the pump for the second Stokes component, with the
frequencyω1 − 2Ω0, which excites the third one, and so on. In addition, due to
four-frequency parametric interactions like 2ω1 − ω2 → ω3 ≡ ω1 + Ω0, intense
anti-Stokes components appear, and a quantitative analysis of the phenomenon
becomes difficult.

Let us estimate the power of StRS in the undepleted-pump approximation,
without taking into account higher-order Stokes and anti-Stokes components.
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At F20 = 0, the Stokes field is generated due to spontaneous (to be precise,
spontaneous-stimulated) transitions. According to the Kirchhoff law (Sec. 7.1),
which is valid for two-photon transitions as well [Klyshko (1980)], the intensity
of the noise at the frequencyω2 at the output of the amplifier is (in photons per
mode)

N = (N + 1)(G− 1), (6.225)

where

G ≡ exp(α2l), N ≡ Nb

Na − Nb
=

{

exp

[

~(ω1 − ω2)
κT

]

− 1

}−1

, (6.226)

T is the temperature of the matter, and we assume that the transition a− b is not
saturated.

For passing fromN to F, one has to multiply the photon flux density in one
mode,Nc/L3 (L3 is the quantization volume), by the effective number of modes
for the amplifier or the detector,

∆F =
Nc

L3
∆g =

Nc∆3k
(2π)3

= N
∆ω∆Ω

2πλ2
. (6.227)

Here, we have considered a single polarization type, assumed the refractive index
to be unity, and denoted the effective frequency and solid-angle bandwidths of the
amplifier or the detector as∆ω and∆Ω, respectively.

If the scattering volume has the shape of a thread, witha � 1 andG � 1,
only longitudinal scattering (ϑ ≈ 0) or backscattering (ϑ ≈ 180◦) into the solid
angle∆Ω ≈ A/l2 is considerable.k (Here,A ≡ a2 is the cross-section area of the
scattering volume andl is its length.) Then, from (6.227) we find the relation be-
tween the noise power per unit frequency band,Pω = ~ωFA/∆ω, and the number
of photons per mode,

Pω = ~ωn2
FN/2π, (6.228)

where the dimensionless numbernF ≡ A/λl is called the wave parameter or the
Fresnel number. Substitution of (6.225) into (6.228) yields (α ≡ α2, ω ≡ ω2)

Pω = ~ωn2
F(N + 1)(eαl − 1)/2π. (6.229)

The total output power is found by integrating this expression in ω, which
reduces to the multiplication by the effective noise band∆ω and the substitution
ofω1−Ω0 ≡ ω̄ forω. In the case of weak pumping,∆ω is determined by the width

kIn stimulated Mandelshtam-Brillouin scattering, it is only backscattering that is efficient, since
Ω(0) = 0 (see (6.93)).
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of the Raman resonance, i.e., by the decay rate of molecular vibrations (usually,
∆ω/2πc ∼ 1 − 10 cm−1). At high amplification,∆ω becomes (αl)1/2 times as
narrow (Sec. 2.3)

Thus, according to (6.229), the scattered power depends on the pump inten-
sity as exp(βlF10) − 1. At βlF10 � 1, the exponential dependence turns into a
linear one, and then the scattering is calledspontaneous(SpRS). ReplacingA/l2

in (6.229) by∆Ω, we find the power of spontaneous Stokes scattering per unit
frequency and solid angle,

PωΩ = (~c/λ3)(N + 1)βVF10, (6.230)

whereV = Al is the volume of the scattering area. It is not difficult to verify
that this expression agrees with the above-calculated cross section (6.148) of a
spontaneous-stimulated transition. In contrast to StRS, SpRS has a broad direction
diagram, determined by the convolution ofχ(3) with the polarization unit vectors
(6.220).

At F2 � F1, the role of the pump is played by the lower-frequency field,
and the external (anti-Stokes) fieldF1(z), according to (6.217), (6.218), decays
exponentially. This effect is used in the spectroscopic method ofinverse Raman
scattering. The noise field is then described by (6.225), (6.229) or (6.230) with
the permutation of indices 1, 2 and the replacementsN + 1 → −N , β → −β.
Therefore, spontaneous anti-Stokes scattering with a given frequency is

N/(N + 1) = Nb/Na = exp(−~Ω0/κT)

times as weak as the Stokes scattering, provided that all other conditions are the
same. With a sufficiently strong pumping, the power of the anti-Stokes component
is saturated. The number of photons per mode tends then, according to (6.225), to
N, i.e., the anti-Stokes field acquires the brightness temperature

Te f = Tω1/Ω0 � T. (6.231)

6.4.5 Self-focusing

This single-frequency effect is connected with the ‘self-action’ of a quasi-plane
quasi-monochromatic wave due to the real part of the cubic susceptibilityχ(3) ≡
Reχ(3)(ω,−ω,ω). The main contribution inχ(3) is from the electro-striction and
orientational anharmonicity (then,χ(3) > 0). In an absorptive medium, tempera-
ture anharmonicity (χ(3) < 0) and saturation are added.

With an account for linear susceptibility, the polarization amplitude is (we
assume thatχ(1)′′ = χ(3)′′ = 0)

P = (χ(1) + χ(3)|E|2)E ≡ χ(|E|2)E,
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whereE ≡ E1(r, t) is the slowly varying amplitude, i.e., the envelope. As a result,
the refractive index depends on the local intensity of the field,

n(r, t) ≡ [1 + 4πχ(|E|2)]1/2 ≈ n0 + n2|E|2, (6.232)

wheren2 ≡ 2πχ(3)/n0.
Letχ(3) > 0, then a light beam entering a medium forms a dielectric waveguide

with the profile∆n(r⊥) = n2|E(r⊥)|2 repeating the intensity distribution in the
beam. The propagation velocityc/n at the beam axis will be less than at its edges,
so that the side beams will bend towards the axis (nonlinear refraction), and the
beam will shrink. This will lead to an additional increase in∆n near the axis, as
well as in the rate of the shrinking, so that, as a result, the beam will ‘collapse’ to
a certain minimal size, determined by competing processes (Fig. 6.11).

Fig. 6.11 Self-focusing and defocusing (dashed line): 1, a beam with low power,P � P0, slowly
diverges due to diffraction; 2, a beam with a critical power,P0, becomes ‘channeled’; 3, a beam with
P > P0 ‘collapses’.

One of the competing effects is diffraction. It is described by the divergence
angleϑd ∼ λ0/2n0a, wherea is the initial beam radius andλ0 ≡ 2πc/ω, while the
nonlinear refraction is characterized by the angle of totalinternal reflection due to
the refractive index variation∆n,

ϑNL ≡ arccos
n0

n0 + ∆n
≈

√

2∆n
n0

, (6.233)

where the beam profile is assumed to be rectangular. If refraction and diffrac-
tion compensate each other exactly, then waveguide propagation occurs, with a
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constant beam radius (self-channeling). AssumingϑNL = ϑd/2, one can obtain a
rough estimate for the self-channeling condition:

∆nmin ≡ n2|E|2min ≈ n0ϑ
2
d/8 ≈ λ2

0/32n0a
2. (6.234)

It follows that the waveguide cross-sectionπa2 scales as the inverse intensity of
light. In this case, the power of a self-channeling beam should be

P0 = cn0|E|2mina
2/8 ≈ cλ2

0/256n2. (6.235)

This estimate differsπ2/4 times from a more accurate result, which will be
obtained below from the nonlinear quasi-optical wave equation (6.239) in the
aberration-free approximation, i.e., under the assumption that the wave front is
spherical,

P0 = cλ2
0/64π2n2. (6.236)

Let λ0 = 1 µ, χ(3) = 10−12 cm2/erg (carbon sulfide), andn0 = 1.5, then,
according to (6.236),P0 ∼ 104 W. This estimate shows that self-focusing can
considerably change the features of other nonlinear effects, such as harmonics
generation, StRS, and others, which are usually observed atstrong pumping. Self-
focusing is also related to the important problem of the optical strength of matter,
which determines the maximal intensity of laser beams.

6.4.6 ◦Self-focusing length

Clearly, atP > P0 the beam will compress (self-focus), and under the opposite
condition it will diverge due to diffraction. The length of self-focusing will appar-
ently depend on the value (P − P0)/P0.

In order to find this dependence, consider the solution to thenonlinear wave
equation (6.151) for a monochromatic field ReẼ(r)e−iωt in quasi-optical and
aberration-free approximations (see Ref. [Vinogradova (1979)]). In a homoge-
neous isotropic medium without external sources, the field is transverse, so that
(6.151) leads to the nonlinear Helmholtz equation,

∇2Ẽ + k2(1+ (ε2/ε0)|Ẽ|2)Ẽ = 0, (6.237)

wherek = n0ω/c, n0 =
√
ε0, ε2 ≡ 4πχ(3) = 2n0n2.

Let a polarized light beam with a limited cross-section but with a narrow di-
rection diagram (narrow angular spectrum) be incident on a nonlinear transparent
medium occupying a semispacez > 0. Then the field in the medium can be
searched in the form

Ẽ(r) = eE(r) exp(ikz), (6.238)
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where|e|2 = 1, ez = 0, andE(r) is a slowly (compared toeikz) varying amplitude
(SVA) describing the variation of the local amplitude of field oscillations along
the beam and over its cross section.

In practice, the typical distanceszd, zNL at whichE(z) changes noticeably due
to diffraction and nonlinearity are much greater thanλ; therefore,∂2E/∂z2 is neg-
ligible compared to 2k∂E/∂z (theSVA approximation). In this case, from (6.237)
and (6.238) we obtain anonlinear parabolic equationfor E(r),

2ik ∂E/∂z+ ∇2
⊥E + (k2ε2/ε0)|E|2E = 0, (6.239)

where∇2
⊥ ≡ ∂2/∂x2 + ∂2/∂y2. At ε2 = 0, (6.239) is the basic equation ofquasi-

optics, which studies the propagation of directed wave beams.
If we neglect the variation ofE over the cross-section, (6.239) leads to

E(z) = E(0)ei∆kz, ∆k/k = ∆n/n0 = 16π2χ(3)I/cn3
0, (6.240)

i.e, the nonlinearity only changes the phase velocityω/(k+ ∆k) = c/(n0 + ∆n) of
the plane wave. For CS2, at I = 1 GW/cm2, ∆n = 2 · 10−5.

Now, let the incident wave have a Gaussian profile and a plane wave front
at the boundary:E(x, y, 0) = E0 exp(−ρ2/a2

0), whereρ2 ≡ x2 + y2 anda0 is the
initial radius of the beam. Let us try to find the solution to (6.239) in the form of
a Gaussian beam with a variable radius,a(z) ≡ a0 f (z), and a parabolic wave front
with a variable curvatureβ(z) on the axis,

E(r) = E0 exp[F(z)ρ2 + iϕ(z)]/ f (z), (6.241)

F(z) ≡ ikβ(z)/2− 1/a2
0 f 2(z). (6.242)

Here,ϕ(z) is the additional tokzphase delay on the axis, and the factor 1/ f pro-
vides the dependence of the wave power onz,

P = (cn0/8π)
∫

dx dy|E|2 = (cn0/16)E2
0a2

0. (6.243)

At small ρ, the wave (6.241) has approximately spherical wavefront with the ra-
dius 1/β(z). Below, it will be shown that the curvature of the front and the width
of the beam at a givenzare related through Eq. (6.247).

From (6.241), we find

∂E/∂z= (ρ2F′ + iϕ′ − f ′/ f )E, ∇2
⊥E = 4F(1+ ρ2F)E, (6.244)

|E|2 =
E2

0
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In the last equation, we have passed from a Gaussian profile toa parabolic one,
which is possible for the paraxial part of the beam (theaberration-free approxi-
mation). By substituting (6.244) into (6.239), one can find the functions f , β, ϕ.
Indeed, setting to zero the sum of the coefficients byρ2, we find

2ikF′ + 4F2 − k2/z2
NL f 4 = 0, (6.245)

where

z2
NL ≡ n0a

2
0/4∆n0 (6.246)

and∆n0 is the refractive index variation at pointr = 0. The imaginary part of
(6.245) yields

β = d(ln f )/dz, (6.247)

and the real part,

f ′′ = 1/z2
0 f 3. (6.248)

Here, the following notation has been introduced:

z2
0 ≡ (z−2

d − z−2
NL)−1 = z2

d/(1− P/P0) = z2
NL/(P0/P − 1),

zd ≡ ka2
0/2, z2

d/z
2
NL = P/P0 = (∆n0/n0)(ka0)2.

(6.249)

The z0 parameter determines the length at which the beam ‘collapses’, and the zd
parameter has the meaning of the ‘diffraction’ length; here,P0 andP are given
by Eqs. (6.236) and (6.243).

Hence, we finally obtain thez dependencies for the width and the curvature
radiusR(z) of a parabolic beam due to its self-action,

a(z)/a0 = f = (1+ z̃2)1/2, (6.250)

R(z) = 1/β = z(1+ z̃−2), (6.251)

with z̃ ≡ z/z0. The functionϕ(z) can be found from the coefficients of the ze-
roth order inρ appearing after the substitution of (6.244) into (6.239). The field
amplitude in the beam has the form

E(r) =
E0

(1+ z̃2)1/2
exp













− ρ2

a2
0(1+ z̃2)

+
ikρ2

2z(1+ z̃−2)
+ iϕ(z)













. (6.252)

This solution atP � P0 (i.e., atz0 ≈ zd) describes the so-called TEM00 wave,
which is the simplest solution to the nonlinear parabolic equation,

ETEM =
E0

1+ iz/zd
exp













− ρ2

a2
0(1+ iz/zd)













. (6.253)
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Fig. 6.12 Dependence ofz0 (in ka2
0/2 units) on the beam powerP (in the units of critical powerP0),

given by the expression|1− P̃|−1/2. At P̃ < 1, z0 has the meaning of the beam diffraction length, and
at P̃ > 1, it is the ‘collapse’ length. The latter, atP̃ � 1, is approximately equal to the ‘nonlinear’
lengthzNL (dashed line).

(Note that 1+ iz = (1 + z2)1/2 exp(i arctanz), i.e., here,ϕ(z) = − arctan(z/zd).)
The diffraction lengthzd determines the distance at which the cross-section of the
beam is doubled and the front radius achieves its minimal value 2zd = ka2

0 ≡ b (the
so-calledconfocal parameterof the beam). AtP → P0, the role ofzd is played by
z0, and diffraction slows down. Finally, atP > P0, the parameterz2

0 and, hence, ˜z2,
becomes negative, the beam is narrowed, and its width and thewavefront radius
turn into zero atz = |z0|; at P � P0, |z0| ≈ zNL (Fig. 6.12). Certainly, quasi-
optical aberration-free approximation describes correctly only the initial stage of
self-focusing; however, the typical self-focusing lengthshould be on the same
order of magnitude as|z0|.

In the vicinity of the focus, an important role can be played by higher-order
nonlinearitiesχ(5), . . . and multi-frequency nonlinear effects, for instance, stimu-
lated scattering. Note that in the case of pulsed fields, the focus position|z0(t)| is
time-dependent: as the intensity increases, the focus moves from infinity to some
minimal distance, and then it goes to infinity again (themoving focus).

Next, let a wave with a plane wavefront and a complicated profile
|E(x, y, 0)|2 ≡ I (x, y) (a wave with transverse amplitude modulation) be inci-
dent on a nonlinear medium. In the course of propagation, diffraction tends to
smoothen the profile inhomogeneities, while the nonlinear refraction, in contrast,
makes them more pronounced (self-modulation). Qualitatively, these effects are
described by (6.250) ifa(z) is understood as the width of an inhomogeneity. As a
result, a wave can split in numerous waveguided filaments, each of them carrying
a power ofP0. This splitting is an example of dynamictransverse instabilityfor
waves in a nonlinear medium and is similar to the formation ofsolitons in the case
of longitudinal instability(see below).
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Clearly, atχ(3) < 0, self-defocusing should take place (Fig. 6.11). It is de-
scribed by the above-given theory with negativeP0 and z2

NL. This effect can
be easily observed in continuous-wave laser beams by addingabsorbing dyes to
transparent solutions.

In two-frequency (and/or two-wave) experiments,mutual focusingor defocus-
ing is observed due to Reχ(3)(ω2 = ω2 − ω1 + ω1): an intense light beam with a
frequencyω1 turns a plane-parallel plate into a collecting or dispersing lens for
the waveω2. The same frequency component of the cubic susceptibility describes
induced dispersionand theoptical Kerr effect: a plane pump with the frequency
ω1 turns an isotropic medium into a birefringent one for the second wave, with
the frequencyω2. The optical Kerr effect and mode-locked lasers enable the man-
ufacturing of optical shutters with switching times on the order of 1 ps.

Consider now a plane quasi-monochromatic wave with the time-modulated
envelopeE(t). In a linear medium, within the first approximation of the disper-
sion theory,E(t) propagates without changing its shape, with the group velocity
u = ∇ω(k). In the framework of the second approximation,d2ω/dk2 , 0, and
the intensity spikes get spread; this effect is similar to the diffraction smooth-
ing of transverse inhomogeneities. In a nonlinear medium, self-action can lead
to an inverse effect: atχ(3)d2ω/dk2 < 0, pulses with sufficient energy are com-
pressed (self-compression, see Ref. [Vinogradova (1979)], Sec. 9.5). A quasi-
monochromatic wave with a small initial modulation splits,as a result of self-
modulation, in separate pulses with fixed energy and shape, the solitons,l , which
are analogues of waveguided filaments in the case of self-focusing. In practice,
such effects are observed for picosecond pulses, so that inertial nonlinearity mech-
anisms (for instance, the temperature one) are not manifested.

6.5 Parametric interactions

In the case of a parametric interaction ofmmodes with positive frequenciesωi , the
stationarity condition has the form of the energy conservation law for anm-photon
process,

∆ω ≡
m

∑

i=1

siωi = 0, (6.254)

wheresi = ±1, ωi = ω(ki) > 0. According to the one-dimensional model, the
waves interacting in an infinite layer should satisfy the transverse momentum con-

lRecall that light solitons (with the area 2π) are also formed in the range of resonance absorption due
to the two-level anharmonicity (Sec. 5.1)
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servation law,

∆kx = 0, ∆ky = 0, (6.255)

where∆k ≡ ∑

si ki . Formally, one obtains (6.254) and (6.255) by doing the three-
dimensional Fourier transformation of Maxwell’s equations (Sec. 6.3). In experi-
ment, the interaction timeτ and cross-sectionA ≡ a2 are always limited; therefore,
(6.254) and (6.255) are valid only up to an accuracy of 1/τ, 1/a, respectively,

|∆ω| . 1/τ, |∆k⊥| . 1/a. (6.256)

In this section, as a rule, for simplicity we will neglect linear absorption
(αi = 0). Then, interaction ofm modes can be described within the linear ap-
proximation, according to (6.173), by a system of linear equations,

dE∗1
dz
=

2πs1ω1

icn1
P∗1(z)ei∆z, (6.257)

where

P∗1(z) = χ(m−1)(s1ω1; s2ω2; . . . ; smωm)E2(z) · · ·Em(z), (6.258)

Ei = Eki at si = 1 andEi = E∗ki
at si = −1, χ(m−1) is the convolution of the

nonlinear susceptibility tensor with the polarization unit vectors,n ≡ ncosθ cosρ,
n is the refractive index,θ andρ are the angles formed by the Poynting vector with
thez axis and thek vector, respectively,∆ ≡ ∆kz. Equations forE2, . . . ,Em have
a similar form and can be obtained by subscript permutations.

It follows from (6.257) that parametric interaction is efficient only at suffi-
ciently small|∆|, i.e., under the condition that the longitudinal momentum of the
field is preserved,

|∆| ≡ |
∑

sikiz| < 1/l. (6.259)

The phase matching condition∆k ∼ 0 reduces dramatically the number of
essential ‘interactions’, i.e., combinations{ki , νi , si}, especially in an anisotropic
medium where the refractive indexnν(ω, ϑ, ϕ) = ck/ων(k) depends not only on
the frequency, but also on the polarization indexν = 1, 2 and the direction̂k ≡
k/k ≡ {ϑ, ϕ}.

6.5.1 Undepleted-pump approximation the near field

Let k1z > 0 andE1(0) = 0, i.e., the mode labeled by 1 is not excited by an ex-
ternal source. If the nonlinearity, or the layer thickness,or the incident pump
fields Ei(0), i = 2, . . . ,m, are sufficiently small, one can neglect the effect of the
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nonlinearity on the pump, i.e, assume that the nonlinear polarizationP1(z) at fre-
quencyω1 in the right-hand side of (6.257) is a given function of the coordinates,
determined by the spatial distribution of free incident fields.

For a given polarization, taking into account definition (6.168), from (6.257)
we find the expression for the amplitude of the mode (k, ν) excited in a homoge-
neous transparent linear medium by a Fourier component of the polarization,

Eν(k) =
8π2ikuk

L3n2
k cosρk

∫

V
d3r e−ik·reν · P(ωk, r), (6.260)

whereuk is the group velocity. Note that (6.260) determines the radiation field
outside of the radiating areaV regardless of its shape.

In the case of a plane-parallel layer with the thicknessz, it follows from (6.257)
that

E∗1(z) = −2πs1ω1χ
(m−1)

cn1
E2(0) . . .Em(0)

ei∆z− 1
∆

, (6.261)

I1z(z) =

(

8π
c

)m ω2
1|χ(m−1)|2z2

16n1 . . .nm
sinc2

(

∆z
2

)

I2z(0) . . . Imz(0), (6.262)

whereIkz = cnk|Ek|2/8π = ~ωkFkz is the longitudinal component of the energy
flux density in modek and sinc(x) ≡ (sinx)/x. Eqs. (6.261), (6.262) give the
efficiency of parametric frequency conversion.

Note that the ‘new’ mode (k1, ν1) ≡ k1 is determined through the pump modes
k2, . . . , km by conditions (6.254), (6.255) only up to the polarization typeν1 and
the signσ1 of the longitudinal componentk1z (see (6.165)). In other words, each
combination of polarized pump waves

∑

si ki , i = 2, . . . excites, in principle, four
waves with the frequencyω1, which differ by indicesν1 = 1, 2 andσ1 = ±1.
However, the factor sinc2(∆z/2) in (6.262) usually strongly suppresses the wave
with k1z < 0 (about (k1zz)2 times, see Fig. 6.13).

Thus,in the undepleted-pump approximation, excitation of new waves scales
as the product of the incident intensities, the squared nonlinear susceptibility,
and, provided that phase matching is satisfied (|∆|z � 1), as the square of
the interaction length.In the case of the opposite inequality,z2 is replaced by
(∆/2)−2 sin2(∆z/2) ∼ 2/∆2, i.e., if the phase velocities are not matched, the ampli-
tude of the new wave periodically turns to zero. The distanceπ/|∆|, at which the
intensity of the wave varies monotonically, is called thecoherence length.
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Fig. 6.13 In the case of parametric frequency conversion,ω2 + ω3 − ω4 → ω1, there are two waves,
k(±)

1 , satisfying the energy and transverse momentum conservation laws. However, the coherence

lengthπ/∆(−) for thek(−)
1 wave is extremely small, on the order of the wavelength.

6.5.2 The far field

In practice, Eqs. (6.261), (6.262), as well as, generally, the one-dimensional ap-
proximation with a finite number of transverse modes, determine only the near
field of the nonlinear sample, where the diffraction effects are not important due
to the finite cross-sectionA of the interaction area. However, in the undepleted-
pump approximation it is not necessary to use the mode expansion and the one-
dimensional model. Indeed, the problem is reduced to solving a single wave
equation (6.151) at a given distribution of monochromatic sourcesP(ω, r), i.e.,
to finding the Green’s functionG(ω, r) of the Helmholtz equation. This function
has especially simple form in the case of a homogeneous isotropic medium and a
large distancer from the sources to the observer.

We have already defined the Green’s function of the Maxwell equations in the
ω, k representation (see (4.23)). One can show that its three-dimensional Fourier
transformation yields, in the first order inλ/r, i.e., for thewave field, the expres-
sion

G(ω, r) =
ω2

c2r
eikr
Π( r̂), (6.263)

whereΠαβ = δαβ − r̂α r̂β is the projector onto the plane orthogonal to the direction
r̂ ≡ r/r andk ≡ n(ω)ω/c. Let r � kA (the far field), then (6.263) leads to the
following relation between the field and the external polarization (compare with
(6.260)):

E(ω, r) =
ω2

c2r
eikr

∫

v
d3r ′ e−ik·r′

Π( r̂) · P(ω, r′), (6.264)

wherek ≡ kr̂ andr connects some point inside theV area containing the sources
and the observation point. Thus,at large V the far field scales as the Fourier
transform of the external polarization.
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Consider generation of a field with the frequencyω1 by an undepleted pump
consisting ofm− 1 plane waves. AtV → ∞, the nonlinear polarization is also a
plane wave, its frequency and wave vector being

ω1 = −
m

∑

i=2

siωi , K ≡ −
m

∑

i=2

si ki . (6.265)

Let the tensorχ(m−1) be nonzero within a rectangular box with dimensionsa, b, c,
then, ats1 = 1, (6.264) yields

E∗(ω1, r) =
ω2

1

c2r
e−ik1r (Π · χ(m−1)...E2 . . . Em)V f( r̂), (6.266)

f ( r̂) ≡
∫

d3r ′ ei∆k′ ·r′/V = sinc(∆kxa/2)sinc(∆kyb/2)sinc(∆kzc/2), (6.267)

∆k ≡ n1ω1 r̂/c− K. (6.268)

The direction diagram of the fieldω1 at fixedK is mainly determined by the
function f ( r̂). For an efficient frequency conversion, the length ofK should be
close ton1ω1/c = k1; in this case, the radiation intensity is maximal in the di-
rectionK (for which f ≈ 1) and has a considerable value within a solid angle of
aboutλ2

1/A, whereA is the area of theV projection onto a plane orthogonal toK
(Fig. 6.14).

Fig. 6.14 To the definition of the direction diagramI(ϑ) for the field emitted by a polarization with
the frequencyω and the wave vectorK from a domain with the dimensionsa,b, c: the radiation has a
noticeable intensity only if the observed wave vectork belongs to a domain of dimensions 1/a, 1/b, 1/c
near the pointK.
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Fig. 6.15 Angular dispersion of the refractive indexne(θ) for the extraordinary wave enables the
frequency dispersion to be compensated and the phase matching conditionno(ω1) = ne(2ω1, θ1) to be
satisfied for second-harmonic generation, as well as for other three-wave interactions.

6.5.3 Three-wave interaction

Let us consider, in the framework of the one-dimensional model, the interaction
of three waves or modes with the frequenciesω1 + ω2 = ω3, due to the quadratic
susceptibility, which has a noticeable value only in piezoelectric crystals. For the
phase matching condition,∆k ≡ k3−k2−k1 = 0, to be satisfied in the transparency
range, the crystal should be birefringent and have a certainorientation of optical
axes with respect to the incident beams (Fig. 6.15).

Let us re-normalize the wave amplitudes so that their squares are equal toFi ,
the longitudinal photon flux densities in~ωi units (see (6.178)). From (6.257) (or
from (6.180)) it follows, ats1 = s2 = −s3 = −1 and in the case of all waves
co-propagating,ni > 0, that

da1/dz= iβei∆za∗2a3, (6.269)

da2/dz= iβei∆za∗1a3, (6.270)

da3/dz= iβe−i∆za1a2, (6.271)

where

β ≡ (32π3
~ω1ω2ω3/c

3n̄1n̄2n̄3)1/2χ, (6.272)

∆ ≡ ∆kz, χ ≡ χ(2)(ω3 = ω2 + ω1)
...e3e2e1. (6.273)

Here, the convolutionχ can be considered as real and invariant to a simultaneous
permutation of the frequencies and the polarization unit vectorsei (Sec. 6.1).

After multiplying these equations bya∗i , we see that the rates of flux variations,
dFi/dz, are equal for modes 1 and 2, while for modes 1 and 3 they have opposite
signs. Thus, the energy flux

∑

~ωiFi is only redistributed, without absorption,
between the three modes, and the share of each mode scales as its frequency (the
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Manley-Rowe relations, see Sec. 6.3),

∆F1 = ∆F2 = −∆F3, (6.274)

where

∆Fi ≡ Fi(z) − Fi(0). (6.275)

There is also the third independent integral of motion (6.198) for Eqs. (6.269)–
(6.271), determining the phase difference. These integrals allow one to solve
Eqs. (6.269)–(6.271) in terms of a single quadrature. As a result, theai(z) depen-
dence is given by elliptic functions describing a periodic energy exchange between
the three modes [Bloembergen (1965)]. Here, we will consider the limiting cases
where one of the waves is much stronger than the other two (theundepleted-pump
approximation, or theparametric approximation).

6.5.4 Frequency up-conversion

Let F10 � F2, F3 (undepleted low-frequency pump),a10 = a∗10, and∆ = 0, then
(6.270), (6.271) yield

da2/dz= iγa3, (6.276)

da3/dz= iγa2, (6.277)

γ ≡ βa10 = (32π3ω2ω3/c
3n̄1n̄2n̄3I10)1/2χ. (6.278)

These equations are easily solved with the help of the substitutionai = cieiγz:

a2 = a20 cosγz+ ia30 sinγz,

a3 = a30 cosγz+ ia20 sinγz.
(6.279)

Thus, modes 2 and 3, similarly to coupled pendulums, periodically (at a dis-
tanceπ/2γ) exchange energy (in~ωi units) according to (6.274) (Fig. 6.16).

Let us estimate a typical length of the parametric interaction, zNL ≡ 1/γ ≈
λ0n/4π2χE10. Let λ2 = λ3 = 1 µ, ni = 1, χ = 10−8 G−1, I10 = 100 MW/cm2, then
zNL = 0.3 cm.

At a30 = 0, it follows from (6.279) that

F3 = F20 sin2(z/zNL), F2 = F20 cos2(z/zNL). (6.280)

This equation describes parametricsum-frequency generation, or frequency up-
conversion, which is used, in particular, for visualizing IR radiation. At the inter-
action lengthz = πzNL/2, the output intensity of the converter reaches its maxi-
mum, equal (in photon units) to the input intensity. The conversion efficiency is
then equal, in ordinary units, toω3/ω2 > 1.
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(a) (b)

Fig. 6.16 Parametric interaction in the case of a low-frequency undepleted pump. (a) The intensity
versus the distancez; (b) two versions of the radiation spectrum (arrows show thedirection of the
energy transfer).

Equation (6.280) can be easily generalized to the case∆ , 0. The sum-
frequency generation is then described by the equation

F3 = F20[γ sin(Γ′z)/Γ′]2, Γ′ ≡ (γ2 + ∆2/4)1/2. (6.281)

Hence, at∆2 � 4γ2 we obtain (6.262) once again. Comparison of (6.280),
(6.281) with (6.261), (6.262) shows that the approximationof two undepleted
pumps,a1,2 = const, is applicable only at (2γ/∆)2 � 1. Then, the period of
spatial modulation is determined by the wave mismatch∆ and not by the pump
intensityγ.

6.5.5 Parametric amplification and oscillation

Let F30 � F1, F2 (high-frequency pump), then, instead of (6.276)–(6.278),we
have

da1/dz= iγa∗2, da2/dz= iγa∗1,

γ ≡
(

32π3ω1ω2

c3n̄1n̄2n̄3
I30

)1/2

χ(−ω3;ω1, ω2)
...e3e1e2.

(6.282)

The solution to this system is (compare with (6.279))

a1 = a10 coshγz+ ia∗20 sinhγz,

a2 = a20 coshγz+ ia∗10 sinhγz.
(6.283)

If a10 = 0, then (compare with (6.280))

F1 = F20 sinh2 γz≡ (G− 1)F20,

F2 = F20 cosh2 γz≡ GF20,
(6.284)
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Fig. 6.17 Parametric amplification and difference-frequency generation (high-frequency pumping,
forward interaction). (a) Dependence of the intensity on the distance; (b) typical frequency spectrum
and the directions of the energy transfer; (c) relation between the wave vectors at phase matching.

Fig. 6.18 Optical parametric oscillator.

whereG is the parametric amplification coefficient. These equations describe the
effects ofdifference-frequency generation,ω3 − ω2 → ω1, andparametric ampli-
fication. In contrast to the case of a low-frequency pump, here the intensities grow
exponentially (Fig. 6.17). Note that (6.284) satisfies the Manley-Rowe equations
(6.274),∆F1 = ∆F2 = (G− 1)F20.

It is not difficult to show that in the case of∆ , 0, amplification and difference-
frequency generation with high-frequency pumping are described by (compare
with (6.281))

G = 1+ [γ sinh(Γz)/Γ]2, Γ ≡ (γ2 − ∆2/4)1/2. (6.285)

Note that atγ2 < ∆2/4, the exponential growth turns into beats.
If there is a positive feedback at the frequencyω1 or/andω2 (Fig. 6.18), the

amplifier turns into anoptical parametric oscillator(OPO). One of the frequen-
cies (for instance,ω1) is then called thesignal one and the other one (ω2), the
idler one. Certainly, the oscillation requires that the absorption and other losses
(which we ignore here) are compensated for by the parametricamplification. The
OPO oscillation frequencies are mainly determined by the phase-matching con-
dition, i.e., by the refractive indicesni ; therefore, at a fixed pump frequencyω3
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(a) (b)

Fig. 6.19 Parametric amplification and difference-frequency generation in the case of backward in-
teraction. (a) Intensity (inF10 units) as a function of the coordinatez (in 1/γ units) atF2l = 0 and
γl = 1.5; the parametric amplification coefficient is 1/ cos2(1.5) ≈ 200; (b) the phase-matching trian-
gle for backward interaction.

the OPO can be smoothly tuned by varying the orientation or temperature of the
crystal. The existing pulse-pumped OPOs cover the rangeλ ≈ 0.4–20µ, which
conveniently complements the range of tunable dye lasers. By optimizing the
parameters of the crystal, the focused pump beam, and the cavity, one can obtain
oscillation even in the cw regime.

6.5.6 Backward interaction

Let the pump and signal waves propagate in the layer ‘from left to right’, k1z, k3z >

0, while the idler wave, ‘from right to left’,k2z < 0. The phase matching condition
can then be satisfied due to strong birefringence or anomalous dispersion. For the
backward wave,ϑ2 > π/2 andn2 < 0,m so that instead of (6.282) we have

da1/dz= iγa∗2, da2/dz= −iγa∗1. (6.286)

Let the layer have a thicknessl, then the boundary conditions have the form
a1(0) = a10, a2(l) = a2l . It is easy to check that the solutions to (6.286) are
(Fig. 6.19)

a1 = {a10 cos[γ(l − z)] + ia∗2l sinγz}/ cosγl,

a2 = {a2l cosγz+ ia∗10 sin[γ(l − z)]}/ cosγl,
(6.287)

whereγ is assumed to be real. Atγl → π/2, these solutions tend to infinity, i.e.,
oscillations are generated, despite the absence of the mirrors. One can say that
backward interaction provides a distributed feedback (a similar effect takes place
in a backward-wave tube).
mTo be precise, the sign ofn ≡ ncosθ cosρ is determined by the angleθ = ϑ±ρ between the Poynting
vector and thezaxis; however, in the transparency range, the anisotropy angle does not exceed several
degrees, and we neglect it here.
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6.5.7 Second harmonic generation

Second harmonic generation (SHG) in the one-dimensional approximation and in
the absence of linear absorption is described by equations (6.270), (6.270), with
the subscript replacement 3→ 2→ 1,

da1/dz= iβei∆za∗1a2, (6.288)

da2/dz= iβe−i∆za2
1/2, (6.289)

where

β ≡ (64π3
~ω3

1/c
3n̄2

1n̄2)1/2χ, ∆ ≡ k2z − 2k1z, (6.290)

χ = χ∗ ≡ χ(2)(−ω1; 2ω1,−ω1)
...e1e2e1 = 2χ(2)(−2ω1;ω1, ω1)

...e2e1e1. (6.291)

The factor 2 in the last expression was added according to relation (6.13).
One can easily see that these equations satisfy the condition of the field energy

conservation, which in this case coincides with the Manley-Rowe equation,

|a1|2 + 2|a2|2 = C1, (6.292)

and the factor 2 is due to the fact that each second-harmonic photon has an en-
ergy twice as large as the pump photon energy. The second integral of equations
(6.288), (6.289), according to (6.198), has the form

|a1|2[∆ − 2β|a2| cos(ϕ2 − 2ϕ1 + ∆z)] = C2, (6.293)

whereϕi are the phases of complex amplitudesai .
In the general case, the solutions to equations (6.288), (6.289) describe spa-

tially periodic energy exchange between the modes of the pump and the second
harmonic. (These solutions can be expressed in terms of the elliptic sine func-
tion [Bloembergen (1965); Dmitriev (1982)]).

Here, we will only consider the most important and simple case where∆ =
0, a2(0) = 0. Then, assuming in (6.293)z = 0, we find thatC2 = 0 and, hence,
at anyz we have cosϕ = 0, whereϕ = ϕ2 − 2ϕ1. Thus, the phase shift between
the modes is constant. One can easily show that the phases areconstant as well.
Indeed, let us substitute into (6.289)ai ≡ bi exp (iϕi), bi > 0:

db2/dz= (1/2)βb2
1 sinϕ = (1/2)|β|b2

1, (6.294)

dϕ2/dz= (βb2
1/2b2) cosϕ = 0. (6.295)

From the second equation, it follows that bothϕ1 andϕ2 are independent ofz, and
from the first one, that the energy transfer direction (from the first harmonic into
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Fig. 6.20 Second harmonic generation. The horizontal axis shows the distance (in 1/γ units), the
vertical axis corresponds to photon fluxes for the pump and the harmonic (inF10 units). At z̃ � 1,
every two pump photons turn into a single double-frequency photon.

the second one or vice versa) depends on the signs ofβ andϕ. In the case consid-
ered,b2 is increasing (from zero); therefore,β sinϕ > 0, i.e.,ϕ = (π/2) signχ.

Substituting (6.292) withC1 = b2
10 into (6.294), we easily find the solution

db2/dz= |β|(b2
10− 2b2

2)/2, (6.296)

z=
1
|β|

∫

db2

b2
10/2− b2

2

=

√
2

|β|b10
arctanh

√
2b2

b10
. (6.297)

Hence,

b2 = (1/
√

2)b10 tanhγz, b1 = b10/ coshγz, (6.298)

where

γ ≡ |β|b10/
√

2 = 2(2π/cn̄1)3/2ω1|χ|I1/2
1z . (6.299)

Thus,the intensity of phase-matched second harmonic I2z(z) increases mono-
tonically astanh2 γz, and atγz � 1 it achieves the initial intensity of the pump
I1z(0) (Fig. 6.20). The pump intensity goes in this case down to zero as 1/ cosh2 γz,
with its phase being constant. Atz= 1/γ, the SHG efficiencyη is 58% in the en-
ergy and 29% in the photon number. At∆ , 0 or a2(0) , 0, monotonic solutions
are replaced by periodic ones, andη reduces.

In practice, powerful pulsed lasers provideη as high as several tens per cent.
Note that phase-matched SHG in piezoelectric crystals has important applications,
such as shifting laser frequencies up by as much as an octave.

Let us also mention much weaker effects that do not require phase match-
ing: SHG under the reflection from a medium without the center of symme-
try [Bloembergen (1965)] and incoherentscattering of light at frequency2ω by
non-centrosymmetric molecules [Kielich (1980)], as well as by any molecules,
atoms, and free electrons, due to the ‘magnetic’ anharmonicity (Sec. 6.2).
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Note that the conditionE2(+0) = 0 accepted above does not fully correspond
to an ordinary experiment where it is the incident second-harmonic field that is
zero, while the transmitted and reflected fieldsE2(+0), E2(−0) are non-zero due
to the requirement that the tangent components of the fieldsE2,H2 should be
continuous at the boundary [Bloembergen (1965)]. However,in practiceE2(±0)
are indeed very small.

6.5.8 The scattering matrix

Parametric interaction between two modes in a nonlinear layer, considered in the
undepleted-pump approximation, leads to alinear relation between the input and
output amplitudes, which in the general case can be written as

a1 = g11a10+ g12a
∗
20, a∗2 = g21a10+ g22a

∗
20. (6.300)

The coefficientsgi j form the two-dimensionalscattering matrixof the sample,
which depends on the layer lengthl, absorptionαi , nonlinearityχ, the pump am-
plitudea30, the wave mismatch∆ and so on. If reflections from the layer bound-
aries are taken into account, the matrix becomes four-dimensional, while in the
presence of diffraction (finite transverse dimensions ofA) it becomes infinitely
dimensional.

The scattering matrix should possess a certain symmetry, which follows from
the general principles, in particular, from the Manley-Rowe relations (6.274). In
the case where the input fieldsa1 and a2 are statistically independent, photon
exchange between the modes is described by theenergy scattering matrix Gi j ≡
|gi j |2,

F1 = G11F10 +G12F20, F2 = G21F10+G22F20. (6.301)

Substitution of (6.301) into (6.274) yields

(G11 − 1)F10+G12F20 = (G22− 1)F20+G21F10.

BecauseF10 andF20 can be varied independently, the scattering matrix of a trans-
parent layer should satisfy the relations

G11 − 1 = G21, G22− 1 = G12. (6.302)

The system (6.282) is symmetric with respect to indices 1, 2; therefore,G11 =

G22 ≡ G and there is only a single independent element of the energy scattering
matrix, the transfer coefficientG. As a result, (6.301) takes the form

F1 = GF10+ (G− 1)F20,

F2 = GF20+ (G− 1)F10.
(6.303)



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

220 Physical Foundations of Quantum Electronics

Fig. 6.21 Spontaneous multi-photon processes can be taken into account in the semiclassical the-
ory, by adding a single extra photon into the output modes (the corresponding arrows are directed
downwards). The figure shows the direct and inverse three-photon parametric processes.

6.5.9 ◦Parametric down-conversion

The quantum theory, in principle, allows a three-photon transition in which trans-
parent matter (an atom or crystal) absorbs a photon from modek3 and emits a
pair of photons into modesk1 andk2, returning into its initial state (Fig. 6.21).
The probability of such a transition scales as (N1 + 1)(N2 + 1)N3, whereNi are
the initial photon numbers per mode and the unities appear due to the quantum
fluctuations of the mode amplitudes in the ground state (Chapter 7). The prob-
ability of the inverse process, where photons in modesk1, k2 are absorbed and a
photon is emitted into modek3, scales asN1N2(N3 + 1). As a result, the rate of
pair generation scales as

Ṅ1 = Ṅ2 = −Ṅ3 ∼ (N1 + N2 + 1)N3 − N1N2. (6.304)

Hence, in the first order inN3, we have

N1 − N10 = N2 − N20 ∼ N10 + N20 + 1. (6.305)

Thus, due to the effect of the radiation at frequencyω3, the matter generates pairs
of photons with frequenciesω1 andω2 = ω3 − ω1 distributed within a broad
range, from zero to the incident radiation frequency. In thecase of macroscopic
matter, the frequencies and directions of emission are related through the phase
matching conditionk3 = k1 + k2. This effect, observed in birefringent crystals, is
calledparametric down-conversion(PDC)n orparametric fluorescence[Zhabotin-
sky (1969); Klyshko (1980); Akhmanov (1971)]. PDC can be interpreted as the
quantum noise of an optical parametric amplifier.

nEditors’ note: in the original text, D. N. Klyshko used the term ‘parametric scattering’, suggested
in his pioneering work (1967) on the theory of PDC [Klyshko (1980)]. Later, the term ‘parametric
down-conversion’ became widely accepted.
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The scaling factor in (6.305) should be equal to the conversion coefficient
G12 = G − 1, which was found in (6.285) in the framework of classical nonlinear
optics. Hence (compare with (6.303)),

N1 = N10 + (G− 1)(N10+ N20 + 1) = GN10 + (G− 1)(N20+ 1). (6.306)

A similar expression can be obtained forN2 through the permutation of indices
1, 2. Here,G− 1 does not have to be linear in the pump intensity any more.

The obtained expression allows the following rule to be formulated. In or-
der to take into account spontaneous emission in the classical description of a
parametric amplifier, one should add an extra single photon into each input idler
mode.o The same result follows from (6.306) in the case of a more general trans-
formation,

N10→ N10 + p, N20→ N20 + q, N1 → N1 + p,

wherep+q = 1, 0 6 p 6 1. In particular, one can add half a photon to all numbers
of photons per mode.

According to (6.306), quantum noise yieldsG−1 photons in each output mode
of a parametric amplifier, withG being the amplification coefficient for this mode.
A similar result (Kirchhoff’s law) is valid for quantum and Raman amplifiers (see
(7.7) and (6.225)).

Note that atN2 = N3 = 0, it follows from (6.304) that three-frequency up-
conversion with low-frequency pumping has no contributionfrom quantum fluc-
tuations. In the case of four-frequency interaction, it is possible that two pump
photons decay in a pair of photons with the frequenciesω and 2ω3−ω, occupying
the range 0 – 2ω (hyper-parametric scatteringor light scattering by light).p

Let us pass from photon numbers per mode to the spectral brightness. Using
(6.306) and (6.227), we find that atNi0 = 0 (we assume thatρ1 = 0)

IωΩ(k1) ≡ ~ω1FωΩ(k1) = (~ω1/2πλ2
1)[G(k1) − 1], (6.307)

whereFωΩ ≡ dF/dωdΩ is the flux of photons in thek1 direction with the fre-
quencyων(k1) per unit solid angle, unit area (orthogonal tok1) and unit circular
frequency. The valueIωΩ(k, r) is called thespectral brightness(sometimes, sim-
ply the intensity) of incoherent radiation. Recall that the brightness, in the case of
a transparent medium, does not vary in the direction of lightpropagation.

oAn ‘idler’ mode, with respect to the considered ‘signal’ mode with the frequencyω1, is the mode
with the frequencyω2 = ω3 − ω1.
pEditors’ note: now this process is commonly calledspontaneous four-wave mixing. Starting from the
beginning of the 2000 s, it is applied for the generation of nonclassical light, both faint one (photon
pairs) and bright one (squeezed light).
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Thus, the noise spectral brightness of an ideal amplifier, normalized toG − 1
(i.e., relative to the input), is

I vac
ωΩ = ~ω/2πλ

2 = ~ω3n2/8π3c2. (6.308)

This value can be naturally called the spectral brightness of zero-point fluctua-
tions of macroscopic field (for a single polarization type) or ‘the vacuum spectral
brightness’. It corresponds to the presence of a single photon in each mode. At
λ = 1µ andn = 1, the brightness of fluctuations per unit wavelength interval is

I vac
λΩ = |dω/dλ|I vac

ωΩ = ~c
2/λ5 ≈ 0.6W/(Å · cm2 · sr). (6.309)

Thus, the relation between the spectral brightness and the photon number per
mode is

IωΩ(k) = I vac
ωΩN(k). (6.310)

Let us also estimate the brightness (effective) temperature of superfluores-
cence at the output of an ideal amplifier. From the Planck formula (2.102) and
the Kirchhoff law N = G− 1, it follows that

Te f f(k) ≡ ~ω/κ ln(1+ N−1
k ) = −~ω/κ ln(1−G−1

k )

≈ (~ω/κ)G ∼ 106K. (6.311)

The last estimate was made forλ = 1µ andG = 100.
Substituting (6.285) and (6.308) into (6.307), we obtain the intensity of the

parametric amplifier quantum noise,

IωΩ(k) = I vac
ωΩ sinh2[(γ2 − ∆2(k/4))1/2l]/(1− ∆2(k)/4γ2), (6.312)

wherel is the thickness of the nonlinear layer,∆(k) is the deviation from phase
matching for modek, andγ ∼ χ(2)E3 (see (6.282)). According to (6.312), the PDC
intensity has a sharp maximum at frequencies and directions{ω, ϑ, ϕ} satisfying
the phase matching condition∆k = 0.

This condition determines thefrequency-angular spectrumof PDC ω(ϑ),
whereϑ is theangle of scattering, i.e., the angle between the observed wave vec-
tor k and the pump wave vectork3. The dependence of the frequency on the angle
ϕ, as a rule, can be neglected, i.e, the PDC spectrum is axiallysymmetric w.r.t. the
directionk3. Field with a given frequencyω is emitted along a cone with a certain
angleϑ(ω). As one can see from Fig. 6.22, the frequency spectrum of PDCfrom
a blue pump covers a broad range of IR and visible wavelengths. The visible ra-
diation is directed mostly forward, at angles not exceedingseveral degrees, which
is due to the fact that crystals have small birefringence in the transparency range.

When the idler frequency approaches the eigenfrequencies of the crystal lat-
tice, which are usually in the region of hundreds of inverse centimeters, PDC
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Fig. 6.22 Frequency-angular spectrum of parametric down-conversion in lithium niobate for different
pump wavelengthsλ3: ϑ1 is the angle of the cone along which the waveλ1 is emitted. The angleθ3

between the pump beam and the crystal axis is 90◦. Whenθ3 is reduced, the gap in the spectrum (for
λ3 < 0.53µ) disappears.

continuously turns into the Raman scattering by polaritonsand optical phonons.
Then,χ has a resonance growth due to the contribution from electron-nuclear an-
harmonicity (Sec. 6.2), but this growth is accompanied by anincrease in the linear
absorptionα2 at the idler frequency, so that the brightness integrated over the fre-
quency,IΩ, does not change much. Certainly, when the idler frequency is small
andα2l � 1, (6.312) has to be multiplied byN(ω2/T) + 1, whereT is the lattice
temperature andN is the Planck function.

By analogy with the scattering by polaritons, PDC can be defined as the scat-
tering of the pump radiation by the field fluctuations in the idler modes, i.e., as
light scattering by light, similarly to the way Mandelshtam-Brillouin scattering
can be called light scattering by sound.

The important features of PDC, distinguishing it from othertypes of light scat-
tering in matter, are, first, a broad continuous spectrum, not related directly to the
eigenfrequencies of the matter, and, second, the two-photon structure of the emit-
ted radiation: at small pumping (γl � 1), signal and idler photons are emitted
only in pairs, practically simultaneously.

Note that, in addition to coherent (forward) emission, there is incoherent PDC
by separate non-centrosymmetric molecules (to be precise,by the density and
orientation fluctuations of such molecules). Then, the phase matching condition
plays no important role, since the momentum deficit of the field is provided by the
molecule.

Let γl � 1 andn ≈ 1, then from (6.312) we find the intensity of spontaneous
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PDC (SPDC) in the directionk with the frequencyω(k),

IωΩ(k) = I vac
ωΩγ

2l2sinc2[∆(k)l/2]

= 4~c−5ω4ω̃χ2l2I30sinc2[∆(k)l/2], (6.313)

whereω̃ ≡ ω3−ω and the polarization indices are assumed to be chosen so that∆

is minimal. Note that the PDC intensity in the directions of exact phase matching
depends on the nonlinear layer thickness quadratically, which is typical for SPDC.
Let I30 = 1 W/cm2 and l = 1 cm, then the amplification in the phase-matched
direction isG = 1+ γ2l2 ∼ 1+ 10−7 (see the estimate after (6.279)), and it follows
from (6.311) that atλ = 0.5µ, Te f f ∼ 1800 K. Such radiation can be easily seen
by eye and looks like colored rings. Note that the actual transfer coefficient of
the sampleG′ with such pumping is always less than the unity because of the
reflection, absorption, and scattering losses.

The effective frequency band of the SPDC spectrum∆ω at a fixed observation
direction is determined, similarly to the band of parametric amplification, by the
phase matching width, i.e., by the condition∆l = ±π. Considering only the linear
expansion of∆(ω), we can write

∆ω = (2π/l)|∂∆/∂ω|−1 ≈ 2π/|τ1 − τ2|, (6.314)

whereτi ≡ l/ui . According to Eq. (6.314), which is valid in the case of collinear
phase matching withω1 , ω2,q the width of the SPDC spectrum (in Hz) is equal
to the inverse time delay (in seconds) between the signal photon and the idler one
during their passage through the interaction region.Usually,∆ω/2πc ≈ 10 cm−1

at l = 1 cm.
At γl � 1, (6.312) describesparametric super-fluorescence, or stimulated

parametric down-conversion. According to the estimates made above, stimulated
PDC can be observed from pulsed pump with the intensity about100 MW/cm2 or
higher. Certainly, stimulated PDC, similarly to parametric oscillation, is observ-
able in practice only in the directionϑ ∼ 0, at the frequencies of collinear phase
matching,ωi(0). This is due to the fact that, as it follows from the geometry of
the experiment, the effective interaction lengthle f in the case of a narrow pump
beam (a/l � 1) is dramatically reduced (asa/ sinϑ) atϑ � a/l. The total power
of stimulated PDC can be estimated as

P = IωΩ∆ω∆ΩA = I vac
ωΩe2γl∆ω∆ΩA/4, (6.315)

where we have introduced the effective frequency and solid-angle bands and the
effective cross-section (see the estimate ofP for the StRS (6.229)). Stimulated
qEditors’ note: It is also valid in the case of type-II phase matching, in which the signal and idler
photons are orthogonally polarized and therefore have different group velocities.
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PDC is used, similarly to parametric oscillation, for a controllable shift of laser
radiation frequencies.

6.5.10 ◦Light scattering by polaritons

This process is described by the system (6.269)–(6.271) with linear absorption
introduced into one of the equations. In the approximation of undepleted high-
frequency pump, the interaction between the Stokes (signal) and the polariton
(idler) waves is determined by the equations

da1/dz= iγa∗2ei∆z, (6.316)

da2/dz± δa2 = ±iγa∗1ei∆z, (6.317)

whereδ ≡ α2/2, γ = βa30 (see (6.282)), and the lower signs correspond to the
case of the backward idler wave. In the polariton range of thePDC spectrum, i.e.,
in the vicinity of lattice eigenfrequencies, the idler waveis strongly absorbed, so
that usuallyδ � |γ|, δl � 1, and the amplitude of the idler wave is determined by
the local amplitude of the signal wave.

For this reason, let us search the solution to (6.317) in the form a2(z) =
b2 exp(i∆z),

db2/dz± δb2 + i∆b2 = ±iγa∗1. (6.318)

Here, the derivativedb2/dzdoes not much exceed|γb2|; therefore, if|γ| � |δ+ i∆|,
it can be neglected. Then,

b2 = iγa∗1/(δ ± i∆). (6.319)

In this approximation, the incident idler radiation does not influence the output
field, due to the high absorption, which is much stronger thanthe parametric am-
plification. Substituting (6.319) into (6.316), we obtain

da1/dz= (g/2)a1, (6.320)

where

g ≡ 2|γ|2/(δ ∓ i∆) = 64π3ω1ω2|χ(2)|2I30c
3n̄1n̄2n̄3(δ ∓ i∆).

Thus, strong absorption of one of the two interacting waves leads to the ex-
ponential increase, similarly to the case of usual Raman interaction due toχ(3)

(Sec. 6.4), with the only difference that here, phase matching condition|∆| � δ is
important.
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Comparingg at∆ = 0 with the Raman amplification coefficient (6.224), with
the definition ofα2 (6.167) taken into account, we find the equivalent cubic sus-
ceptibility (assuming ¯ni = 1),

χ
(3)′′
equiv= −|χ

(2)|2/χ(1)′′. (6.321)

The same relation between the resonance susceptibilities of the first, second, and
third order follows from the microscopic theory [Klyshko (1980)].

The spectral brightness of the Stokes fieldIωΩ(k1) in spontaneous or stimu-
lated light scattering by polaritons can be found through the Kirchhoff law,

IωΩ(k1) = I vac
ωΩ[N(ω2/T) + 1]{exp[g′(k1)z] − 1}, (6.322)

or by using the results of Sec. 6.4. Note that ifa2 is understood as the amplitude
of the sound wave, the above analysis will describe the Mandelshtam-Brillouin
scattering (spontaneous and stimulated).

6.5.11 Four-wave interactions

In centrally symmetric media, macroscopic quadratic susceptibility χ(2) is equal
to zero, and therefore the simplest parametric process involves four field modes
interacting due to the cubic susceptibilityχ(3)(ω4 = ω3 + ω2 + ω1). In the corre-
sponding quantum transition, four photons are absorbed or emitted and the state
of the matter remains the same.

The most important four-wave parametric effects are (Fig. 6.23)generation of
combination frequencies(for instance, the third harmonic) for converting laser ra-
diation to the UV and IR ranges,coherent anti-Stokes Raman scattering(CARS),
andoptical phase conjugation(OPC). Let us also mention three-wave effects due
to χ(3)(ω4 = ω3+ω2+0) in a constant fieldE0, which breaks the central symmetry
of the medium.

(a) (b) (c) (d)

Fig. 6.23 Basic types of four-wave single-resonance parametric processes and their applications:
(a,b) generation of coherent UV and IR radiation; (c) coherent anti-Stokes Raman scattering (active,
or CARS, spectroscopy); (d) phase conjugation.
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(a) (b)

(c) (d)

Fig. 6.24 Phase matching conditions in four-wave interactions: (a) generation of UV radiation is
usually performed under collinear phase matching; (b) in CARS, all frequencies are close and phase
matching is satisfied at small angles of scatteringϑ; (c) in the general case of frequency conversion of
the formω1 + ω2 − ω3 → ω4, the phase matching has the formk1 + k2 = k3 + k4. The wave vectors
in this case can be non-planar: the phase matching quadrangle can be folded along the dashed lines;
(d) in OPC, all four frequencies are equal and the phase matching condition is satisfied for any two
standing waves.

In the frequency conversion, it is usually the electron anharmonicity that
‘works’, CARS is due to the mixed electron-nuclear (Placzek’s) anharmonicity,
and OPC, similarly to self-focusing, is due to the inertial types of anharmonicity:
the orientation and sriction ones (Sec. 6.2).

Note that in OPC, which will be described in more detail below, all frequen-
cies are degenerate, as in non-parametric interactions. Nevertheless, we classify
it as a parametric process, since it preserves the field energy and leads to the co-
herent excitation of new modes with the phase matching condition k1 + k2 =

k3 + k4 = 0.
In the case of frequency conversion in gases, collinear phase matching is sat-

isfied due to anomalous dispersion (it is convenient to use mixtures of gases for
this purpose). CARS in many condensed materials requires non-collinear phase
matching with the angles of scattering about 1◦ (in the case of a two-beam pump,
see Fig. 6.24).

In all effects mentioned so far, the incident (input) field has, in the general
case, three modes excited (Ni0 , 0, i = 1, 2, 3), and the output radiation has
‘new’ photons in the fourth mode,k4(ω1 + ω2 + ω3 → ω4). Such effects can
be calledstimulated, they are well described by classical electrodynamics. In ad-
dition, there arespontaneouseffects, in which the pump contains, in the general
case, two modes:ω1+ω2 → ω3+ω4. Then, photons in the output modes 3, 4 ap-
pear simultaneously, in pairs, due to spontaneous-stimulated transitions (compare
with the parametric down-conversion). Such processes, which includehyperpara-
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Fig. 6.25 Active spectroscopy. The matter is excited by two lasers with frequenciesω1 andω2 such
thatω1 − ω2 equals the frequencyΩ0 of molecular vibrations. The resonance can be detected by an
increase in the intensityI i , polarization, or phase of any one of the four frequencies observed while
scanningω1 orω2.

metric scattering,r or light scattering by light, and ‘spontaneous CARS’, are only
described in terms of nonlinear quantum optics and, in some cases, equations like
the Kirchhoff law [Klyshko (1980)].

6.5.12 Nonlinear spectroscopy

The absolute value ofχ(3) and, correspondingly, the efficiency of four-wave para-
metric interactions increase dramatically near intermediate resonances, where one
of the virtual levels coincides with a real one (Fig. 6.23). Most interesting are
two-photon resonances likeω1 ± ω2 = ω3 ± ω4 ≈ Ω0, in which neither the pump
not the output field undergo single-photon resonance absorption.

Observation ofχ(3) resonances is the main instrument for several methods
of nonlinear spectroscopy, the most important of which is, probably,active
spectroscopy, based on CARS [Akhmanov2 (1981); Bloembergen (1977)]. The
scheme of a nonlinear spectroscope for the study ofχ(3) dispersion is shown in
Fig. 6.25. It uses two lasers with the frequenciesω1, ω2 (let ω1 > ω2), one of
them (say,ω2) tunable within the rangeω1−Ω0, whereΩ0 is the frequency of the
molecular vibration under study. Atω2 = ω1 − Ω0, the frequency components of
the cubic susceptibilitiesχ(ω1 = ω1 − ω2 + ω2), χ(ω2 = ω2 − ω1 + ω1), χ(ωA =

2ω1 − ω2), χ(ωS = 2ω2 − ω1) have resonances (see (6.88)) caused by the exci-
tation of atom oscillations in a molecule by bi-harmonic light due to the mutual
influence of electronic and nuclear degrees of freedom (Sec.6.2).

rEditors’ note: called nowspontaneous four-wave mixing.
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In the case of active spectroscopy, the resonance manifestsitself in the in-
tensity variation at the ‘new’ frequenciesωA or ωS. (It is convenient to use the
anti-Stokes range,ωA, where there is less stray light caused by the fluorescence
of the sample and the optical elements.) According to (6.261), (6.262), in the
undepleted-pump and plane-wave approximations, the intensity of CARS is

IA(ω2) =

(

4π
c

)4 ω2
Al2I2

1I2

n2
1n2nA

|χ(3)
NR+ χ

(3)
R (ωA = 2ω1 − ω2)|2, (6.323)

where the non-resonance real part ofχ(3), χ(3)
NR, has a weak dependence on the fre-

quency and causes the asymmetry of the observed spectrum.Active spectroscopy
has advantages over usual Raman spectroscopy in sensitivity, resolution, and the
amount of available information. Note that using tunable lasers allows one to do
without dispersive elements.

In the case ofRaman amplification spectroscopy, one registers the intensity
increase,∆I2, at the output, equal, according to (6.224), to

∆I2(ω2) = −32π2ω2lI1

c2n1n2
Imχ(3)(ω2 = ω2 − ω1 + ω1). (6.324)

One can also observe the decrease of the intensityI1 of the field with the higher
frequencyω1 near the resonance. This phenomenon is called theinverse Raman
effect.

The resonance can be also registered in other ways: by measuring the phase
delay of the incident fieldω1 orω2, which scales as Reχ(3) (the Raman Kerr-effect
method), or by measuring the polarization parameters of thefieldsωi , i = 1, 2, 3, 4
(nonlinear ellipsometry) [Akhmanov2 (1981)].

All these nonlinear spectroscopy methods, together with the two-photon spec-
troscopy and saturation spectroscopy, considered in Sec. 6.4, became a consider-
able extension of the traditional pre-laser spectroscopy,which mainly used linear
effects and spontaneous Raman scattering.A significant broadening of the scope
of spectroscopy due to the use of lasers together with the abilities of nonlinear
spectroscopy allowed one to speak about the ‘laser revolution’ in spectroscopy.

6.5.13 Dynamical holography and phase conjugation

The idea of the optical phase conjugation (OPC) method basedon the four-wave
interaction is clear from Figs. 6.24(d) and 6.26. Let a standing monochromatic
pump wave (a ‘reference wave’, according to holography termonology), i.e.,k2 =

−k1, be excited in a medium with the cubic nonlinearityχ(3)(ω = ω+ω−ω). Then,
if a third plane wavek3 with the same frequencyω and an arbitrary direction is
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Fig. 6.26 Phase conjugation using degenerate four-wave interaction. A nonlinear medium excited by
a standing pump wave ‘reflects back’ all waves of the same frequency along the way of their incidence.
As a result, a divergent spherical wave becomes a wave convergent to the source (dashed line).

incident on the medium, the fourth wave will appear, with thefrequencyω and
the wavevectork4 = k1 + k2 − k3 = −k3. Thus, the medium excited by the pump
acts as a mirror reflecting all plane waves back along the pathof their arrival, in
contrast to a usual mirror, which performs the transformationkz→ −kz.

In the case of an arbitrary spatial distribution of the signal (object) field E3(r)
it will contain many Fourier components{k3}, each of them creating its own con-
jugate component. As a result, the initial object wave will be restored around the
medium,RE∗3(r), with the same wave front shape, but propagating in the opposite
direction (from the medium) and, of course, having a different energy (R , 1). It
is important that due to the backward parametric amplification (see (6.287)),|R|
can considerably exceed the unity. (Usually, this is only achieved in the pulsed
regime.)

The possibility of the OPC effect for an arbitrary optical field, which, in a
sense, provides the time inversion,s looks striking from the viewpoint of nonlinear
optics. In fact, this effect has been discovered in the optical range as early as in
1949, long before the birth of lasers and nonlinear optics, by Gabor, the author
of holography. In holography, OPC manifests itself in the appearance of twin
images, which were considered by Gabor only as sources of noise. The perspec-
tives of OPC applications were understood only much later, mainly in the sev-
enties, when the practical methods ofdynamical holographyhave been invented,
which enabled OPC to work ‘in real time’, without the delay for photographic
film developing. These methods, in addition to four-wave parametric interaction,

sOPC is equivalent to thet → −t transformation only for a strictly monochromatic field. In the case
of a quasi-monochromatic field, OPC does not change the shapeof the envelopeE0(t).
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(a)

(b)

Fig. 6.27 Applications of the OPC effect: (a) correcting the wave front distortions. The plane front
of the wave incident from the left becomes distorted, but after being reflected by a ‘phase conjugating
mirror’ and passing the same medium again it restores its initial shape. (Reflection from a usual mirror
would double the distortions.) (b) Focusing of strong laserradiation on small targets: light from a
weak laser (top) is scattered by a target, part of the scattered field is amplified by a strong amplifier,
gets reflected by the ‘mirror’, is amplified once again and returns to the target.

use three-wave degenerate interaction effects, 180◦ light scattering, and superflu-
orescence [Zeldovich (1985); Bespalov (1979)]. OPC methods have been also
developed for acoustic waves.

OPC is an example ofadaptive optics, aiming for the automatic correction
of optical systems. OPC allows one to correct the distortions of the wave front
(phase distortions) appearing due to the signal wave passing through an optically
inhomogeneous medium, like an opaque glass or a quantum amplifier. To correct
for this, it is sufficient to reflect the wave back at the output of the inhomogeneous
medium by means of a phase-conjugating mirror and this way tomake it travel
along the same path in the opposite direction. Then, all distortions of the wave
front formed on the way will be ‘straightened’ and the front will restore its origi-
nal shape (Fig. 6.27(a)). (Of course, amplitude distortions caused by irreversible
absorption or amplification will not be compensated but accumulated.) This ef-
fect allows powerful but inhomogeneous amplifiers to be usedfor increasing the
energy of weak lasers providing single-mode beams with the minimal (diffrac-
tion) divergence and ‘natural’ bandwidth. This technique provides record values
of spectral brightness.
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Another application of OPC, important for solving the problem of laser ther-
monuclear synthesis, is automatic focusing of strong laserradiation onto small
targets (Fig. 6.27(b)).

Using a resonance susceptibilityχ(3) (in particular, enhanced by two-photon
resonances in the vapors of alkali metals) allows one to reduce the pump power in
four-wave interactions (down to 1 W/cm2, with the reflection coefficient|R| ≈ 1).

In OPC via stimulated scattering, a sufficiently strong monochromatic wave
ReE(r) exp(−iωt) serves as a pump causing 180◦ stimulated Raman scattering
or stimulated Mandelshtam-Brillouin scattering in a nonlinear medium. If the
wave front of the pump is rather non-uniform, the back-reflected Stokes radiation
ReES(r) exp(−iωSt) (with ωS = ω − Ω0) has approximately the same wave front
shape,ES(r) ≈ RE∗(r), where|R| is close to unity.

At first stages of backscattering (z . l) the Stokes field is chaotic, it has all
modes with different wavevectorsk excited independently and homogeneously.
(Since the wavevector lengthk = n(ωS)ωS/c is fixed, the modes are determined
by the transverse componentk⊥ ≡ q). In the case of a multi-mode pump, var-
ious Stokes modes (q, ωS) have different Raman amplification coefficientsα(q).
Moreover, one can show [Zeldovich (1985)] that if some mode (q, ω) is present in
the pump spectrum, then the Stokes mode (−q, ωS) has, on the average, an ampli-
fication coefficient twice as large:α(−q) ≈ 2ᾱ. Because at ¯αl � 1 this difference
is amplified exponentially, it is sufficient that the part of the Stokes field repeating
the pump spectrum is considerably more intense than the noise part.

The advantages of ‘Brillouin’ or ‘Raman’ mirrors are the absence of the pump
(they are analogues of reference-free holography) and almost 100% efficiency.
The disadvantages are the existence of a threshold, the necessity to have multiple
modes in the signal field, and the frequency shift of the reflected radiation. The
latter restricts the accuracy of the reconstruction. Of much interest are lasers in
which one of the mirrors is phase conjugating (a ‘Brillouin’one) and the other
one, a usual mirror, plane or concave. This scheme simultaneously provides Q-
switching (due to the threshold behavior of the stimulated scattering) and correc-
tion for the optical inhomogeneity of the active medium.

Let us consider OPC via four-wave interaction in a little more detail. An
arbitrary signal field (for simplicity, considered as scalar) can be represented as

E(r, t) = ReE0(r)e−iωt = |E0(r)| cos[ωt + ϕ(r)]. (6.325)

The phase-conjugated field describing monochromatic waveswith the inverse di-
rections of wavefront propagation, by definition, differs by the sign of the time,

Ẽ(r, t) ≡ E(r,−t). (6.326)
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The amplitude and phase of the phase-conjugated field will bedefined by analogy
with (6.325),

Ẽ(r, t) = ReẼ0(r)e−iωt = |Ẽ0(r)| cos[ωt + ϕ̃(r)]. (6.327)

Certainly, the transformationE→ Ẽ is possible in practice only in the absence
of irreversible processes. From (6.325)–(6.327), we find the relations between the
spectral amplitudes of the incident field and the phase-conjugate one,

Ẽ0(r, t) = E∗0(r), ϕ̃(r) = −ϕ(r). (6.328)

Hence, the wave surfaces of the monochromatic fields determined by the equa-
tionsϕ(r) = const and ˜ϕ(r) = const coincide. Thus, the OPC effect reverses not
the wave fronts but the propagation directions.t Note that reflection by a usual
mirror, plane, spherical, or of a more complicated shape, also leads to the trans-
formationE → Ẽ, but only in trivial cases where the mirror surface coincides
with the wave surface.

The reversed field̃E copies the signal one in all space outside of the nonlinear
medium, including any transparent or scattering bodies of arbitrary shapes (pro-
vided of course that the scattered field fits the ‘mirror’ aperture, see Fig. 6.26).
However, as we have already mentioned, if real, irreversible absorption (or ampli-
fication) is present, these are only phase surfaces that are restored; the amplitude
of the reversed field will be further reduced (or increased) on the way back through
the absorber (amplifier).

Let a signal field, ReE3 exp(−iω3t), and a pump field, ReE1 exp(−iω1t), be
excited in a nonlinear medium, which for the sake of simplicity will be considered
isotropic. An electromagnetic field present in a medium is accompanied by other
fields, for instance, pressurep(r, t), temperature, vibrations of molecules, excited
electrons, and so on (Sec. 6.2). In photographic materials,there are ‘fields’ of
metallic silver or other products of photochemical reactions. In the simplest cases,
the amplitudes of these fields scale as the constant or slowlyvarying part of the
squared local fieldE2(r, t). For instance, due to the optical electrostriction,

p(r, t) ∼ ReE1(r)E∗3(r) exp[i(ω3 − ω1)t]. (6.329)

The pressure field (6.329) is a bulk hologram, it contains full information
about the signal provided that the pump field is known. Certainly, a record made
by pressure will be erased soon (within a relaxation time,λ/v, wherev is the sound
velocity) after the signal is turned off, in contrast to the fields of photochemical re-
actions. However, if the signal is changed, the record will stabilize fast as well. In

tEditors’ note: the author used the term ‘wave front reversal’, which was more popular earlier.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

234 Physical Foundations of Quantum Electronics

the case of monochromatic fields with the same frequencies,p(r) is a static field
materializing the spatial distribution of the interference field E1(r)E∗3(r). This
simple model illustrates the idea of dynamical holography,which is used for the
study of fast processes.

The record (6.329) can be read out with the help of a second reference wave
ReE2 exp(−iω2t), which will be scattered by the field∆n(r, t) of the refractive
index induced by the pressure field. In other words, the ‘readout’ field E2 induces
polarization scaling aspE2, and the field it emits is

E4(r) ∼ P4(r) = χ(3)E1(r)E2(r)E∗3(r), (6.330)

whereω4 = ω1+ω2−ω3. The relation betweenE4 andP4 in the Born approxima-
tion is given by Eqs. (6.260), (6.264). One can see from (6.330) that if the product
E1E2 has a weak dependence onr, the OPC effect takes place,E4 ∼ E∗3 = Ẽ3.
In particular, this is the case for a plane monochromatic standing-wave pump, for
whichω2 = ω1 and k2 = −k1. Note that in usual, static holography, since the
nonlinearity is inertial, it is necessary thatω1 = ω3 andω2 = ω4.u

Note that OPC can be also obtained via three-wave interaction,

P4(r) = χ(2)E1(r)E∗3(r). (6.331)

However, in this case, only a part of the signal fieldE3 is reversed, whose fre-
quency and angular spectrum is within the phase matching band |∆k|l < 1,
∆k ≡ k1 − k3 − k4, which leads to a loss of fine spatial and temporal details
of the signal. In addition, the phase-conjugated fieldE4 propagates ‘from left to
right’, similarly to the signal field, and an additional mirror is required for reflect-
ing it back. A huge advantage of four-wave interaction is thepossibility to obtain
phase matching automatically using standing plane waves.

Let us estimate the efficiency|R| of OPC via degenerate (ωi ≡ ω) interaction
using one-dimensional (diffraction-free) approximation in the undepleted-pump
regime. To this end, let us use Eqs. (6.286) for backward interaction, with an
obvious replacement of frequency subscripts. From (6.287)at z = 0, we find the
ratio of the incident and reflected amplitudes in modes−k andk,

|R| ≡ |E4(−k)/E3(k)| = tanγl, (6.332)

where, according to (6.278), with the replacementχ(2) → χ(3)E2 andE1 = E2,

γ =
2πω
cn
|χ(3)E1E2| =

32π3

cn2λ0
|χ(3)|I1. (6.333)

Let χ(3) = 10−12 cm3/erg, l = 1 cm, λ0 = 1µ, n = 1.5, thenγl = 1 at
I1 ≈ 1 GW/cm2.
uIn the case of a bulk hologram (kl � 1), both a static or a dynamic one, the phase matching condition
(Fig. 6.24(c)) leads to the equality of all four frequencies.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

Nonlinear Optics 235

It is important that atγl = π/2, the conversion coefficient turns to infinity,
and then the fieldsE3,E4 are emitted spontaneously. Thus, a standing wave in a
cubic medium has instability with respect to the parametricgeneration of back-
ward waves, — in addition to the instability of traveling waves with respect to
self-focusing, self-modulation, and stimulated scattering. Note that atγl = 1 self-
focusing, according to (6.236), will be not significant at

a2� P0/I = λl/4, (6.334)

i.e., in the case where the pump has considerable diffraction divergence in the
layer. (In this case, the validity of the one-dimensional approximation is also
violated.)
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Chapter 7

Statistical Optics

In classical electrodynamics, the electric fieldEα(r, t) ≡ E(x), x ≡ {r, t, α} is
assumed to be deterministic and, in principle, measurable with an accuracy as
good as required. (We speak only about the electric field as itis the field that
determines the observable effects.)

In classical statistical optics, which includes the coherence theory as its impor-
tant part,E(x) for everyx is considered as a random variable, withx being a pa-
rameter. It is convenient to split space and time in numberedcells and to consider
x as a discrete parameter spanning a countable number of values xi . Thus, a fluc-
tuating light field is described by a set of random variablesEi ≡ E(xi). (Another
way of ‘discretizing’ the field, the mode decomposition, is described in Sec. 7.3.)
All properties of the random set ensemble{Ei} are given by a multi-dimensional
distribution function, or a set ofmoments(correlation matrices)〈E1E2 · · ·Em〉 of
various ordersm(the angular brackets denote averaging over the distribution func-
tion.) In experiment, the averaging is of course not over an ensemble of fields but
over a certain spatial and temporal intervalVdet. In addition, the field is filtered in
frequency and in the propagation direction.

From the viewpoint of statistical optics, the macroscopic Maxwell’s equations
are kinetic equations for the first moments〈Ei〉, 〈Hi〉. The intensity and spec-
trum of light are determined by the second moments〈EiE j〉, while n−quantum
processes are given by moments of order 2n.

However, classical statistics is, strictly speaking, not applicable to the optical
range, since the degeneracy factor〈N〉 = [exp(~ω/κTe f) − 1]−1, which has the
meaning of the average number of photons in one mode, or the spectral brightness
IωΩ in ~c/λ3 ≡ I vac

ωΩ
units, is usually much less than unity. For instance, for the

green part of the sunlight spectrum (Te f ≈ 6000 K, λ ≈ 0.5µ), 〈N〉 ≈ 0.01, and
it reaches the unity only in the IR range, atλ = 3.5µ. Among the few excep-
tions there are laser fields, for which effective (brightness) temperature exceeds

237
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the one of the sunlight by many orders of magnitude. In connection with this, let
us mention one of the paradoxes in the history of physics: quantum optics started
its rapid development only during the laser age, when light fields with〈N〉 � 1
appeared (although the general principles of quantum electrodynamics were de-
veloped much earlier).

In quantum optics and electrodynamics, an ensemble of fieldsis given by a
wavefunctionΨ or a density operatorρ. The angular brackets in the definition
of the correlation function denote now quantum averaging overΨ or ρ; then,Ei

are operators acting onΨ according to certain rules. It is important that, in the
general case, the fields at the neighbouring points of space-time do not commute,
which leads to the quantum fluctuations of the field, to the moments〈Ei E j〉 being
nonzero even for the vacuum, to the spontaneous emission of excited atoms, and
to the noise of quantum amplifiers and generators.

The statistical theory of laser radiation studies the most important parameters
of lasers, such as the maximal possible monochromaticity ofoscillators and the
sensitivity of amplifiers. Similarly to a consistent theoryof thermal light emission
by heated bodies, this theory should be based on quantum electrodynamics and
non-equilibrium thermodynamics [Zubarev (1971); Klimontovich (1982)]. A spe-
cial difficulty in the quantum-statistical analysis of a laser is thatthe nonlinearity
plays a principle role, as it determines, due to the saturation effect, the stationary
amplitude of oscillations (the limiting cycle of a classical auto-oscillator).

The most important achievement in the nonlinear quantum theory of
lasers [Loudon (2000); Klimontovich (1980); Lax (1968); Arecchi (1974);
Klauder (1968)] is the conclusion that in the cavity of a laser operating well above
threshold, the field is ina coherent state, a concept introduced into quantum optics
by Glauber [Glauber (1965)]. There is a close analogy between a field in a coher-
ent state with a large amplitude and a classical harmonic oscillation and, since the
saturation effect manifests itself only in the case of high amplitudes, thenonlinear
regime of a laser is rather accurately described by the semi-classical theory. Non-
linear theories predict all statistical characteristics of laser radiation: the intensity,
the spectral width, the coherence radius, and the higher moments.

Even more crude, but still useful is the approximation considered in the linear
theory of noise in quantum amplifiers and oscillators (Sec. 7.1), which ignores
the saturation effect and is therefore valid only below the oscillation threshold.
The most important results of this theory arethe Kirchhoff law, giving the noise
intensity of an amplifier in terms of its amplification coefficient, and the Townes
formula, relating the ‘natural’ bandwidth of an oscillatorto its power. According
to the linear theory, the radiation has Gaussian statistics, and therefore these two
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parameters, the intensity and the spectral width, fully describe the statistics of the
field.

This chapter is devoted to the foundations of quantum optics. The consid-
eration starts with the linear theory of noise in quantum amplifiers, which does
not require the quantization of the field (Sec. 7.1). In Sec. 7.2, basic notions of
classical statistical optics are considered. The next section (Sec. 7.3) describes
the initial stage of the field quantization, i.e., writing the Maxwell equations in
the canonical form, which allows the quantization to be performed in an easy way
(Sec. 7.4). Section 7.5 considers the basic classes of quantum states of the field,
and Sec. 7.6 describes the statistics of photons and photoelectrons for these states.
Finally, in Sec. 7.7 we once again return to the question about the probability
of a transition due to a noise field (Sec. 2.4), but this time weconsider it in the
framework of the quantum theory.

7.1 The Kirchhoff law for quantum amplifiers

The intensity of the noise radiation of a laser or a maser operating in a linear sta-
tionary regime can be calculated without using quantum electrodynamics, from
the general considerations based on certain rules of non-equilibrium thermody-
namics like the Nyquist formula (or the fluctuation-dissipation theorem, FDT)
and the Kirchhoff law for the thermal radiation.

7.1.1 The Kirchhoff law for a single mode

Let an ideal waveguide be filled by homogeneous matter of temperatureT, ther-
modynamical or effective. Consider the electromagnetic energy carried by a single
waveguided field type (for instance,H01 in a rectangular waveguide) in the station-
ary case. Let the waveguide be connected with a matched source and a matched
load, so that the backward wave is independent of the forwardone (Fig. 7.1).

We will be calculating the power spectral densityP f (ω, z) ≡ ∆P/∆ f , i.e.,
the energy of incoherent radiation with the frequencyω = 2π f > 0 transferred
through a cross-sectionz in 1 s within the frequency bandwidth 1 Hz. It is easy to
show that in~ω = h f units,P f (ω, z) corresponds to the mean number of photons
N(ω, z) per one longitudinal mode of the waveguide,

P f =
u
L
E f =

h f u
L

Nf =
h f u
L

gf N = h f N. (7.1)

Here,u = dω/dk is the group velocity;k is the propagation constant;L is the
length of some part of the waveguide, which is much greater than the wavelength
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Fig. 7.1 Waveguide Kirchhoff law. The noise of the waveguide is determined by the competition
between the absorptionα and the spontaneous emissionj = α0N , whereN = N2/(N1 − N2) is the
Planck function andNi are the level populations. As a result, the noise can be expressed in terms of
the transfer coefficientG = e−αz and the temperatureT.

λ = 2π/k but much less than the distance at whichP f (z) changes noticeably;E f

is the spectral energy density of the macroscopic field within L; Nf ≡ E f /h f is
the number of photons withinL per 1 Hz, which is equal toN times the spectral
density of the longitudinal modesgf = Ldλ−1/dω = L/u. The inverse value,u/L,
is equal to the interval between the eigenfrequencies of theneighboring modes
(for the notion of a mode in more detail, see Sec. 7.3).

Let us start from the linear kinetic equation forN(ω, z) of the form

dN/dz= −αN + j. (7.2)

Here,α(ω) is the absorption or amplification coefficient due to stimulated transi-
tions andj(ω) 1 0 is a distributed source of noise due to spontaneous emission.
This equation provides a phenomenological description of the stationary inter-
action of matter with a single transverse mode of the field, not necessarily in a
waveguide.a It is useful to compare this equation with one-dimensional equations
(6.171) for the ‘slow amplitudes’ and with Einstein’s relations (2.99) for non-
stationary interactions. Apparently,α ∼ B(N1 − N2) and j ∼ AN2, whereA, B are
the Einstein coefficients andNi are the populations of a pair of levels separated by
an interval~ω.

The solution to (7.2) has the form

N = N0G+ ( j/α)(1−G), G(ω, z) ≡ exp[−α(ω)z], (7.3)

whereN0 is the signal at the input of the amplifier andG is thetransfer coefficient
of the waveguide. Here, the second term, which is independent of the input signal,
is the noise of the waveguide.

aSuch equations are calledtransfer equations(for photons, neutrons, etc.), they imply that a space
coordinatez, defined up to an accuracy of±L/2, can be attributed to a photon. In the general case, a
function N(k, r, t) is used, which has the meaning oflocal spectral brightnessin ~c/λ3 units.
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Let us express the ratioj/α in terms of the temperature of the matter. Let
αz� 1, then, according to (7.3),N = jα. On the other hand, in a sufficiently long
waveguide with damping, equilibrium radiation should be formed, with the mean
number of photons per mode given by the Planck functionN. Hence,

j/α = N ≡ [exp(~ω/κT) − 1]−1

= (1/2)[coth(~ω/2κT) − 1] = N(0)
2 /(N(0)

1 − N(0)
2 ). (7.4)

This conclusion is rigorous only for a completely equilibrium system where the
populationsNi and the photon numberN obey the Boltzmann and Planck distri-
butions, respectively.

However, it is reasonable to assume that (7.4) is approximately valid even
in the absence of equilibrium radiation, for instance, atαz . 1 andN0 = 0.
Then, the parameterT relates only to the matter, whose temperature is maintained
constant and uniform, despite the radiation cooling (‘quasi-equilibrium’). For
this, it is necessary that the degrees of freedom that emit and absorb radiation at
frequencyω interact with the thermostat much stronger than with the field.b In this
approximation, Eq. (7.3) atN0 = 0 describes the spatial spreading of equilibrium
Planck’s field (with a single propagation direction) in a waveguide of a layer with
the lengthz, temperatureT and absorption coefficientα(ω),

N = AN , A ≡ 1−G. (7.5)

Here,A is the absorptivity of the waveguide or the layer (in the general case, with
an account for reflections at the input and output). It can be measured, according
to (7.3), using an external signal:A = 1− dN/dN0.

Equation (7.5) is the Kirchhoff law relating the thermal radiation of a heated
body to its thermodynamic parameterT and kinetic parameterA. It can be easily
derived in the form (7.5) without using the kinetic equation[Landau (1964)]. Note
that this law is used in the construction of photometry reference sources for light
intensity, although, in principle, it is only applicable within the approximations of
strong coupling with the thermostat, linear optics, and geometric optics. For its
generalizations, see Ref. [Klyshko (1980)].

7.1.2 The Kirchhoff law for a negative temperature

The phenomenological relation of spontaneous and stimulated effects with the
level populations,j/α = N2/(N1 − N2), is confirmed by calculations in the frame-

bLet the timeT1 characterize the interaction of the particles with the thermostat; then the condition for
the Kirchhoff law (and, generally, FDT-type equations) to be applicable to non-equilibrium problems
is, apparently of the form 1/T1 � A(2N + 1), compare with (2.115).
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Fig. 7.2 The Planck function determining the mean number of photons with the frequencyω > 0
in a single mode of an equilibrium field, as well as the number of excited atomsN2 divided by the
population differenceN1 − N2. Here,T is the effective temperature; in the case of a field,T > 0.

work of the two-level model. It is then generalized to the case of a non-equilibrium
matter with non-BoltzmannNi . In this approximation, it is also convenient to keep
relation (7.4) and the Kirchhoff law in the form (7.5), but to interpretT as the ef-
fective (spin) temperatureTe f, which is determined by the actual population ratio,
exp(~ω/κTe f) ≡ N1/N2 (Sec. 3.2).

From the definition of the functionN(T), it follows that in the case of pop-
ulation inversion, whereα and T are negative,N is also negative (Fig. 7.2),
N(−T) = −[N(T) + 1]; therefore, the Kirchhoff law can be written as

N = [N(−T) + 1](G− 1),

or (see Fig. 7.3)

N = N{1− exp[−α0(ω)z/(2N + 1)]}, (7.6)

sinceα = σ(N1 − N2) = α0 tanh(~ω/2κT), whereα0 is the absorption coefficient
at T = +0.

In particular, in the case of full inversion,N1 = 0, T = −0, N = −1, so that
the spectral noise density of a single-mode ideal quantum amplifier in h f units is
simply equal to the transfer coefficient with the unity subtracted,

N = G− 1. (7.7)

The−1 appears here because the noise source is a distributed one.Hence, the
noise relative to the input,N/G, is 1−G−1, which atG� 1 yields one photon per
mode, i.e., one photon in a unity frequency band per unit time.
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Fig. 7.3 The spectral density of the thermal radiation emitted by a single-mode attenuator (T > 0) or
amplifier (T < 0) as a function of its lengthzand temperatureT, according to the Kirchhoff law. α0 is
the absorption coefficient atT = +0.

If an incoherent signal with the power spectral densityh f N0 is present at the
input, one should addGN0 to (7.7). The result can be represented in the form

N + 1 = G(N0 + 1). (7.8)

This equation provides the following algorithm for taking into account the spon-
taneous emission (or, in other words, the quantum fluctuations) of an ideal ampli-
fier: a unity is added to the number of photons at the input, theresult is multiplied
by the classical amplification coefficient, and then the unity is subtracted, which
yields the output number of photons. Thus,the signal-to-noise ratio at the output
of an ideal quantum amplifier with large amplification is equal to N0, the number
of signal photons per mode.

The unities in (7.8) can be interpreted as a result of zero-point field fluc-
tuations; however, this interpretation should be treated with caution [Ginzburg
(1983)]. Quantum fluctuations determine the limiting sensitivity and accuracy of
quantum amplifiers, as well as any measurement devices. AtN1 , 0, ‘thermal’
fluctuations, scaling asN(−T), are added to the quantum ones (see (7.6)).

In the microwave range, one often uses the concept of thenoise temperature
of an amplifier, Tn. By definition,Tn is the brightness temperature of the noise
radiation at the output relative to the input,

N(Tn) ≡ N/G = N(Te f)(eαz − 1), (7.9)

whereN is the Planck function for the chosen frequencyω. This equation relates
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Tn with the effective (spin) temperature of matter,Te f. The notion ofTn is conve-
nient only in the classical temperature range, whereN ≈ κT/~ω and (7.9) takes
the form

Tn = (eαz − 1)Te f,

which in the two limiting cases of small absorption and largeamplification yields

Tn = αzTe f, |αz| � 1, (7.10)

Tn = −Te f, αz� −1. (7.11)

Thus, the spin temperature determines not only the ratio of the populations but
also the limiting noise temperature of a quantum amplifier.

In paramagnetic amplifiers,|Te f | is on the order of the lattice temperature of
the active crystal, which is cooled down to helium temperatures for the sake of
loweringTn, reducing spin-lattice relaxation, and increasing the equilibrium pop-
ulation difference. As a result, the noise temperature of such amplifiersis as low
as several Kelvins. At the same time, in ordinary electronicamplifiers,Tn ∼ 103

K, due to the high temperature of the cathode; in parametric microwave amplifiers
based on semiconductor diodes,Tn ∼ 100 K.

In practice,Tn in paramagnetic amplifiers is determined by the thermal emis-
sion not from the active medium, according to (7.11), but from the elements of the
input channel (the aerial, waveguides, and ferrite devices), according to (7.10).
Indeed, an input waveguide with the walls at room temperature and the losses of
only 1% makes a noticeable contribution,Tn ≈ 3 K.

It is not difficult to generalize the Kirchhoff law (7.5) to the case where the
waveguide has several sources of homogeneous linear loss,αi , and noise,j i , with
different effective temperaturesTi (i = 1, 2, . . . ). Assuming againj i = αiNi , we
obtain the kinetic equation

dN/dz=
∑

i

αi(N − N), (7.12)

which only differs from (7.2) by the replacementsα → ∑

αi andαN → ∑

αiNi .
As a result, (7.5) takes the form

N = (1− e−αz)
∑

i

(αi/α)Ni , (7.13)

with α ≡ ∑

αi . Thus,the contribution of each element to the total thermal emis-
sion scales as its contributionαi/α to the total absorption coefficient.

Consider now the shape of the thermal emission spectrum in the vicinity of
a single narrow resonance at various optical densitiesαz (Fig. 2.4). When|α|z is
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small, the emission spectrum repeats the absorption spectrum, N(ω) = α(ω)zN
(the dependenceN(ω) is too slow to be taken into account here.) At large positive
αz, the line gets flattened and broadened, tending eventually to the equilibrium
spectrumN(ω), and at large negativeαz the linewidth is reduced (similarly to the
amplification band, see (2.68)) and tends to zero as

√
ln G.

7.1.3 Noise of a multimode amplifier

We have so far discussed a single transverse mode of a waveguide. In the general
case, where the radiation is delivered to the detector as several independent modes,
(7.5) or (7.12) should be summed over all essential modes. Ifthe waveguide cross-
sectionA is much greater thanλ2, summation can be replaced by integration.

In free space, the number of transverse modes (i.e., modes with the same fre-
quencyωk = ck) observed by a pointlike detector in the near-field zone scales as
the spatial aperture of the emitter,A ≡ ab, and the angular aperture of the detector,
∆Ω = ∆ϑx∆ϑy,

∆g⊥ = (a∆λ−1
x )(b∆λ−1

y ) = A∆Ω/λ2, (7.14)

whereλ = 2πk, we consider only a single polarization type and assume thatthe
observation direction is orthogonal toA. According to (7.14),the angular interval
between the neighboring transverse modes is on the order of the diffraction angle
λ/a.

Multiplying (7.5) by the photon energy~ω, the detector band∆ f = ∆ω/2π,
and the number of transverse modes∆g⊥, we find the power of multimode thermal
radiation with a single polarization type,

∆P = (~ω∆ω∆ΩA/2πλ2)N(1−G), (7.15)

where we assume that the transfer coefficientG = e−αz and the effective tempera-
tureT are the same for the modes having close directions.

The ratio∆P/∆ω∆ΩA is called thespectral brightness; this is the main
energy characteristic of incoherent multi-mode radiation. In the general case,
IωΩ ≡ I (k, r) depends on the frequency, direction, and the observation point; how-
ever, in the absence of scattering, emission, and absorption between the points
r and r + a, the spectral brightness at these points is the same provided that the
argumentk is parallel toa,

I (k, r + a) = I (k, r), k ‖ a. (7.16)

Certainly, it makes sense to speak about the displacementa of the observation
point only ata� λ.
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In photometry, there are special terms for the integrals ofI w.r.t. various vari-
ables:the brightness, the radiance, and the luminous intensity,c

B( k̂, r) ≡
∫ ∞

0
dωkI (k, r), E(r) ≡

∫

dΩB( k̂, r) cosϑk,

P(z) ≡
∫

dxdyE(r). (7.17)

Here,k̂ ≡ k/k, ϑk is the angle betweenk and thez axis. The spectral and volume
energy density is

ρω(ω, r) =
1

u(ω)

∫

4π
dΩI (k, r), (7.18)

whereu is the group velocity,ω ≡ ωk. In the case of the thermal radiation from
a heated body,I (k, r) cosϑk is called theemittanceof a body (at pointr of its
surface).

According to (7.15), the Kirchhoff law for the multimode emission from a
matter layer with the thicknessz and the effective temperatureT has the form
(compare with (6.225), (6.307))

IωΩ(k) = I vac
ωΩN(k), (7.19)

where

I vac
ωΩ ≡ ~ω/2πλ

2, N(k) = N(1− e−α(k)z), (7.20)

where we take into account only a single polarization type. The valueI vac
ωΩ

corre-
sponds to the spectral brightness of radiation having a single photon in each mode
(i.e., I vac

ωΩ
is the doubled ‘brightness of zero-point vacuum fluctuations’), it is a

natural unit for the measurement ofIωΩ: the mean number of photons per mode
N is equal to the spectral brightness inI vac

ωΩ
units.

7.1.4 Equilibrium and spontaneous radiation; superfluorescence

Consider three typical cases:
1. At αz � 1, (7.19) leads toIωΩ = I vac

ωΩ
N, which, in the case of isotropic

radiation, corresponds to the blackbody radiation and, according to (7.18), atu =
c/n, to the Planck formula,

2ρω = (8πn/c)IωΩ = (8π~/λ3)N; (7.21)

the factor 2 accounts here for two polarization types.
cSometimes the attribute ‘energy’ is added, indicating thatthey are measured in physical units and not
in light-engineering ones. The latter take into account thespectral characteristic of the human eye and
are based on thecandelaunit.
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2. If |α|z� 1, then (7.19) leads to

IωΩ = I vac
ωΩNαz= I vac

ωΩN2σl/ cosϑk, (7.22)

where the optical density of the layerαz for the modek was assumed to beσ(N1−
N2)l/ cosϑk. Let us write the transition cross-sectionσ in terms of the transition
dipole elementd0 according to (2.52) and find, using (7.17), the total power of
spontaneous emission. Letn = 1, then

P =
∫

4π
dΩ

∫

A
dxdycosϑk

∫ ∞

0
dωIωΩ = (4π2/~c)I vac

ωΩN2Vω0

∫

4π
dΩ(d0 · ek)2,

(7.23)
whereV = Al is the matter volume. The integral here is 8πd2

0/3, so thatP/VN2

coincides with the expression found above for the power of the spontaneous emis-
sion per one molecule, 4ω4

0d2
0/3c3 (see (5.32)).

3. Now, letαz� −1, thenN = GN, and

P = N2(N2 − N1)−1I vac
ωΩG0Ae f∆Ωe f∆ωe f , (7.24)

where we have introduced the effective aperturesAe f, ∆Ωe f and the frequency
bandwidth∆ωe f, which can be rigorously defined in terms of the correspond-
ing integrals, and the amplification coefficient at the center of the line,G0. This
equation determines the power ofsuperfluorescence, the amplified spontaneous
emission. Assume, for a crude estimate, thatAe f coincides with the cross-section
A of the amplifier,∆ωe f coincides with the amplification bandwidth∆ω, and
∆Ωe f ≈ A/l2, wherel is the length of the amplifier, then atN1 = 0

P = I vac
ωΩG0A2∆λ/l2. (7.25)

At λ = 0.5µ, ∆λ = 10 nm,A = 1 cm2, l = 10 cm, andG = 103, we obtain
P = 2 · 104W.

For many transitions in gases, inversion can be obtained only for a short time,
τ . 10−9s, even with the help of very powerful lasers. This is due to the extremely
long lifetime of the lower level. Then, if the active area length is larger than
cτ ∼ 30 cm, a mirror-based feedback is too slow to have an effect. The radiation
of lasers using such ‘self-restricted transitions’ is, in fact, superfluorescence. An
important example is the nitrogen laser with the wavelength330 nm.

Certainly, at sufficiently highG0 the superfluorescence power (7.25) can be
large enough for saturation; then the problem becomes nonlinear and the Kirchhoff
law is not valid any more.
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Fig. 7.4 Cavity quantum amplifier: (a) in the optical range; (b) in the microwave range; (c) an
equivalent circuit.

7.1.5 Gain and bandwidth of a cavity amplifier

For increasing the gain at a given length of the active medium, one can use a
positive feedback provided by a bulk cavity. With the help ofan equivalent circuit,
let us find the gain coefficientG(ω) and the transmission band∆ω of a reflective
cavity amplifier, i.e., an amplifier with a single coupling waveguide or a single
semi-transparent mirror (Fig. 7.4). In the microwave range, the amplified reflected
wave is separated from the incident weak signal by means of non-reciprocal ferrite
devices (circulators).

Consider the spectral range in the vicinity of some eigenfrequencyω0 of the
cavity. If the corresponding oscillation is non-degenerate andω0 is well separated
from other frequencies, then the field at an arbitrary point of the cavity depends
on the time similarly to the parameters of any other oscillator system with a single
degree of freedom, for instance, like the current in anLC contour. Then the elec-
tric field has the formE = u(r)q(t), whereu(r) is a known function determined by
the shape of the cavity andq(t) obeys the equation of motion for a harmonic oscil-
lator. This allows the cavity response to be calculated using the equivalent circuit
shown in Fig. 7.4(c). Damping (and, according to the Nyquisttheorem, noise
as well) are introduced into the circuit by three resistances: the external loadRl

(which, by definition, coincides with the impedance of a transmission line corre-
sponding to the coupling waveguide), the resistanceR0 scaling as the losses in the
cavity walls, and the negative resistanceRa scaling as the emission of the active
medium. The width of the chosen spectral line is assumed to bemuch greater than
∆ω, and thereforeRa is a real parameter.

In the case of a transmission line, the reflection coefficient, i.e., the ratio of
the complex amplitudes for the backward and forward waves, is determined by
the ratio of the load (cavity) resistanceZc to the impedance of the lineRl . For
instance, the reflection coefficient for the current is

K(ω) =
Rl − Zc

Rl + Zc
=

Rl − Rc − iX
Rl + Rc + iX

, (7.26)
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where

Rc ≡ R0 + Ra, X ≡ 1
ωC
− ωL = ωL













ω2
0

ω2
− 1













≈ 2L(ω0 − ω). (7.27)

The relation betweenRl and the other parameters depends on the coupling between
the cavity and the waveguide.

Let us pass from the equivalent parametersRi to dimensionless variables that
have a direct physical meaning: the Q-factorsQi ≡ ω0L/Ri or the damping con-
stantsdi ≡ 1/Qi . The valueQa is called the (magnetic)quality factor of the active
medium. After dividing both the numerator and the denominator of (7.26) byω0L,
we find

K(ω) =
dl − dc − 2ix
dl + dc + 2ix

, (7.28)

wherex ≡ (ω0 − ω)/ω0. The gain (or attenuation) of the reflected wave power is

G(ω) = |K(ω)|2 = (dl − dc)2 + 4x2

(dl + dc)2 + 4x2
. (7.29)

It is important that the coupling between the waveguide and the cavity can
be varied, for instance, by changing the orientation of the feedback loop or the
transmission of the mirror. Then, the normalized lossesdl = Rl/ω0L due to the
external circuit will also vary from zero (no feedback, a totally reflecting mirror)
to infinity (maximal feedback, no mirror). In the case of a resonance (ω = ω0) and
positive losses in the cavity (dc > 0), variation of the feedback strength from−1
to +1 leads to the variation of the amplitude reflection coefficient for the current
K0. The dependence passes through zero at the point of load matching, dl = dc

(Fig. 7.5).
If dc = d0 + da < 0, then by decreasing the feedback strengths one makesK0

andG0 vary from 1 to∞. Thus,a cavity quantum amplifier with a sufficiently
high-quality cavity (Q0 > −Qa) enables a weak signal to be amplified as much as
possible due to the regeneration.

However, an increase inK0 is accompanied by a decrease in another parameter,
important for many applications, namely, the amplificationbandwidth∆ω. As we
will show below, atK0 � 1 the product of the amplitude gain and the bandwidth
does not depend on the feedback,

K0∆ω = 2ω0/|Qa|. (7.30)

The productK0∆ω is called the regeneration parameter. It characterizes thequal-
ity of the active medium for paramagnetic amplifiers.
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Fig. 7.5 The gain coefficient K0 of a cavity amplifier as a function of the cavity quality factor 1/dc.
By reducing the feedbackdl , at a fixeddc < 0 one can makeK0 as high as desired. Here,dc is the
cavity damping constant with an account for the negative contribution from the active medium;dl is
the damping of the load, i.e., the relative losses due to the external circuit.

According to (7.29),

G− 1 =
−dcdl

d2/4+ x2
, (7.31)

whered ≡ dl + dc ≡ 1/Q is the total damping constant andQ is the quality factor
of the loaded cavity. It follows that atG � 1 the frequency characteristic of the
amplifier has a Lorentzian shape and theamplification bandwidth is determined
by the quality factor of the loaded cavity with an account forall losses,

∆ω

ω0
= d =

1
Ql
+

1
Q0
+

1
Qa

. (7.32)

For achievingG � 1, a nearly full compensation of all losses is necessary,
−da ≈ d0 + dl , in which caseK0 ≈ 2|dp|/d, so that the product of the gain and
the bandwidth is a constant,K0∆ω = 2ω0|dc|. Usually, the quality of the cavity,
Q0 & 104, is much greater than the quality of the active medium,|Qa| . 103,
hence, in practice,Qc = Qa, which yields (7.30).

Let us writeQa in terms of the parameters of the matter by using the general
definition of the quality factor as the ratio of the energy stored in an oscillation
contour,

E =
∫

Vc

d3r(ε′E2 + H2)/8π =
∫

Vc

d3rε′u2(r)/8π, (7.33)



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

Statistical Optics 251

to the energy of losses during the timeω−1
0 ,

P/ω0 =

∫

Vc

d3rε′′(ω0)u2(r)/8π. (7.34)

Here, we have used the equalitiesEel = Emag, q2(t) = 1/2, and Eq. (4.15) for the
losses per unit volume. Hence,

Q−1
a = ηε

′′/ε′ = ηα/k, (7.35)

whereη ≈ V/Vc 0 1 is the factor showing the proportion of the cavity filled
by the active medium and determined by the ratio of the integrals in (7.33) and
(7.34);ε = 1+ 4πχ, α is the linear amplification factor for plane waves with the
wavevectork; in the case of a magnetic transition,ε′′ should be understood as the
magnetic permeability. At electron paramagnetic resonance,α ≈ −5 · 10−2 cm−1

(Sec. 2.3), which yields, withλ = 3 cm andε′ = η = 1, Qa = −40. LetK0 = 100,
then it follows from (7.30) that∆ f = 5 MHz. This bandwidth is not sufficient for
many applications (communications, radar, radio astronomy); for this reason, one
uses several coupled cavities and slowing-down systems.

7.1.6 The Kirchhoff law for a cavity amplifier. The Townes equation

In order to take into account the noise of the active medium, let us add to the
equivalent circuit (Fig. 7.4) a source of current with the spectral density given by
the Nyquist equation (see Ref. [Akhmanov (1981)]),

i2f = 4κTRa/|Z|2, (7.36)

whereZ = Rl + Rc + iX andT is the effective (spin) temperature of the active
medium. (We neglect the noise related toQ0.) For taking into account quan-
tum noise,κT should be replaced by~ωN. The load resistance will produce the
spectral power densityP f = i2f Rl , which is, in~ω units,

N = 4Ndadl/(d
2 + 4x2) = N(1−G). (7.37)

Here, we used (7.31) in the approximationQ0 � |Qa|. Thus, we have again,
according to the Kirchhoff law, expressed the noise in terms of the effective tem-
perature and the gain. The width of the noise spectrum∆ωn at half maximum,
according to (7.37), coincides with the amplification bandwidth ∆ω (see (7.32)),
and hence, it tends to zero atdc → −dl . Similarly to the case of a traveling-wave
amplifier, atG � 1 and~ω � κT the noise temperature has the same absolute
value as the spin one.
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Let us find the full noise power atdc ≈ da ≈ −dl and∆ω � ω0,

P =
∫ ∞

0
d f~ωN = −

~ω3
0N

2πQ2
a

∫ ∞

0

dω
∆ω2/4+ (ω0 − ω)2

=
~ω3

0|N|
∆ωQ2

a
. (7.38)

This leads to theTownes equationgiving the spectral width of the emission of a
cavity amplifier in terms of the total radiation power,

∆ω =
~ω3

0N2

PQ2
a(N2 − N1)

. (7.39)

Let λ = 1µ, P = 1 mW= 104 erg/s,N1 = 0,α ≈ 1/oQa = −0.01 cm−1, then

∆ f = ~c3α2/Pλ ≈ 1Hz. (7.40)

Certainly, this calculation of∆ω is valid only for the linear regime of the
amplifier below its oscillation threshold (Ql < −Qa). However, one can expect
that even above the threshold, (7.39) provides a correct order of magnitude for
the bandwidth of a quantum oscillator (in the limiting case where the ‘technical’
noise, like mirror vibration, is absent). More accurate calculations, taking into ac-
count the nonlinearity due to the saturation [Loudon (2000); Klimontovich (1980);
Lax (1968); Arecchi (1974); Klauder (1968)], which restricts the noise amplitude,
lead to a factor 1/2 appearing in (7.39) for the regime high above the threshold.
This can be explained by the suppression of amplitude fluctuations, which give
the same contribution to the spectral width as the phase fluctuations. One should
keep in mind that the random slow phase variation (phase drift) of a harmonic sig-
nal leads to the fluctuations of its frequency and to a finite width of its spectrum.
The difference between the oscillation shapes of a quantum amplifier(oscillator)
below threshold and above it is explained in what follows (Fig. 7.7).

It is only the absence of amplitude fluctuations that qualitatively distinguishes
the radiation of a single-mode laser from a narrow-band noise. In the case of a
multi-mode laser with independent modes, this difference vanishes as well.

7.2 Basic concepts of the statistical optics

Above, we have found, in the form of the Kirchhoff law, the spectral brightness
of the radiationI (k) as a function of the frequency and the observation direction
in the far-field zone. Although the intensity is an importantcharacteristic of the
radiation, clearly, it does not provide the complete statistical information about
the electromagnetic field.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

Statistical Optics 253

In the present section, we will consider, using several typical experimental
schemes, the observed quantities and the corresponding convenient theoretical
tools, the correlation functionsG(n)

1...2n.
Because the most part of observable optical effects do not require the quanti-

zation of the field for their interpretation, we will restrict our consideration to the
more simple classical theory, and only in some cases the results of the quantum
theory (Secs. 7.4–7.7) will be given without the derivation.

7.2.1 Analytical signal

In statistical optics, it is convenient to use, instead of the real fieldEα(r, t), a
complex functionE(+)

α (r, t), which is calledthe analytical signalor thepositive-
frequency field. It is unambiguously defined as

E(+)(t) ≡
∫ ∞

0
dωe−iωtE(ω), (7.41)

whereE(ω) is the Fourier transform of the real field,

E(ω) ≡
∫ ∞

−∞
dteiωtE(t)/2π = E∗(−ω). (7.42)

By definition,the spectrum of the analytical signal E(+)(t) contains only pos-
itive frequencies (ω > 0) while the spectrum of the complex conjugate (negative-
frequency) field E(−) = E(+)∗, only negative frequencies. From the definition, the
relation follows (Fig. 7.6)

E(t) = E(+)(t) + E(−)(t) = 2ReE(+)(t). (7.43)

(a) (b)

Fig. 7.6 The analytical signalE(+)(t) and the real fieldE(t) in the case of a monochromatic spectrum
(a) and in the general case (b).
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In the case of a quasi-monochromatic field with a narrow spectrum, it is con-
venient to introduce a ‘slow’ complex amplitudeE0(t), defined as

E(t) ≡ ReE0(t)e−iω̄t, (7.44)

whereω̄ is some mean frequency. The absolute value|E0(t)| is calledthe envelope
and the argument is called the slowly varying phase.The spectrum of E0(t) is lo-
cated within the interval±∆ω/2 around the zero frequency. Apparently, one can
write that

E(+)(t) = (1/2)E0(t)e−iω̄t. (7.45)

The readings of optical detectors, such as PMTs, bolometers, photographic
films, etc. depend on the square (or higher powers) of the fieldaveraged over a
certain timeT due to the non-instantaneous response of the detector. (So far, we
do not take into account the finite spatial dimensions of the detector.) Assume that
∆ω � 1/T � ω̄, i.e., the envelope is much broader than the detector response
time, which, in its turn, includes a large number of light periods. Then the reading
of the detector will scale as the ‘instantaneous intensity’d

I (t) ≡ E2(t)/2 ≈ |E(+)(t)|2 = |E0(t)|2/4. (7.46)

In Sec. 7.7, this statement will be justified more rigorously. By using here the
analytical signal, we automatically eliminate the terms oscillating with the double
optical frequency.

7.2.2 Random intensity

In a random field, the instantaneous intensityI (t) at point r varies: it fluctuates
both in time and in space.e Often, one measures only the simplest characteristics
of the field: the mean (ensemble-averaged or time-averaged)intensity at a single
point (E(+) ≡ E(+)

α (r, t)),

〈I〉 = 〈E(−)E(+)〉, (7.47)

and the mean square of the intensity,

〈I2〉 = 〈E(−)2E(+)2〉, (7.48)

or the variance,

〈∆I2〉 ≡ 〈(I − 〈I〉)2〉 = 〈I2〉 − 〈I〉2. (7.49)
dSometimes we will omit the scaling factor, which in the case of a plane wave isc/2π.
eStrictly speaking, one should consider the random tensorIαβ ≡ E(−)

α E(+)
β

, whereα, β = x, y, z or, in
the case of directed radiation,α, β = x, y.
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In principle, one can measure the parameters (7.47)–(7.49)by observing the mean
value and the variance of the readings of a broadband single-quantum detector (see
below). The readings of an n-quantum detector directly yield the n-th moment,
〈In〉 ≡ G(n).

We will assume the field to be stationary, so that the mean values in (7.47)–
(7.49) do not depend on the time, and ergodic. The angular brackets may then
denote the averaging either over time or over an ensemble (with some distribution
functionP(I )).

After passing to the quantum theory (Sec. 7.4),E(+) is replaced by the operator
Ê(+), which is written in terms of the photon annihilation operatorsâk, while E(−)

is replaced by the operator̂E(−), which is written in terms of the photon creation
operators ˆa†k. Complex conjugation is then replaced by Hermitian conjugation, and
the angular brackets denote quantum averaging with the helpof a wave function
or a density matrix. Most quantum states of the field also allow averaging using
thequasiprobability distributions P(z) (Sec. 7.5), which is similar to the classical
averaging. In quantum averaging, the order of the operatorsmatters; the ordering
presented in (7.47), (7.48) is called thenormal one. Of course, in the classical
theory the normal momentG(n) ≡ 〈E(−)nE(+)n〉 can be replaced by〈|E(+)|2n〉.

In the vast majority of cases, the optical field is emitted by many independent
sources with random amplitudes and phases, such as, for instance, in the case
of the thermal radiation from heated matter, a quantum amplifier (Sec. 7.1), or a
multimode laser with independent modes. Then, the distribution of the complex
amplitudeE0 ≡ E′0 + iE′′0 is a normal (Gaussian) one, with independentE′0 and
E′′0 , while the intensity distribution is exponential (Fig. 7.7),

PT(I ) = 〈I〉−1 exp(−I/〈I〉). (7.50)

Thus, the mean intensity〈I〉 fully determines the statistics of a stationary
chaotic field (at a single point and for a single polarizationtype). Note that the
most probable intensity value is zero,P(0) 1 P(I ). Using (7.50), one can easily
find the moments and the variance of the intensity,

G(n)
T = n!〈I〉n, 〈∆I2〉T = 〈I〉2, (7.51)

where the subscriptT indicates that the field is chaotic (thermal).
Another typical case is the radiation of a single-mode laserwith a stabilized

amplitude (Fig. 7.7). Then,

P(I ) = δ(I − I0), G(n) = In
0, ∆I = 0. (7.52)

Equations (7.50)–(7.52) do not take into account the discreteness of possible
energy values, i.e., they ignore the photon structure of thefield; therefore, they
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(a) (b) (c)

Fig. 7.7 Two basic types of the field states. The figure shows the approximate shape of the field vari-
ation in time from the classical viewpoint (a) and the corresponding distribution functionsP(|E0|): the
classical ones (b) and the quantum ones (c). Top: the quasi-monochromatic field of thermal radiation,
of a quantum amplifier or oscillator below the threshold (both the amplitude and the phase fluctuate);
bottom: the field of an above-threshold quantum oscillator (the amplitude fluctuations are suppressed
due to the saturation effect).

are only valid for classical fields for which the degeneracy factor〈N〉 (see below)
is much greater than the unity. The general case will be considered in Sec. 7.6.
So far, let us only note that in the quantum theory, the continuous distribution
(7.50) is replaced by the ‘discrete exponential’ one, while(7.52) is replaced by
the Poissonian distribution (Fig. 7.7(c)).

7.2.3 Correlation functions

The distributions or intensity moments considered above provide no information
about the correlations between the fields at neighboring points in space and time,
or between the different Cartesian components of the field. Complete informa-
tion is given by the set of multi-dimensional distributionsor tensorcorrelation
functions(CF). The latter, according to Glauber [Glauber (1965)], are defined as

G(n)
1...2n ≡ 〈E

(−)
1 . . .E(−)

n E(+)
n+1 . . .E

(+)
2n 〉. (7.53)

(Here we use the notation that is also valid in the quantum description.) Each
subscript denotes a set of arguments, for instance,E1 ≡ Eα1(r1, t1). For simplicity,
we only consider CFs with even numbers of fields, since in optics the moments
of the form〈E1E2E3〉 are usually equal to zerof and, in addition, are difficult to
measure.
f Exceptions are fields at the output of nonlinear media excited by external radiation [Perina (1972);
Akhmanov (1971)] or heating [Klyshko (1980)].
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The CFs of a stationary field are invariant to the choice of theinitial time
moment, i.e., to the replacement of time arguments

t1, . . . , t2n→ t1 + ∆t, . . . , t2n + ∆t, (7.54)

where∆t is arbitrary. It is convenient to choose∆t ≡ −t1.
As a result,G(n) depends on 2n−1 time arguments, while its Fourier transform,

the spectral CF̃G(n), depends on 2n−1 frequencies. For instance, the first-order CF
has the formG(r1, r2, τ); it is called themutual coherence functionof the field at
pointsr1, r2, while its Fourier transform,̃G(r1, r2, ω), is called themutual spectral
density. At r1 = r2, the first-order CF,G(r, t), is called theautocorrelation func-
tion, while G̃(r, ω) is thespectral density. Traditional polarization characteristics
of directed radiation, such as degree of polarization or theStokes parameters, are
also determined by the first-order CF with an account for tensor indices [Perina
(1972)]. With all arguments coinciding, CFs become intensity moments (we omit
the tensor indices),

G(n)
1...1 = 〈|E

(+)(r1, t1)|2n〉 = 〈In(r1)〉. (7.55)

Among the various statistical models of the field, a special role belongs to
the Gaussian model, in which all CFs are expressed in terms ofthe first-order
CF [Glauber (1965)],

G(n)
1...n1′ ...n′ =

′
∑

G(1)
11′ · · ·G

(1)
nn′ , (7.56)

where
∑′ denotes the sum of alln! permutations of the primed indices. For in-

stance,

G(2)
1234= G(1)

13G(1)
24 +G(1)

14G(1)
23 . (7.57)

All information about a Gaussian (chaotic, thermal) field iscontained in the
first-order correlation function Gαβ(r1, r2, τ) or the mutual spectral density
G̃αβ(r1, r2, ω).

For a rough characterization of a quasi-monochromatic directed non-polarized
Gaussian field, it is sufficient to fix at each point the intensityGν(r) and the co-
herence parametersτcoh ∼ 1/∆ω, ρcoh for both polarization typesν = 1, 2. The
meaning of these parameters will be explained in the next sections.

7.2.4 Temporal coherence

Consider the fieldE′(t) at the output of a Michelson interferometer (Fig. 7.8). It
consists of two terms differing by a certain time delay,τ = t′ − t,

E′(t) = [E(t) + E(t′)]/2,
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Fig. 7.8 The Michelson interferometer and the measurement of the longitudinal coherence length.

Fig. 7.9 Typical dependence of the mean intensity at the output of a Michelson interferometer,〈I ′〉,
on the position of the moving mirror:g(τ) is the normalized autocorrelation function of the field at the
input.

where E(t) is the field of the plane wave at the input of the interferometer.
According to (7.46), the intensity at the output is

I ′(t) = [ I (t) + I (t′) + 2ReE(−)(t)E(+)(t′)]/4.

Hence, in the case of stationary radiation,

〈I ′〉 = [〈I〉 + ReG(τ)]/2 = 〈I〉[1 + Reg(τ)]/2, (7.58)

where

G(τ) ≡ 〈E(−)(0)E(+)(τ)〉 = 〈E∗0(0)E0(τ)〉e−iωt/4 (7.59)
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is the auto-correlation function of the field at the output, which is related, ac-
cording to the Wiener-Khinchine theorem, to the spectral density G̃(ω) via the
Fourier-transformation,g(τ) ≡ G(τ)/〈I〉 is the normalized CF, and〈I〉 = G(0).
Note that in optics, CFs are usually normalized to the mean values and not to the
standard deviations∆I .

According to (7.58),the dependence of the intensity at the output of a Michel-
son interferometer on the delay time determines the real part of the first-order CF.
One can show that the functionG(τ), similarly to E(+)(τ), is analytic in the lower
semi-plane. Therefore, its real and imaginary parts are related via the Hilbert
transformation, so that, in principle, from the interference pattern one can restore
the radiation spectrum. This method forms the basis for theFourier spectroscopy.
Besides, the interference of the field under study with a reference coherent wave
is the source of information inholographic interferometry.

A typical interference pattern in the case of a single spectral line is shown in
Fig. 7.9. The relative amplitude of the oscillations in the output intensity is called
the interference visibilityor thedegree of coherence. According to (7.58), (7.59),
the visibility coincides with|g(τ)|.

If we define thecoherence timeτcoh by the condition|g(τcoh)| = 1/2, then
it follows from the properties of the Fourier transformation thatτcoh ∼ 2π/∆ω.
Hence, thelongitudinal coherence length cτcoh is on the order of the inverse spec-
tral width in inverse centimeters,

lcoh ∼ 2πc/∆ω ≡ 1/∆ν. (7.60)

For instance, for lines with natural broadening in the visible range,∆ω ∼
2 · 106s−1, lcoh ∼ 105 cm. This can be viewed as the length of the wave train
emitted by an atom during spontaneous emission. In the case of a single-mode
laser, estimation with the Townes equation (7.40) yields a coherence length on the
order of a light second.

7.2.5 Spatial coherence

The correlation of fields at two pointsr1 andr2 can be measured with the help of
the Young interferometer, which is a screen with two pinholes placed orthogonally
to the direction towards the source (Fig. 7.10).

The interference pattern at an arbitrary point behind the screen, similarly to
(7.58), is determined by the first-order CF of the general form:

G12(τ) ≡ G(r1, r2, τ) ≡ 〈E(−)(r1, t)E
(+)(r2, t + τ)〉, (7.61)
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Fig. 7.10 Young’s interferometer and the measurement of thetransverse coherence radius.

while the pattern on the symmetry axis is determined byG12(0). Thecoherence
radiusρcoh is determined by the distance between the pinholes at which the visi-
bility is 50% reduced.

An ideal laser with a single transverse mode emits plane or spherical waves,
for whichρcoh = ∞. In the case of a multi-mode laser, or a chaotic (thermal) light
source,ρcoh in the far-field zone (z� a2/λ̄) is determined by the transverse sizea
of the source and the distancez from the source (Fig. 7.10),

ρcoh ∼ λ̄z/a ≡ zϑd ≡ λ̄/ϑa, (7.62)

whereϑd is the diffraction angle andϑa is the angular size of the source.Due
to diffraction, the transverse coherence radius increases in the course of light
propagation. The shape of the phase front in this case increases and tends to
the spherical one. The van Cittert-Zernicke theorem [Akhmanov (1981); Klauder
(1968); Perina (1972)], which describes this effect quantitatively, states thatthe
dependence of the first-order CF on(r1 − r2)⊥ is given by the Fourier transform
of the brightness distribution over the source cross-section.

Relation (7.62) enabled Michelson to measure, with the helpof his stellar
interferometer, the angular diameters of several stars, for whichϑa & 10−7 rad and
ρcoh . 10 m. At smallerϑa, the coherence radius is determined by the atmospheric
distortions of the wave front, which hinder the operation ofthe interferometer. The
Hanbury Brown–Twiss interferometer (see below) is free of this drawback.

7.2.6 Coherence volume and the degeneracy factor

The coherence volume is defined as the product of the coherence area,ρ2
coh, and

the coherence length,lcoh. For the far-field zone of a chaotic source, it follows
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from (7.60) and (7.62) that

Vcoh = λ̄
4/∆λ∆Ωa, (7.63)

where∆λ = λ̄2/lcoh and∆Ωa ≡ (a/z)2 is the solid angle at which the observer sees
the source.

An important dimensionless statistical parameter of the radiation is thede-
generacy factor, which is the mean energy of the field (for a single polarization
mode), in~ω̄ units, contained in the coherence volume. In other words, the de-
generacy factor is the number of photons crossing the coherence area during the
coherence time,

δ ≡ 〈E〉coh/~ω̄. (7.64)

Let us write〈E〉coh in terms of the radiation spectral brightness,

〈E〉coh = IωΩ∆ω∆Ωaτcohρ
2
coh = 2πλ̄2IωΩ. (7.65)

Hence,

δ = λ̄3IωΩ/~c ≡ 〈N〉. (7.66)

Thus,the degeneracy factor is equal to the spectral brightness in~c/λ̄3 units.
In other words, the mean photon number per coherence volume coincides with
the mean number of photons per single mode,〈N〉. In an equilibrium field,δ =
N(ω̄) ≡ [exp(~ω̄/κT) − 1]−1. In a non-equilibrium field, the temperature should
be interpreted as the brightness temperature,Te f.

The degeneracy factorδ = 〈N〉 is not only a convenient measure of the spectral
brightness; it also defines the applicability of classical statistics: atδ . 1 (i.e.,
~ω̄ . κT) the photon structure of the field becomes important.g

Let us divide the far-field space of a quasi-monochromatic source into cells
with volumesVcoh. By definition, the radiation at any two points of the same
cell is mutually coherent. Hence, the field within one cell can be approximately
considered as single-mode, i.e., assumed to be a spherical monochromatic wave
with a definite amplitude|E0| and phaseϕ. Passing from one cell to another, we
will observe random fluctuations of|E0| andϕ. Thus, the spatial distribution of a
stationary field forms the ensemble of harmonic-oscillatorstates.

Fields belonging to different coherence volumes are, by definition, uncorre-
lated and, generally, independent. Hence, by virtue of the central limit theorem of
gEditors’ note: It may seem that the degeneracy factorδ can be considered as a measure of nonclas-
sicality. However, this is not true, and this is not stated inthe book. Atδ � 1, theshot noise, which
is related to the photon structure of light, prevails over excess intensity fluctuations and therefore be-
comes important. At the same time, there are nonclassical states of light withδ � 1 (squeezed states,
squeezed vacuum).
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Table 7.1 Basic distribution types for the photon number andthe energy.

Quantum theory Classical theory

State Number of modes

1 � 1 1 � 1

Coherent (laser) Poissonian Poissonian δ(E − E0) Gaussian

Chaotic (thermal) Geometric Poissonian Boltzmann’s Gaussian

K-photon (mixed) PK = 〈N〉/K, Poissonian

P0 = 1− PK

the probability theory, the energy distribution in a volumeV that is much greater
thanVcoh will be Gaussian, with the variance inversely proportionalto the number
of cellsV/Vcoh. In the quantum case, whereδ . 1, the Gaussian distribution for a
multi-mode field is replaced by the Poissonian one (Sec. 7.6)

Table 7.1 shows some types of distributions for the energy orthe number of
photons. The states that are called ‘K-photon’ ones have no classical analogues
and manifest photon anti-bunching and bunching (Sec 7.6).

7.2.7 Statistics of photocounts and the Mandel formula

The intensity distribution for the field at one ‘point’ can bemeasured by means
of a PMT operating in thephoton-counting mode.h Then the mean intensity of
light 〈I〉 should be sufficiently low, so that the photocurrent pulses at the PMT
output do not overlap (Fig. 7.11). By repeatedly counting the number of pulses
m coming within a certain fixed time intervalT, one can find the distribution
P(m) of the number of primary photoelectrons released from the photocathode
by the incident light. (Of course, the total duration of the measurement should
considerably exceed the coherence timeτcoh.)

Let us find the relation between the statistics of photocounts and the field
statistics. Suppose thatT � τcoh andA� Acoh, then one can neglect the intensity
variation during the sampling timeT and over the photocathode areaA. Under
this condition, theP(m) distribution will be determined by theP(I ) distribution
regardless of the detection volumeVdet ≡ cT A. Here,τcoh andAcoh ≡ ρ2

coh are the
typical scales of the field fluctuations, and the above-giveninequalities enable us
to consider the detector as ‘pointlike’ and ‘single-mode’,i.e., measuring a single
degree of freedom of the field. (This also implies that the detector measures a
single polarization type.)

hEditors’ note: nowadays, much more convenient for single-photon counting are avalanche photodi-
odes (APDs) (see also Sec. 1.3).
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Assume first that the intensityI is constant, i.e., it does not vary from sample
to sample. It is important that even in this case, the number of photoelectrons in
a single sample is, according to the quantum mechanics, random, unpredictable.
The very process of energy measurement necessarily introduces additional Poisso-
nian stochasticity into the detector readings. (We do not consider the non-realistic
case of a detector with a 100% quantum efficiency and a pure energy state of the
field with a fixed number of photons.) Using the semi-classical (Sec. 2.1) or purely
quantum (Sec. 7.7) perturbation theory, we can only find the ionization probabil-
ity W1∆t ∼ I for a single atom of the photocathode during a small time interval
∆t.

In the case of a sufficiently small∆t, the probability for any on theN indepen-
dent atoms of the photocathode to be ionized isN times as large, and also scales
asI ,

W = NW1 ≡ (α/T)I . (7.67)

Hereα is the scaling factor, which can be represented as

α = ηVdet/2π~ω̄, (7.68)

whereVdet ≡ cT A is the effective detection volume,η ≡ σlN0 = σN/A is the
quantum yield of a thin photocathode with the thicknessl, σ is the ionization
cross-section, andN0 ≡ N/Al is the concentration of atoms. We assume thatσ is
constant within the spectral width of the field.

By definition, all time moments withinT are equivalent, since the wave inci-
dent on the photocathode is a ‘pure’ sine one, and an electroncan appear within
any time interval∆t with the same probabilityαI∆t/T. This statistical model, as
one can easily show (see, for instance, Ref. [Rytov (1976)]), leads to the Poisso-
nian distribution with the parameterαI ,

P(m|I ) = C(αI )m/m!, C ≡ e−αI . (7.69)

Intensity fluctuations from sample to sample can be taken into account by
averaging (7.69) with theP(I ) distribution,

P(m) =
∫ ∞

0
dIP(m|I )P(I ) ≡ 〈P(m|I )〉. (7.70)

As a result, we obtain thesemi-classical Mandel formulafor the photocount dis-
tribution, i.e., for the probability of discoveringm pulses at the PMT output,

P(m) = 〈(αI )me−αI 〉/m!. (7.71)
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Fig. 7.11 Relation between the statistics of the field and thephotocount statistics from the semi-
classical viewpoint:E is the field,i is the PMT output current; (a) in the case of a field with a constant
amplitudeE0, the number of photoelectronsmi emerging during a certain time intervalT has a Poisso-
nian distribution; (b) the amplitude fluctuations of the field atT � τcoh cause additional fluctuations in
the number of the photoelectrons (the bunching effect); (c) a multi-mode (T � τcoh) detector averages
over the field fluctuations, and the bunching effect is not observed.

The quantum-theoretical approach, mainly developed by Glauber (Sec. 7.6),
yields an expression of the similar form, with the only difference that the probabil-
ity P(I ) is replaced by thequasiprobability, a function that takes negative values
or has singularities (like delta-function derivatives) for some states of the field.

By expanding (7.71) in powers of the detector quantum efficiencyα, one can
expressP(m) in terms of higher-order intensity moments,G(k) ≡ 〈I k〉, with k 1 m,

P(m) =
∞
∑

k=m

(−1)k−mαkG(k)/m!(k−m)! (7.72)
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For a sufficiently small detection volume (α ∼ T A → 0), as a rule, one can
take into account only the first term in this expansion, i.e.,neglect the exponent in
(7.71). ThenP(m) can be represented as

P(m) =
Tm

m!
W(m) =

(NT)m

m!
〈Wm

1 〉, (7.73)

whereW(m) is themth derivative ofP(m) in T, W1 is the ionization probability per
unit time for a single atom,N is the total number of atoms in the detector.

The Mandel formula (7.71) describes the ensemble of random samples differ-
ing by ashift in time(due to the assumed stationarity and ergodicity of the field).
One can easily see that in the case of radiation that is homogeneous and ‘spatially
ergodic’ alongx, y and propagates approximately alongz, the same formula de-
scribes an ensemble of samples differing by aspatial shift in the(x, y) plane. This,
in principle, allows one to study the statistics of non-stationary fields in real time,
with the help of a large number of photon counters placed at different points of
the beam cross-section over an area much greater thanAcoh.

Further, it is clear from the derivation of formula (7.71) that it is also valid in
the case of an arbitrary coherence volumeVdet = cT A provided thatI is under-
stood as the intensity averaged overVcoh,

Ī (r, t) ≡ 1
AT

∫

dx′dy′dt′I (x′, y′, z′), (7.74)

where the integration limits,x± a/2, y± b/2, t±T/2, are determined by the sizes
and the time constant of the detector. In this case, the distribution P(I ) should
be replaced byP(Ī). In the limiting case ofA � Acoh or/andT � Tcoh (multi-
mode detection), the fluctuations ofI are completely eliminated due to averaging:
P(I ) = δ(Ī −〈I〉), so that we once again obtain the Poissonian distributionP(m|〈I〉)
from (7.71), but now it is independent of the field statistics. By observing the
dependence ofP(m) on A,T in the intermediate case, one can, in principle, obtain
information about the coherence time and area of the field.

7.2.8 Photon bunching

Relation (7.71) between the distributions also determinesthe relations between
the moments of the photocount numbers,

〈mk〉 ≡
∞
∑

m=0

mkP(m), (7.75)

and the intensity moments,

〈I k〉 ≡
∫ ∞

0
dII kP(I ). (7.76)
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Using the generating functions method (Sec. 7.6), one can easily find the general
rule,

〈m(m− 1) . . . (m− k+ 1)〉 = αk〈I k〉. (7.77)

The linear combination of moments in the left-hand side is called thekth-order
factorial moment. From this, in particular, it follows that〈m〉 = α〈I〉 and

〈∆m2〉 = 〈m〉 + α2〈∆I 2〉, (7.78)

〈∆I 2〉 ≡ 〈I 2〉 − 〈I〉2, (7.79)

and similarly for〈∆m2〉. Thus,fluctuations of the photoelectron number contain,
in addition to the usual Poissonian (shot-noise) part, a contribution from the fluc-
tuations of the light intensity.Only in the case of a single-mode stabilized laser
(∆I = 0) this contribution is absent. In other cases, fluctuationsof the photo-
electron number, according to (7.78), should at first sight exceed the shot noise,
since from the definition (7.79) and from the conditionP(I ) > 0 it follows that
〈∆I2〉 > 0.

The existence of these ‘excess’ fluctuations has been calledthe photocount
bunching effect, since in a Poissonian sequence of pulses, by definition, theap-
pearance of a single pulse has no effect on the appearance of the next one, and the
inequality〈∆m2〉 > 〈m〉means that the pulses have a tendency to bunch. A similar
effect for the photon numbers,〈∆N2〉 > 〈N〉, is calledphoton bunchingor photon
correlation. A close effect has been discovered by Hanbury Brown and Twiss in
1956 in the chaotic light of a mercury lamp.

In chaotic light, it follows from (7.51) and (7.78) that

〈∆m2〉T = 〈m〉(1+ 〈m〉), (7.80)

i.e., the excess part of the variance is〈m〉 times as large as the Poissonian one, so
that the photon bunching effect is more pronounced in classical fields. From the
classical viewpoint, strong fluctuations of the amplitude|E0| of a wave formed by
many independent sources with random phases are quite obvious. More surpris-
ing for the classical theory is theanti-bunching of photonsand, correspondingly,
photocounts, so that∆m2 < 〈m〉, in contradiction with (7.78) and the initial Man-
del formula (7.71) ifP(I 1 0) is assumed. (As we have already mentioned, the
last condition is violated in quantum theory.)

7.2.9 Intensity correlation

The photocount number distribution (7.71) does not providedirect information
about the temporal or spatial radiation spectrum, as it onlycontains ‘single-point’
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CFs with all arguments coinciding (see (7.72)). A complete characterization of an
nth-order CF requires the measurement of the field at 2n points of space-time. In
the case of the first-order CF, this can be done with the help ofinterferometers, as
it was schematically described above.

Consider now the measurement of the intensity correlation function, namely,
the second-order CF of the following particular form:

G(2)(x1, x2, x1, x2) ≡ G(2)
12(τ) = 〈: I (x1)I (x2) :〉, (7.81)

wherex1 ≡ {r i , ti}, τ ≡ t2 − t1, and ther2 − r1 ≡ ρ vector is orthogonal to the
propagation direction. The colons remind that in the quantum calculation, allE(+)

operators should be put on the right ofE(−) operators before the averaging.
In the case of a Gaussian field, with the help of (7.57) we find

G(2)
12(τ) = 〈I1〉〈I2〉[1 + |g(1)

12(τ)|2], (7.82)

whereg(1)
12(τ) is the normalized first-order CF. Thus,in a chaotic field, by mea-

suring the intensity correlation one also gains information about the amplitude
correlations. This relation betweenG(2) andG(1) forms the basis for theopti-
cal mixing spectroscopy[Cummins (1974)], also calledspectroscopy of intensity
fluctuationsor themethod of photon correlations.

In the general case,G(2) is not related toG(1), and the second-order coherence
parameters may differ fromρ

(1)
coh, τ

(1)
coh. For instance, in two-photon light,ρ(2)

coh �
ρ

(1)
coh.

i

The time dependence ofG(2)(τ) at ρ = 0 is measured by means of a single
detector with a delay line and an electronic correlation circuit.j One can also use
the spectral analysis of photocurrent fluctuations. The first experiment of this type
has been performed by Forrester, Gudmundsen and Johnson as early as in 1955,
before the advent of lasers.k Modern technique enables one to achieve the spectral
resolution much less than 1 Hz.

In order to study the spatial second-order coherenceG(2)(ρ), one has to use
two detectors with a variable distance between them.l According to (7.82), when
ρ is varied from∞ to 0, G(2) is increased, in an ideal case, by a factor of two
(Fig. 7.12). This effect has been discovered by Hanbury Brown and Twiss in 1956
and used for the measurement of the angular diameters of stars [Hanbury Brown

iEditors’ note: This is the case in one of the possible definitions of second-order coherence parame-
ters, see the last subsection.
jEditors’ note: see Fig. 7.14(a).
kThe possibility of similar experiments on the ‘heterodyning’ of light had been discussed even earlier
by Gorelik [Gorelik (1948)].
lEditors’ note: see Fig. 7.14(b).
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Fig. 7.12 Correlation and anti-correlation of light intensities: i1, i2 are the photocurrents of the de-
tectors;ρ is the displacement of one of the detectors from the symmetric position; 1, thermal radiation;
2, laser radiation; 3, two-photon radiation.

(1971)] whose intensities are correlated within distanceson the order of hundreds
of meters.

The Hanbury Brown–Twiss experiment on the measurement ofG(2)(ρ) for the
light from a mercury lamp is shown in Fig. 7.13. Splitting of the beam with the
help of a semi-transparent mirror allows one to measure the correlation at points
that are arbitrarily close to each other. Let the PMTs operate in the photon count-
ing regime, then the correlation between the photocounts inthe two channels,
〈m1m2〉, isα1α2〈I1I2〉. Hence, with the help of (7.82), we find

〈m1m2〉 = 〈m1〉〈m2〉(1+ |g(1)
12(0)|2). (7.83)

This result is only valid in the case of single-mode detectors, where the time
constant of the detectorT is much less thanτcoh and the detector apertureA is
much less thanAcoh. If, for instance,T � τcoh, then a small factor on the order of
τcoh/T appears by the second term of (7.83), which reduces the observed effect.

Fig. 7.13 Hanbury Brown–Twiss experiment on the observation of light intensity correlation.
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The intensity correlation effect is closely connected with the intensity fluctua-
tions of light at the input of Hanbury Brown–Twiss interferometer. Indeed, letI1

andI2 be random intensities in the arms of the interferometer and∆I1 and∆I2 be
their fluctuations (∆In ≡ In − 〈In〉). The output signal〈i1i2〉 scales as

〈I1I2〉 = 〈I1〉〈I2〉 + 〈∆I1∆I2〉. (7.84)

The second term here characterizes the mutual correlation of intensities. From the
conditionI1 + I2 = I , we find the relation

〈∆I2〉 = 〈(∆I1 + ∆I2)2〉 = 〈∆I2
1〉 + 〈∆I2

2〉 + 2〈∆I1∆I2〉. (7.85)

Thus, thecorrelation is determined by the variances,

〈∆I1∆I2〉 = (1/2)(〈∆I2〉 − 〈∆I2
1〉 − 〈∆I2

2〉). (7.86)

Assume first that the incident light has a constant intensity(radiation of a
single-mode laser), then∆In = 0 and, according to (7.86), the correlation is equal
to zero. Then,〈I1I2〉 = 〈I1〉〈I2〉. Now, suppose that usual light from a thermal or
luminescent source be incident on the interferometer; then, according to (7.51),
〈∆I2〉 = 〈I〉2. Suppose that similar relations hold for the secondary beams as well,
〈∆I2

n〉 = 〈In〉2. Hence, with the help of (7.86) we find (Fig. 7.12) that

〈∆I1∆I2〉 = (1/2)(〈I〉2 − 〈I1〉2 − 〈I2〉2) = 〈I1〉〈I2〉,

g(2)
12 ≡ 〈I1I2〉/〈I1〉〈I2〉 = 2.

(7.87)

This reasoning can be easily reproduced in the photon language by changing
In to photon numbersNn. In this case, the shot noise (Poissonian noise) is added
to the variance, so that

〈∆N2〉las = 〈N〉, 〈∆N2〉T = 〈N〉 + 〈N〉2. (7.88)

In fact, the result is the same:in thermal light, there is photon correlation caused
by photon bunchingor, in other words, by the presence of excess noise in addition
to shot noise.

Further, consider field with a fixed numberN of photons. TheseN photons
will be randomly split by the semi-transparent mirror between the two channels
with the probabilitiesp and q = 1 − p. This picture corresponds to the well-
known Bernoulli’s probability model [Rytov (1976)], whichgives the binomial
distribution for the probability ofN1 photons going to channel 1,

P(N1) = CN1
N pN1qN−N1 . (7.89)
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The moments of this distribution have the form

〈N1〉 = pN, 〈N2
1〉 = p2N2 + pqN,

〈N2〉 = qN, 〈N2
2〉 = q2N2 + pqN.

(7.90)

Hence, we find

〈N1N2〉 = (1/2)(N2 − 〈N2
1〉 − 〈N2

2〉) = pqN(N − 1). (7.91)

It is noteworthy that now the correlation is negative,

〈∆N1∆N2〉 = 〈N1N2〉 − 〈N1〉〈N2〉 = −pqN.

Then (see Fig. 7.12),

g(2)
12 = 1− 1/N. (7.92)

Thus,photon anti-bunching in the initial beam leads to photon ‘anti-correlation’
in the two output beams.

Consider, finally, the general case of a field with an arbitrary statistics. Then,
(7.91) should be additionally averaged over the photon-number distributionP(N)
in the incident field. As a result,

〈N1N2〉 = pq〈: N2 :〉, g(2)
12 = 〈: N2 :〉/〈N〉2 ≡ g(2), (7.93)

where〈: N2 :〉 ≡ 〈N(N − 1)〉 is thenormalized(factorial) moment and the an-
gular brackets denote averaging over the distributionP(N). Thus, therelative
correlation of photon numbers at two field points, g(2)

12 − 1, is determined by the
normalized factorial moment of the field g(2). The same result follows from the
rigorous quantum-theory approach (see (7.331)).

7.2.10 Second-order coherence (added by the Editors)

Unlike the first-order coherence parameters, which are defined unambiguously as
the widths of the first-order correlation function (CF) in time and space, and can
be measured as shown in Figs. 7.8–7.10, second-order coherence time and radius
allow different definitions. This is because the second-order CFG(2)(t1, r1, t2, r2)
has two time arguments and two space arguments, and there areseveral ways to
define its width. In the stationary case, the second-order correlation function de-
pends only on the difference of its time arguments; the same relates to the space
arguments in the spatially homogeneous case:G(2)(t1, r1, t2, r2) ≡ G(2)(τ, ρ). Then,
the second-order coherence parameters can be defined as the widths of G(2)(τ, ρ)
in τ and ρ. In the non-stationary (spatially inhomogeneous) case, they can be
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Fig. 7.14 Measurement of the temporal (a) and spatial (b) widths of the second-order correlation
function.

introduced by analogy, as the widths of G(2)(t1, r1, t2, r2) in t1− t2 or r1− r2 (‘con-
ditional’ width of the CF).These parameters can be measured using two simple
setups shown in Fig. 7.14. Intensities at two space-time points are measured by
two detectors, usually photon-counting ones, and the coincidences of their counts
are registered with the help of a coincidence (correlation)circuit. Time delayτ
is usually introduced electronically, by delaying the output pulses of one of the
detectors (Fig. 7.14(a)).m Space delay is introduced by displacing one of the de-
tectors (Fig. 7.14(b)). Such setups (see, for instance, [Mandel (2004)]) allow one
to measure the second-order correlation function and, in particular, its widths in
space and time.

However, there is another way to introduce second-order coherence param-
eters. By analogy with the experimental schemes of measuring the first-order
coherence time and radius (Figs. 7.8–7.10), which are basedon the first-order in-
terference, one can define the second-order coherence parameters using various
experimental schemes for observing second-order interference (intensity interfer-
ence). In particular, intensity interference can be observed using Michelson’s or
Young’s interferometers (Fig. 7.15). One measures the coincidence counting rate
between two detectors, which register the intensities of the field at two points (us-
ing a beamsplitter if necessary, as in Fig. 7.15(a)). The interference phase can be
varied by moving the mirror in the Michelson interferometer(a) or by displacing
one of the slits in the Young interferometer (b). The interference pattern will be
formed by the dependence of the coincidence counting rate onthe phase, provided
that the first-order interference is absent.The second-order coherence time can be
introduced then as the delay in the Michelson interferometer at which the visibility
of the intensity interference decays by a factor of two. Similarly, the second-order
coherence radius can be defined as the distance between the slits in the Young’s
mIn the case of SPDC, the correlation time is usually less thanthe resolution of the detectors; in such
cases, other techniques should be used.
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Fig. 7.15 Intensity interference observed using (a) Michelson’s interferometer and (b) Young’s in-
terferometer. Coincidences of photocounts are observed for two detectors registering photon pairs
emitted by sources separated in time (a) or space (b).

experiment at which the visibility of intensity interference decays by a factor of
two.

The principal difference between this definition and the previous one is that
they relate the second-order coherence parameters to the radiation emitters (or
different contributions into radiation) and detectors, respectively. Note that it is
the second definition that is meant at the beginning of this section (paragraph after
Eq. (7.82)), leading to the conclusion that for two-photon light, ρ(1)

coh � ρ
(2)
coh. In

order to distinguish between these two different definitions, it is convenient to use
the terms ‘correlation time/correlation radius’ for the widths ofG(2)(t1, r1, t2, r2)
in τ ≡ t1 − t2 andρ ≡ |r1 − r2|, respectively (Figs. 7.14(a) and 7.14(b)), and the
terms ‘coherence time/coherence radius’ for the widths of the intensity interfer-
ence patterns (Figs. 7.15(a) and 7.15(b)).

As an example, consider the two alternative definitions in the case of two-
photon light generated via SPDC. Let us discuss only temporal coherence, and
suppose that the pump is a sequence of relatively long Fourier-limited pulses
of durationTp. The correlation time will then be determined by the length of
the nonlinear crystaln and be close to the first-order coherence time, which is
given by the inverse spectral width∆ω of SPDC radiation [Goodman (1985)]:
τcorr ∼ τ

(1)
coh = 2π/∆ω. At the same time, according to the second definition,

τ
(2)
coh can be measured experimentally by observing two-photon interference with

SPDC radiation fed into a Michelson interferometer (Fig. 7.15(a)). Numerous
experiments on two-photon interference [Mandel (2004)] show that the visibil-
ity will be high as long as the time delay does not exceed the pump coherence
time, which in the case considered here coincides withTp. Thus, for this example
τ

(2)
coh ≈ Tp andτ(1)

coh ∼ τcorr � τ
(2)
coh.

nStrictly speaking, it is the minimal value of the correlation time that is determined by the crystal
length; the correlation time can then be increased due to thepropagation of light through a dispersive
medium.
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The same reasoning will be valid for spatial coherence parameters,ρ(1,2)
coh .

7.3 Hamiltonian form of Maxwell’s equations

In this section, we will show that Maxwell’s equations for the transverse part of the
field, i.e., for the radiation field, can be reduced to a systemof independent equa-
tions for harmonic oscillators. These equations can be easily represented in the
form of classical Hamilton’s equations. This enables one touse the quantization
algorithm which defines the commutator of two operators in terms of Poisson’s
brackets for the corresponding classical values.

7.3.1 Maxwell’s equations in the k, t representation

Suppose that we are interested in the evolution of a radiation field within a certain
bounded space domain during a limited time intervalT. Imagine that all space is
divided in identical cubic cells with the linear sizeL > cT,o, so that one of the
cells contains all the field that is measured during the timeT.

Fig. 7.16 To the definition of the quantization lengthL: E(z) is the real field and̃E(z) is the fictitious
field that is periodic in space.

Consider the dependence of some field component on one of the coordinates,
for instance,Ex(z), at a fixed time moment (Fig. 7.16). Let us define a spatially
periodic functionẼx(z) by the conditionẼx(z+ nL) ≡ Ex(z), where−L/2 < z <
L/2, n = 0,±1, . . . . Within the observation interval, (−L/2, L/2), the fictitious
periodic fieldẼ coincides with the real one,E; therefore,Ẽ andE are physically
equivalent, and in future we will omit the tilde.

oThis condition is assumed to be well satisfied, so that the field at the boundaries stays equal to zero
during all observation time.
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Fig. 7.17 The sinc(x) function in the cases of a discrete (points) and continuous(dashed line)
arguments.

A field that is periodic inz can be represented as a sum ofspatial harmonics
(we omit thex index),

E(z) =
∞
∑

m=−∞
Em exp(ikmz),

km ≡ 2πm/L, m= 0,±1,±2, . . .

(7.94)

For finding the amplitude of themth harmonic, we act on (7.94) from the left by
the operator

∫ L/2

−L/2
dzexp(−iknz),

then
∫ L/2

−L/2
dzexp(−iknz)E(z) =

∑

m

EmLsinc[π(m− n)] = EnL. (7.95)

The last inequality follows from the fact that the function of an integer value,
∫ L/2

−L/2
dzexp[−i(km− kn)z] = Lsinc[π(m− n)] = Lδmn, (7.96)

differs from zero only at a single pointm= n, where it is equal to unity (Fig. 7.17).
SinceE(z) is real,E−m = E∗m.

At the final stages of the calculation, thequantization length Lcan be usually
assumed to be infinite; in this case, the Fourier series (7.94) becomes an integral,

E(z) = (L/2π)
∫ ∞

−∞
dkE(k)eikz, (7.97)

where

E(k) = L−1
∫ ∞

−∞
dzE(z)e−ikz. (7.98)
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In the derivation of (7.98), the following representation of the delta function was
used:

∫ ∞

−∞
dzeikz = lim

L→∞
Lsinc(kL/2) = 2πδ(k). (7.99)

The factorL/2π is added to (7.97) for making the discrete Fourier components
coincide atL→ ∞ with the continuous ones,Em→ E(km). Comparing (7.94) and
(7.97), we find the rule for passing from summation to integration,

∑

m

· · · → (L/2π)
∫

dk. . . (7.100)

The valueL/2π is called the density of modes (in the one-dimensional case
with a single polarization state). The inverse value, 2π/L, is equal to the distance
between the neighboring modesm,m+ 1 on thek axis.

By repeating this procedure for other components of the fieldEy,Ez and for the
dependencies onx, y, we obtain a three-dimensional Fourier series for the field,

E(r, t) =
∑

lmn

Elmn(t)e2πi(lx+my+nz)/L ≡
∑

k

Ek(t)eik·r , (7.101)

Ek(t) = L−3
∫

L3
d3rE(r, t)e−ik·r = E∗−k(t), (7.102)

k ≡ (2π/L){l,m, n}, l,m, n = 0,±1,±2, . . . (7.103)

A similar series expansion can be written for the magnetic field. Due to rep-
resenting an arbitrary field (7.101) as a sum of plane waves, acontinuous spatial
distributionEα(r) is determined by a countable set of complex numbersEkα. The
‘allowed’ vectorsk form a grating in thek space, which is divided in cells of
volume (2π/L)3 due to the periodicity condition. Note that because of the relation
E−k = E∗k, not all numbersEkα are independent. The sum (7.101) can be written
in the following equivalent forms:

E = Re
∑

k

Ekeik·r = Re(E + iF) = Re
∑

k

(Ek + iF k)eik·r , (7.104)

whereF(r, t) is an arbitrary real field andFk = F∗−k are its harmonics.
Expansion in spatial harmonics (7.101) enables the fieldE(r) to be unam-

biguously separated in two components: the transverseE⊥(r) and the longitudinal
E‖(r) (the argumentt is omitted),

E⊥(r) =
∑

k

∑

ν=1,2

ekνEkνe
ik·r ,

E‖(r) =
∑

k

ek3Ek3eik·r ,
(7.105)
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where the unity orthogonal vectorsekν form a right-hand triple, andek3 ≡ k̂ ≡
k/k. It follows from (7.105) that

divE =
∑

k

ik · Ekeik·r = divE‖,

rotE =
∑

k

ik × Ekeik·r = rotE⊥,
(7.106)

and similar relations are valid for the magnetic field. By substituting (7.106) into
Maxwell’s equations (4.9)–(4.12) and assumingε = 1, we obtain

crotH⊥ − Ė⊥ = 4π j⊥, crotE⊥ + Ḣ⊥ = 0, (7.107)

−Ė‖ = 4π j‖, Ḣ‖ = 0, (7.108)

divE‖ = 4πρ, divḢ‖ = 0. (7.109)

Hence, the longitudinal part of an alternating magnetic field is equal to zero,
while the longitudinal part of the electric field is determined by the positions of the
charges at the same time moment, without retardation. Therefore, the radiation
field in the vacuum, which is of interest for optics,is transverse, and it is deter-
mined by the dynamical equations (7.107) through the transverse part of given
(external) currentsj⊥ ≡ j. (Hereafter, we omit the⊥ index.)

By substituting (7.105) into (7.107), we find the equations of motion for the
spatial harmonics,

Ėk − ick × H k = −4π jk, (7.110)

Ḣ k + ick × Ek = 0, (7.111)

which, after excludingH k, yields

Ëk + ω
2
kEk = −4π j̇k. (7.112)

Here,ωk ≡ ck and

j k(t) ≡ L−3
∫

L3
d3rΠk · j(r, t)e−ik·r = j∗−k(t), (7.113)

with Πk being the projection tensor (see (4.20)). Thus,Maxwell’s equations for
the transverse field in thek, t representation are reduced to a system on inhomo-
geneous equations for independent harmonic oscillators. Note that the harmonics
Ek andE−k are always excited simultaneously sinceEk = E∗−k.
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In the case of a free-space field, i.e., in the absence of currents in L3, the
spatial harmonics, according to (7.110)–(7.112), oscillate without damping with
the eigenfrequencies of the modesωk,

Ek(t) f ree = (Ek0e−iωkt + E′k0eiωkt)/2,

H k(t) f ree = k̂ × (Ek0e−iωkt − E′k0eiωkt)/2.
(7.114)

Here,Ek0 is the initial amplitude of the plane wave propagating in the+k direc-
tion, while E′k0 is the independent amplitude of the backward wave, propagating
in the−k direction. The conditionEk = E∗−k yields E′k0 = E∗−k0. Hence, by
summing over allk, we obtain

E(r, t) f ree = Re
∑

k

Ek0ei(k·r−ωk t),

H(r, t) f ree = Re
∑

k

k̂ × Ek0ei(k·r−ωkt).
(7.115)

Thus, the state of a free-space field at an arbitrary pointr, t is given by a set of
complex vectorsEk0.

In the presence of external currents inL3, induced field is added to the free
one. The induced field is determined by thejk(t) functions according to the in-
homogeneous equation (7.112). For instance, a monochromatic plane wave of
the current will ‘excite’ the induced field with its frequency ω, which may differ
from ωk (compare (4.23)). In the general case,Ek(t) is certainly not a harmonic
function. The induced field can be also searched in the form (7.115), by assuming
Ek0 to be slow functions of the coordinates in the case of stationary currents (see
Chapter 6 where we used the notationEk0 = E(+)

k (z)) or functions of the time in
the case of non-stationary problems, typical for the quantum mechanics.

Sometimes, it is convenient to describe the field using the vector potential
A(r, t). In the case of theCoulomb gauge, the fieldA is assumed to be transverse,
and it is unambiguously defined by the relations

rotA ≡ H, divA = 0. (7.116)

By substituting roṫA for Ḣ into (7.107), we obtain rot(cE + Ȧ) = 0, i.e.,

E = −Ȧ/c. (7.117)

Hence, we find the relations between the spatial harmonics ofa real field and its
potential,

Ȧk = −cEk, Ak = ik × H k/k
2, H k = ik × Ak. (7.118)
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7.3.2 Canonical field variables

Equations (7.110)–(7.112) forH k and Ek resemble the Hamilton equations for
the canonical coordinates and momenta of a system of particles,qi , pi . The cur-
rents jk play the role of generalized forces. However, in experiment, one usu-
ally observes traveling waves in the far-field zone of the source, having a certain
propagation direction, for instance, along+k; therefore, it is preferable that the
canonical variables with the indexk relate only to the ‘forward’ wave.

The set of the four numbers{l,m, n, ν} ≡ {k, ν} ≡ k defines a plane wave or
a mode(oscillation type) in free space. (In what follows, we will numerate the
modes by a single indexk.) In the presence of currents, the instantaneous state of
the field in two modesk andk̄ ≡ {−k, ν} with the same linear polarizationsekν is
given by two complex scalars or four real ones,

Ek ≡ Ek · ekν ≡ E′k + iE′′k , Hk ≡ ( k̂ × ekν) · Hk ≡ H′k + iH ′′k ,

Ek̄ ≡ E−k · ekν = E′k − iE′′k , Hk̄ ≡ (−k̂ × ekν) · H−k ≡ −H′k + iH ′′k . (7.119)

Instead of the magnetic field, one can use the vector potential. According to
(7.118) and (7.119),

Ak ≡ Ak · ekν = −iHk/k = (H′′k − iH ′k)/k,

Ak̄ = (H′′k + iH ′k)/k,

wherek denotes simultaneously the absolute value of thek vector and the mode
index.

Let us form linear combinations,

qk ≡ (L3/4πω2
k)

1/2(E′′k + H′′k ),

pk ≡ −(L3/4π)1/2(E′k + H′k).
(7.120)

(the choice of the coefficients will be explained below, from (7.134).) With the
help of (7.119), we see that the variablesqk̄, pk̄ for the backward mode are inde-
pendent ofqk, pk,

qk̄ ∼ E′′
k̄
+ H′′

k̄
= −E′′k + H′′k ,

pk̄ ∼ −E′
k̄
− H′

k̄
= −E′k + H′k.

It is convenient to join the real ‘coordinate’qk and ‘momentum’pk of a mode
in a single complex dimensionless variable,

ak ≡ (2~ωk)−1/2(ωkqk + ipk) = (Ek + Hk)/2ick,

ck ≡ (2π~ωk/L3)1/2.
(7.121)
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The inverse transformations can be easily found as well,

Ek = ick(ak − a∗
k̄
) = (π/L3)1/2[−pk − pk̄ + iωk(qk − qk̄)],

Hk = ick(ak + a∗
k̄
) = (π/L3)1/2[−pk + pk̄ + iωk(qk + qk̄)].

(7.122)

Note that in the case of a standing plane wave,ak = ak̄, and therefore the variables
qk, pk scale as the magnetic and electric fields, respectively,

E(r, t) = −4(π/L3)1/2pk(t) cos(k · r),

H(r, t) = −4(π/L3)1/2ωkqk(t) sin(k · r).
(7.123)

In the new variables, the plane-wave expansion takes the form

E(r, t) = i
∑

k

ckak(t)eik·r + c.c.,

H(r, t) = i
∑

k

ck k̂ × ak(t)eik·r + c.c., (7.124)

A(r, t) = i
∑

k

(ck/k)ak(t)eik·r + c.c.,

where complex vectorsak ≡
∑

ν ekνakν have been introduced.
After substituting (7.122) into (7.110)–(7.112), we find the equations for the

new variables,

q̇k = pk − (4πL3/ωk)1/2 j′′k , (7.125)

ṗk = −ω2
kqk + (4πL3)1/2 j′k, (7.126)

ȧk = −iωkak + (2πi/ck) jk. (7.127)

The general solution to the last equation has the form

ak(t) = ak(0)e−iωkt +
2πi
ck

∫ t

0
dt′eiωk(t−t′) jk(t′). (7.128)

Expandingak(t) and jk(t) in Fourier frequency integrals, from (7.127) we im-
mediately find the induced part of the field in thek, ω representation (compare
with (4.23)),

ak(ω)ind =
2πc−1

k

ωk − ω − iγk
jk(ω),

where we have added the damping,γk > 0. Hence, it is clear that atγk � ωk, the
spectrumak(ω) of the amplitudeak(t) mainly contains onlypositivefrequencies
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close to the eigenfrequencyωk. If we neglect the negative-frequency part ofak(t),
i.e., assume that

ak(t) ≈ a(+)
k (t) ≡

∫ ∞

0
dωe−iωtak(ω), (7.129)

then every term in the sum (7.124) describes a plane wave propagating in the+k
direction (in contrast to the sum (7.101)).

In a free-space field, this approximation, according to (7.128), is at jk = 0
valid rigorously,

ak(t) f ree = ak(0)e−iωkt. (7.130)

By comparing (7.114) and (7.122), we find the relationEk0 = 2ickak(0).
Hence,the positive-frequency part of the field is determined byak(t) functions

while the negative-frequency part, bya∗k(t) functions,

E(+)(r, t) = i
∑

k

ckak(t)eik·r ,

E(−)(r, t) = −i
∑

k

cka∗k(t)e
−ik·r .

(7.131)

In the quantum theory, these functions become photon creation and annihilation
operators,ak → âk, a∗k → â†k.

7.3.3 ◦Hamiltonian of the field and the matter

From Maxwell’s equations, it follows (see, for instance, (4.27)) that the instanta-
neous energy of the field is

E(t) = (1/8π)
∫

L3
d3r(E2 + H2) ≡ H0. (7.132)

Let us accept this expression as the Hamilton function of thefree-field transverse
part. By substituting here the plane-wave expansion (7.101) and taking into ac-
count the orthogonality condition (7.96), we obtain a diagonal quadratic form,

H0 = (L3/8π)
∑

k

(|Ek|2 + |Hk|2). (7.133)

According to (7.114), atj = 0,H0 does not depend ont. With the help of (7.124),
we find that

H0 =
∑

k

(p2
k + ω

2
kq2

k)/2 = ~
∑

k

ωk|ak|2. (7.134)
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One can easily verify that the Hamilton equations,

q̇k = ∂H/∂pk, ṗk = −∂H/∂qk, (7.135)

atH = H0 lead to the oscillator equations forqk, pk, ak following from (7.125–
7.127) atj = 0. This confirms that (7.132) was chosen correctly.

The joint Hamiltonian of the field and the system of charged particles inside
the volumeL3 in the non-relativistic case (see Ref. [Landau (1973)]) is

H = H0 +
∑

i

(Pi − ei Ai/c)2/2mi +Hc,

Ai ≡ A(Ri(t), t), Hc ≡
∑

i< j

eiej/|Ri − R j |,
(7.136)

whereHc is the energy of the Coulomb (longitudinal-field) interaction between
the particles andRi , Pi are the canonical variables of theith particle whose charge
and mass areei ,mi .

Eqs. (7.135) and (7.136) lead to the relation between the ‘kinetic’ and canoni-
cal momenta of the particles,

miVi = Pi − ei Ai/c, (7.137)

whereV i ≡ Ṙi is thei-th particle velocity. Hence, the Hamiltonian (7.136) can be
represented in a simple form,

H = H0 +
∑

i

miV
2
i /2+Hc. (7.138)

According to (7.136), the Hamiltonian of the interaction between the particles and
the transverse field is

V =
∑

i













− ei

mic
Pi · Ai +

e2
i

2mic2
A2

i













. (7.139)

In the case of particles with internal magnetic momentµi , one should add the
energy of the spin interaction,−µ · H i .

Let us show that (7.135), (7.136) lead to the usual Newton’s equations with
the Lorentz force for the particles and to Maxwell’s equations with the external
currents (7.107) for the field. In order to obtain Newton’s equations, let us differ-
entiate (7.137) in time. Taking into account that, according to (7.135), (7.136),

Ṗiα = (ei/c)Viβ ∂Aiβ/∂Riα, (7.140)

we find that

miR̈iα = Ṗiα −
ei

c

(

∂Aiα

∂t
+
∂Aiα

∂Riβ
Viβ

)

= ei Eiα +
ei

c
[Vi × H i ]α. (7.141)
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Recall that the fields are taken at the point of the particle location, therefore,

dAi/dt , ∂Ai/∂t = −cEi .

The field equations can be found by differentiating the total Hamiltonian
(7.136) w.r.t. the canonical variablespk, qk of the field. Then the ‘forces’ act-
ing on the field from the particles are determined by the second term in (7.138).
Let us first differentiate it inAiα with the help of (7.137):

∂

∂Aiα

miV2
i

2
= miViβ

∂Viβ

∂Aiα
= −ei

c
Viα =

∂

∂Aiα

(

−ei

c
Vi · Ai

)

. (7.142)

It follows that the Hamiltonian of the interaction between the transverse field and
non-relativistic spin-free particles can be represented,instead of (7.139), as

V′ ≡ −
∑

i

ei

c
V i · Ai = −

1
c

∫

d3r j · A, (7.143)

where j(r, t) is the external current density determined by the coordinates and
velocities of the particles,

j(r, t) =
∑

i

eiV i(t)δ
(3)(r − Ri(t)), (7.144)

and the prime reminds that, according to (7.142), the Hamiltonian (7.143) pro-
vides an exact description only for the perturbation of the field by the particles
and not vice versa.

Hamilton’s equations (7.135) immediately lead to the equations of motion for
an arbitrary function of canonical coordinates,f (qk, pk, t),

d f/dt = ∂ f /∂t + { f ,H}, (7.145)

{ f , g} ≡
∑

k

(

∂ f
∂qk

∂g
∂pk
− ∂g
∂qk

∂ f
∂pk

)

. (7.146)

One can easily verify that after the linear transformation (7.121) fromqk, pk to
the new independent variablesak, a∗k, thePoisson bracket(7.146) takes the form

{ f , g} = 1
i~

∑

k

(

∂ f
∂ak

∂g
∂a∗k
− ∂g
∂ak

∂ f
∂a∗k

)

. (7.147)

Assumingf ≡ ak, with the help of (7.134) and (7.143) we obtain

ȧk =
1
i~
∂H
∂a∗k
= −iωkak +

i
~c

∫

d3r j · ∂Ai

∂a∗k
. (7.148)

With an account for (7.124) and (7.144), this equation coincides with Eq. (7.127),
which was obtained from Maxwell’s equations with external currents.
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Thus, we have written the equations for the field and the matter in the canon-
ical form (7.135) with the Hamiltonian (7.136). Before using this result for the
quantization of the field equations, let us consider the interaction Hamiltonian in
the dipole approximation.

7.3.4 ◦Dipole approximation

In quantum electronics, it is often possible to use approximations instead of the
exact expressions for the perturbation energy (7.139), (7.143). In the case of a
plane free monochromatic wave,H = E. Therefore, in the first order inVi/c, one
can neglect the magnetic part of the Lorentz force in the Newton equation,

mR̈i ≈ ei E(Ri , t). (7.149)

Further, let the particles occupy a restricted space area with the linear sizea
much less than the scale of the field variation,o = c/ω. Then the field can be writ-
ten as a series expansion inRi and only the first few terms should be taken into
account. In this case, (7.139) leads to the multi-field expansion of the perturbation
Hamiltonian for the particles in powers ofRi/o. In the zeroth (dipole) approxi-
mation,A(Ri) ≈ A(r0) ≡ A0, wherer0 is some fixed point inside the system of
particles (for instance, the center of mass). Then, according to (7.140),Ṗi = 0,
and (7.141) takes the form (compare with (7.149))

mi R̈i = ei E0, (7.150)

whereE0 ≡ E(r0, t). This equation, according to (7.135), follows from the inter-
action Hamiltonian of the form

Vdip ≡ −d(t) · E0, (7.151)

where

d(t) ≡
∑

i

ei(Ri(t) − r0), |Ri − r0| � o. (7.152)

Here, in contrast to (7.139), the field is a given external parameter. Note also that
the dipole moment of a neutral system does not depend on the choice of r0.

Let the matter consist ofN separate motionless molecules with the dipole
momentsd j and centers atr j . Then the energy of the matter in the external field,
according to (7.151) is (compare with (4.28))

Vdip = −
N

∑

j=1

d j(t) · E(r j , t) = −
∫

d3r P(r, t) · E(r, t), (7.153)
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P(r, t) =
N

∑

j=1

d j(t)δ
(3)(r − r j). (7.154)

The interaction Hamiltonianfor the fieldin the dipole approximation follows
from (7.143) after replacingAi by A0,

V′dip = −
1
c

ḋ · A0 = −d · E0 −
1
c

d
dt

(d · A0). (7.155)

If we restrict the consideration to the case of quasi-monochromatic currents and
fields, thend · A0 contains two components: a constant one and one oscillating
with the double frequency. As a result, only the first term in (7.155), coinciding
with (7.151), provides an accumulating interaction,

V′dip ≈ Vdip = −d · E0. (7.156)

Thus,the dipole HamiltonianVdip can be also used for calculating the emitted
field in ‘single-frequency’ problems.It follows from (7.156) that

ȧk + iωkak =
1
i~

∂Vdip

∂a∗k
=

ck

~
dk exp(−ik · r0), (7.157)

wheredk ≡ d · ek. The same result can be obtained from the exact equation
(7.127) in the case of a neutral system, after taking into account (7.144), replacing
exp(−ik · Ri) by exp(−ik · r0), and replacingV i by−iωkRi .

Often, instead of (7.139), one uses the approximation

V ≈ −
∑

i

ei Pi · Ai/mic, (7.158)

i.e., neglects the term that is quadratic ineA. (Note that in the case of a single
electron in a harmonic field, this term is on the order ofαE2

i whereα = o2re is the
polarisability of a free electron (6.36).) This approximation is only valid in the first
order of the perturbation theory, i.e., in the calculation of single-quantum effects.
Eq. (7.158) also follows from (7.143) if the canonical and kinetic momentums are
assumed to be the same. Eq. (7.158) leads to the following equation of motion for
the particle:

mi R̈i = −
ei

c
dAi

dt
, (7.159)

which ata� o coincides with (7.150).
For bonded electrons in atoms and small molecules,a ∼ 10−8 cm, and the con-

dition for the validity of the dipole approximation (7.151), (7.155) is satisfied up
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to the X-ray range. Recall that magnetic moments related to spin and orbital mo-
tion are on the order of theBohr magnetonµ0, which is two orders of magnitude
as small as one Debye,

2µ0 ≡ e~/mc= eoc ∼ ea0/137. (7.160)

However, despite the relatively small value of multi-field effects, their mani-
festation in the optical range is important and can be easilyobserved: for instance,
in the effect of the optical activity (polarization rotation) and in the appearance of
forbidden lines in spectra.

A free electronin a harmonic field, according to (7.149), oscillates with the
amplitudea1 = eE1/mω2 and the velocitya1ω; therefore, the conditionsa � o
andV � c have the same form,

E1 � mc2/eo ∼ 108 G. (7.161)

This estimate was made forλ = 1µ and corresponds to a practically impossible
intensity 1018 W/cm2. Nevertheless, by taking into account the magnetic-field
effect in a light wave (Sec. 6.2) one can calculate the quadraticpolarisability of a
free electron and observable nonlinear effects.

7.4 Quantization of the field

Thus, we have represented the field equations in the form of Hamilton’s equations
for the spatial harmonicsqEk(t),Hk(t) (or their linear combinationsqk, pk, ak).
Now, we can pass to the main stage of the quantum description,which is finding
the commutation rules for the dynamical field variables.

7.4.1 Commutation relations

After passing to the quantum description, all canonical variablesqk, pk and their
functions f (qk, pk) become linear operators ˆqk, p̂k, f̂k acting according to certain
rules on the state vector of the system. The difference between the actions of
the operator productsf g andg fp can be defined in terms of the Poisson brackets
(7.146),

f g− g f ≡ [ f , g] = i~{ f , g}. (7.162)

Here, all variables are considered at the same time moment. In particular, we find
that

[qk, pk′ ] = i~δk,k′ , [qk, qk′] = [pk, pk′ ] = 0, (7.163)
pThe ‘hat’ sign over the operators will be only used where necessary.
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[ak, a
†
k′] = δk,k′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0, (7.164)

[ f , a†k] = ∂ f /∂ak, [ak, f ] = ∂ f /∂a†k, (7.165)

[Ek,Hk′ ] = −2c2
kδk,k̄′ , [Ek,Ek′ ] = [Hk,Hk′ ] = 0, (7.166)

where

c2
k = 2π~ωk/L

3, k ≡ {k, ν}, k̄ ≡ {−k, ν}. (7.167)

From (7.166), using the linear relations (7.124), one can also find the commutators
for the fieldsE(r, t), H(r, t).

The classical complex variablea∗k is put into correspondence with thepho-
ton creation operator a†k, which is Hermite conjugated to thephoton annihilation
operator ak. The Hermitian operatora†kak = (a†kak)† ≡ Nk is called thephoton-
number operator, and most often, it is this operator that corresponds to optical
observables. For instance, the spectral brightness can be expressed in terms ofNk

as

IωΩ(k, ν) = ~cλ−3〈Nk〉. (7.168)

This expression, in contrast to (7.19), contains averagingover the wave function
or the density operatorρ.

Often, in addition toNk, other operators can be of interest. For instance, the
mean value ofa†kak′ characterizes the statistical coupling between modesk andk′.
One can show that the rate of anm-quantum stimulated transition scales as the
mean value of the operatora†mk am

k ≡ : Nm
k : . Here, colons denotenormal ordering,

i.e., putting allak operators on the right ofa†k. The mean values of these operators,

G(m)
k ≡ 〈: Nm

k :〉 = 〈a†mk am
k 〉, (7.169)

are callednormal (normally ordered, factorial) moments of orderm for modek.
The relation between the factorial momentsG(m) and the usual ones〈Nm〉 can be
easily found from the operator identities following from (7.162) or (7.164),

[am,N] = mam, [N, a†m] = ma†m.

Hence,

: Nm := N(N − 1) . . . (N −m+ 1). (7.170)

(Hereafter, we omit the subscriptk whenever a single mode is considered.)
In the Heisenberg picture, the wave function and the densitymatrix are con-

stant, while the operators depend on time according to the Heisenberg equations,
which can be obtained from (7.145) and (7.162),

d f/dt = ∂ f /∂t + [ f ,H ]/i~. (7.171)
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For instance, assumingf ≡ ak and using (7.124), (7.134), (7.143) and (7.165), we
obtain the Heisenberg equation for the annihilation operator in the form (7.127).
Similarly, all other relations from Sec. 7.3 remain valid after changing the classical
dynamical variables to operators in the Heisenberg representation. It is important
that the operator products are written in the symmetrized form, for instance,

|a|2→ (a†a+ aa†)/2 = a†a+ 1/2 = aa† − 1/2, (7.172)

where we used (7.165) for obtaining the last equalities. Note that in the operator
identities similar to (7.172), 1/2 is understood aŝI/2, whereÎ is the unity, or
identity, operator,̂IΨ = Ψ.

Spatial harmonics of a free field depend on time harmonicallywith the fre-
quencyωk = ck. Hence, we find thetwo-timecommutators,

[ak(t), a
†
k′(t
′)] f ree = δkk′ exp[−iωk(t − t′)], (7.173)

and similar relations for other field variables. In the presence of external currents,
(7.173) can be replaced by a more complicated dependence ont and t′, but it
should turn into (7.164) att = t′. This conservation of commutation relations
follows from the unitarity of the operators time evolution.

7.4.2 Quantization of macroscopic field in matter

Macroscopic field in a non-magnetic material is described byMaxwell’s equations
with the phenomenological dielectric functionε (in the linear approximation). In
the transparency windows,ε′′(ω) ≈ 0, and the energy of the free field is preserved,
so that we can again use the Hamiltonian formalism and quantize the field vari-
ables. If we also neglect the dispersionε′(ω), then the procedure will be similar
to the one of Sec. 7.3, with the only changes in the speed of light (c→ c/n) and
in the orientation of the polarization unit vectorsek (in the case of an anisotropic
medium).

One can show [Klyshko (1980)] that with an account for lineardispersion, the
relation between the macroscopic fieldE(r, t) and the photon creation and annihi-
lation operatorsa†k, ak in a transparent medium has the form (7.124) provided that
theck coefficients are multiplied by a factor of

ξk ≡














2ω

(

∂

∂ω
ω2e · ε · e

)−1












1/2

k

=

(

uv
c2 cosρ

)1/2

k

≈ 1
nk
, (7.174)

wherevk ≡ ωk/k = c/nk anduk ≡ ∂ωk/∂kcosρk are the phase and group veloci-
ties, respectively andρk is the angle between the ray and wave vectors. The spatial
harmonics of the magnetic field in (7.124) should be then multiplied bynk.



March 23, 2011 16:14 World Scientific Book - 9in x 6in ws-book9x6

288 Physical Foundations of Quantum Electronics

7.4.3 Quantization of the field in a cavity

The field in a closed cavity with ideally reflecting walls can be represented as a
sum of real orthogonal eigenfunctionsuk(r), vk(r) of the corresponding boundary
problem,

E =
∑

k

pk(t)uk(r), H =
∑

k

ωkqk(t)vk(r), (7.175)

whereωk are the cavity eigenfrequencies.
For instance, free field in a rectangular cavity is a superposition of stand-

ing plane waves. (The field is not transverse in this case, see[Landau (1982)])
The allowed values of the wavevector are determined by the cavity dimensions
Lα, α = x, y, z (compare with (7.103)),

k = π

{

l
Lx
,

m
Ly
,

n
Lz

}

, l,m, n = 0, 1, 2, . . . (7.176)

A standing plane wave is a superposition of two counter-propagating waves
with the equal amplitudesak = a−k; in this case, according to (7.123),E ∼
pk coskzandH ∼ ωkqk sinkz. (The scaling coefficient can be found from (7.134)
at L3 ≡ LxLyLz and is on the order of (16π/L3)1/2.) Hence, taking into account the
uncertainty relation∆q∆p 1 ~/2, one comes to the conclusion that the accuracy
of a simultaneous measurement ofE(r, t) andH(r, t) inside the cavity is limited.

Sometimes, the free-space field is also expanded in standingwaves of the form
cosk · r, sink · r, but then the amplitudes of the standing waves do not have a direct
relation to the values observed in experiment. Indeed, for selecting the plane wave
+k, the detector should be placed in the far-field zone of the emitter, where the
−k wave is absent. The relation between the far field and theak operators is
considered in [Klyshko (1980)].

7.5 ◦States of the field and their properties

Next, we consider the various states of the field, both pure and mixed ones, and
their properties, as well as the mean values and distributions of the observables in
these states. It is convenient to use somebasisset of wave functions, so that an
arbitrary state can be represented as an expansion over thisbasis. This procedure
is similar to expanding an arbitrary vector over the set of unit vectors of some
frame of reference in real space. We will consider the basis sets generated by
various operators: energyH , coordinateq, momentump, photon annihilation
a ∼ ωq + ip, as well as relations between these bases. In this consideration,
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we will use compact Dirac’s notation, which will be briefly described in the next
subsection.

7.5.1 Dirac’s notation

An arbitrary instantaneous state of a quantum system is defined by the wave func-
tionψ(x) ≡ 〈x|ψ〉, wherex is some set of variables, discrete or continuous, that are
sufficient for thecomplete descriptionof the system. A complete description of a
‘one-dimensional’ spinless particle, in particular, of anoscillator or a field mode,
is given by a single variable: the coordinate (x ≡ q), the momentum (x ≡ p), or
the energy (x ≡ E).q

The function〈x|ψ〉 is called thex-representation of the system. The state itself,
without specifying the representation, is denoted by|ψ〉, or | 〉, or |t〉. The complex
conjugated function,ψ∗(x), is denoted by〈ψ|x〉 = 〈x|ψ〉∗, i.e., one can write| 〉∗ =
〈 |, 〈 |∗ = | 〉.

In the x-representation, the state| 〉 is given by a set (discrete or continuous)
of numbers〈x1| 〉 ≡ c1, 〈x2| 〉 ≡ c2, . . . , which can be naturally considered as
the components of some vector in a multi-dimensional space.Then,〈xn| 〉 is an
analogue of the inner product of the unit vector〈xn| and the state vector| 〉, i.e.,
the projection of| 〉 onto then-th axis. Any vector can be represented as a sum of
the unit vectors multiplied by thecn coefficients,

| 〉 =
∑

n

cn|xn〉 ≡
∑

n

|xn〉〈xn| 〉, (7.177)

or, in more compact notation,

| 〉 =
∑

n

|n〉〈n| 〉. (7.178)

Similarly,

〈 | =
∑

n

〈 |n〉〈n|. (7.179)

In the case of a continuous variable, summation in (7.177) and other similar equa-
tions is replaced by integration,

| 〉 =
∫

dx|x〉〈x| 〉. (7.180)

The vectors〈 | and| 〉 are called, respectively, thebra- andket-vectors (being parts
of a bracket).
qRecall that in classical mechanics, the state is given by thenumbers q, p, while in quantum mechanics,
by the functionψ(q) (or ψ(p), ψ(E), . . . ).
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Projections of different unity vectors onto one another are equal to zero (in the
case of an orthogonal system),

〈n|n′〉 = δnn′ , 〈x|x′〉 = δ(x− x′). (7.181)

One says that a frame of reference (a basis) is complete if anyvector can be
represented in the form (7.177). The completeness can be expressed in the form
of a tensor equation

Î =
∑

n

|n〉〈n|. (7.182)

Here,Î is a unit tensor (̂I | 〉 = | 〉), and|a〉〈b| denotes a dyadic tensor, or the outer
product of the vectors|a〉 and〈b|. The action of a dyadic on the vectors is obvious
from its notation,

{|a〉〈b|}| 〉 ≡ |a〉〈b| 〉 = 〈b| 〉|a〉,
〈 |{|a〉〈b|} ≡ 〈 |a〉〈b| = 〈b|〈 |a〉.

(7.183)

The tensor|a〉〈a| ≡ P̂a with 〈a|a〉 = 1 is called aprojector since its action on a
vector| 〉 selects the component of this vector along|a〉: P̂a| 〉 = |a〉〈a| 〉 ≡ ca|a〉.

Theexpansion of the unity(7.182) provides an easy way for forming various
representationsof scalars〈a|b〉, vectors| 〉, tensors (operators)f :

〈a|b〉 = 〈a|I |b〉 =
∑

n

〈a|n〉〈n|b〉, (7.184)

| 〉 = I | 〉 =
∑

n

|n〉〈n| 〉, (7.185)

f = I f I =
∑

nn′
fnn′ |n〉〈n′|, (7.186)

with fnn′ ≡ 〈n| f |n′〉 in the last equation.
An operatorf can act on the right on a ket vector and on the left on a bra

vector, creating new vectors,f |a〉 ≡ |b〉 and〈a| f ≡ 〈c|, with other directions and
lengths. (The length or, more precisely, thenormof a vector|a〉 is defined as the
number〈a|a〉1/2.) If it is only the length of a vector that is changed, the vector is
called the eigenvector (right or left) for this operator. Itis convenient to denote an
operator and its eigenvectors and eigenvalues by the same character,

f̂ | fn〉 = fn| fn〉. (7.187)

The set of eigenvectors| fn〉 usually forms a basis, not necessarily orthogonal. The
operatorf †, Hermite conjugated tof , is defined by the equation

f †|a〉 = {〈a| f }∗, (7.188)
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or ( f †)ab = ( fba)∗. If f † = f , f is anHermitian operator, and fab = f ∗ba, fn =
f ∗n , 〈 fn| fn′〉 = 0 (at fn , fn′ ).

In quantum mechanics, it is postulated that the probabilitydistributionP( f |t)
for the observablef at a timet for an ensemble of systems being in the same
quantum state|t〉 is determined by the projections of|t〉 onto the eigenvectors| f 〉
of the operatorf̂ ,

P( f |t) = C|〈 f |t〉|2 = C〈t|P̂f |t〉, (7.189)

whereC−1 is the normalization sum or integral (C = 1 for normalized vectors).
If the observablef has a continuous spectrum, thenP( f ) has dimensionality 1/ f
and is the probability distribution density. The distribution (7.189) is defined in
terms of the Schrödinger variables. In the Heisenberg representation, it has the
form

P( f |t) = C〈t0|Pf (t)|t0〉, (7.190)

P̂f (t) ≡ | f (t)〉〈 f (t)|. (7.191)

In the case of a mixed state, the operatorP̂f should be averaged with the
density operator. For instance, in the Schrödinger representation,

P( f |t) = Tr{| f 〉〈 f |ρ(t)} = 〈 f |ρ(t)| f 〉, (7.192)

i.e., the distribution of an observable f is defined by the diagonalelements of the
density matrix in the f -representation (the populations).

According the postulate of the wave functionreduction, when some value (for
instance, energy) is measured by means of a classical device, the measurement
brings the system from the initial state| 〉 into the state|E1〉, whereE1 is deter-
mined by the reading of the detector. Thus,a measurement is simultaneously the
preparation of a system with a known wave function. In order to prepare a system
in a given state|E1〉, one has to measure the energy of a sufficiently large number
of systems in different initial states until a necessary readingE1 is achieved. When
a classical device shows a readingf this means it has brought the system into the
stateP̂f | 〉 = | f 〉; the back-actionof the device on the state is described by the
projectorP̂f ≡ | f 〉〈 f |.

7.5.2 Energy states

Usually, it is the energy that is measured in quantum optics;correspondingly, as
the basis one usually chooses the set of the eigenstates of the energy operator for
separate modes of the free field, i.e., the harmonic-oscillator Hamiltonian,

H0 = (p2 + ω2q2)/2 = ~ω(N + I/2), (7.193)
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whereN ≡ a†a is the photon-number operator for the chosen mode. Thek index
will be omitted, as a rule, whenever we consider only a singlemode. By definition,
the eigenvalues and eigenfunctions satisfy the equality

H0|N〉 = EN |N〉. (7.194)

According to (7.193), the energy states|N〉 or, in short, theN-states, also
known asFock states, are also eigenstates for thea†a operator, (̂N − N)|N〉 = 0,
whereN ≡ E/~ω − 1/2.

TheH0 operator is Hermitian; therefore, the vectors|N〉 form a complete or-
thogonal normalized ‘frame of reference’,

〈N|N′〉 = δNN′ ,
∑

N

|N〉〈N| = I , (7.195)

| 〉 =
∑

N

|N〉〈N| 〉, f =
∑

NN′
fNN′ |N〉〈N′|. (7.196)

Using the commutation rule [a, a†] = I , it is not difficult to show (see [Klyshko
(1980)]) thatN are integers,

EN = (N + 1/2)~ω, N = 0, 1, 2, . . . (7.197)

Thus,the energy of a single mode can only take a set of discrete equidistant
values differing by~ω, the energy of a photon.A mode has the smallest possible
energy ifN = 0, which corresponds to the vacuum state|0〉, while the states with
N > 0 are calledN-photon states.

It is also easy to find out how thea, a† operators act onN − states,

a|N〉 ≡ N1/2|N − 1〉, (7.198)

a†|N〉 ≡ (N + 1)1/2|N + 1〉. (7.199)

These relations explain whya, a† are called photon annihilation and creation oper-
ators; they also show thatN-states are not eigenstates for the operatorsq, p, a, a†.
Hence,if the field is in some N-state (including the vacuum state), the measure-
ment of the electric field will reveal quantum fluctuations. This conclusion imme-
diately follows from the fact thatH0 does not commute withq, p.

According to (7.199), theN-state can be obtained by actingN times on the
vacuum state by the operatora†,

|N〉 = (N!)−1/2(a†)N |0〉. (7.200)

However, in practice it is very difficult to bring some free-field or cavity mode into
a pureN state (except the vacuum one), especially forN 1 2. Usually, the actual
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state of a mode is an incoherent mixture of a few firstN states, while the state of
an ideal laser is a coherent mixture of manyN-states.

All considerations given above related to a fixed time moment. The time
dependence of the state vector of a single free-field mode is described in the
Schrödinger representation by the equation

i~d|t〉/dt = H0|t〉, (7.201)

and if at timet = 0 the mode was in anN-photon state, then, according to (7.194),

|t〉N = |N〉e−iNωt ≡ |N, t〉, (7.202)

whereω = ck. Hence, in an N-state, the mean values, moments, and distributions
of all observables, including q, p, are stationary. An arbitrary pure state of a mode
depends on the time as

|t〉 =
∑

N

cN |N, t〉 = c0|0〉 + c1e−iωt|1〉 + . . . , (7.203)

wherecN ≡ 〈N|t0〉. In the presence of currents, the coefficients in this expansion
are time-dependent, although this dependence is usually slow compared to the one
of exp(−iωt).

So far, we have been discussing the state of a single mode. In the case of
independent modes, the energy wave function of the total field is obtained by
simply multiplying the energy wavefunctions for the modes with definite photon
numbers,

|{Nk}〉 ≡ Πk|Nk〉k ≡ |N1,N2, . . . 〉, (7.204)

|{Nk}, t〉 = |{Nk}〉 exp(−iEt/~), E ≡ ~
∑

k

Nkωk. (7.205)

Thus, an energy state is fixed by giving the photon numbers{Nk} in all modes
(occupation numbers), while an arbitrary state can be represented as a superposi-
tion of states with all possible combinations{N},

|t〉 =
∑

{Nk}
c({Nk})|{Nk},T〉. (7.206)

In the presence of external currents, the state amplitudesc({Nk}) become time-
dependent, and can be only determined by applying the perturbation theory (com-
pare with Sec. 2.1).
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7.5.3 Coherent states

As it was shown by Glauber, another convenient basis is formed by the eigenstates
of the non-Hermitian photon annihilation operator,

a|z〉 = z|z〉. (7.207)

The states|z〉 are calledcoherent states. Sincea ∼ ωq+ ip, one can expect that the
spectrum ofa is continuous and complex, i.e.,z= z′ + iz′′ is an arbitrary complex
number.

From the definition (7.207), it follows that the action of an arbitrary operator
function f (â) on the vector|z〉 is reduced to a simple multiplication of this vector
by a usual (c-number) function f (z),

f (â)|z〉 = f (z)|z〉. (7.208)

The equation conjugated to (7.207) has the form

〈z|a† = z∗〈z|, (7.209)

i.e., ket-vectors〈z| are left-hand eigenvectors for thea† operator.
Using (7.207), (7.208), (7.209), we immediately find the mean number of pho-

tons in a coherent state|z〉,

〈N〉z ≡ 〈z|N|z〉 = |z|2. (7.210)

In the case of a coherent state, all factorial moments of the photon number are
also calculated in a simple way (see (7.170)),

G(m)
z ≡ 〈z| : Nm : |z〉 = |z|2m = 〈N〉mz . (7.211)

This equality shows that the moments arefactorable.
In (7.211), we have used the notation :Nm :≡: a†a . . .a†a :≡ a†mam. Gen-

erally, the colons denote the operation ofnormal ordering, which means placing
all a operators on the right of alla† operators. This operation ignores the non-
commutativity of the operators, i.e., between the colons the operators can be writ-
ten in any order. Note that :· · · : is a nonlinear operation; for instance, the operator
: aa† :=: a†a+ I := a†a is not equal to the operator :a†a : +I = a†a+ I .

From (7.207), (7.209), (7.208), it follows that

〈: f (a†, a) :〉z = f (z∗, z). (7.212)

For finding the mean value of an arbitrary operatorf (a†, a) in a coherent state, it
is sufficient to represent this operator, using the equalityaa† = a†a+ I , as a sum
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of normally ordered operators, and then replacea† by z∗ anda by z. Often, normal
ordering can be performed through the series expansion,

f (a†, a) =
∑

mn

cmna
†man,

〈 f (a†, a)〉z =
∑

mn

cmnz
∗mzn.

(7.213)

For instance,

〈aa†〉z = 〈a†a+ I〉z = |z|2 + 1,

N2 ≡ a†aa†a = a†(a†a+ I )a =: N2 : +N, (7.214)

〈N2〉z = |z|4 + |z|2.

Using the last equality, one can write the second moment and the variance〈∆N2〉 ≡
〈N2〉 − 〈N〉2 in terms of the first moment,

〈N2〉z = 〈N〉z(〈N〉z + 1), 〈∆N2〉z = 〈N〉z. (7.215)

This relation is typical for aPoissonianrandom variable (see below).
In the general case, ‘normal ordering’ of an arbitrary operator is not a simple

task (see examples in Ref. [Louisell (1964)]). Sometimes, the following operator
identity is helpful [Klauder (1968)]:

exp(µa† + ηa) = C exp(µa†) exp(ηa) = C−1 exp(ηa) exp(µa†), (7.216)

whereC ≡ exp(µη/2). At η = −µ∗, the operator in (7.216) is called thedisplace-
ment operatorand is denoted asD(µ),

D(µ) ≡ exp(µa† − µ∗a). (7.217)

From (7.200), (7.217), and the equality obtained below, (7.222), it follows that

D(z)|0〉 = |z〉. (7.218)

One can show [Bloembergen (1965)] thata classical external current jk converts
a mode from a vacuum state,|0〉, into a coherent one,|z〉, i.e., its action can be
described by the displacement operator. The amplitudez coincides in this case
with the classical amplitude found from (7.128).

Let us show that an oscillator in a coherent state will indeedhave a Poissonian
distribution of the energy, i.e., that in a coherent state photons behave, in a sense,
like a chaotic flow of sand grains. For this, we will find the transformation matrix
〈N|z〉 relating the bases|N〉 and |z〉. Let us left-multiply (7.207) by〈N|, which
yields

〈N|a|z〉 = z〈N|z〉. (7.219)
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Hence, taking into account (7.188) and (7.199), we obtain

(N + 1)1/2〈N + 1|z〉 = z〈N|z〉.

From this recurrent relation, we find

〈N|z〉 = (N!)−1/2zN〈0|z〉. (7.220)

The remaining unknown factor〈0|z〉 can be assumed to be real; then it can be
found from the normalization condition,

〈z|z〉 =
∑

N

|〈N|z〉|2 = 〈0|z〉2 exp|z|2 = 1. (7.221)

Hence, the expansion of a coherent state over Fock states follows,

|z〉 =
∑

N

|N〉〈N|z〉, (7.222)

〈N|z〉 = (N!)−1/2zN exp(−|z|2/2). (7.223)

Recall that〈N|z〉 is theN-representation of a coherent wave function, while
〈z|N〉 = 〈N|z〉∗ is thez-representation of a number-state wave function. Therefore,
the probability of measuringN photons per mode in a coherent state is determined
by a Poissonian distribution with the parameter〈N〉 = |z|2,

P(N|z) = 〈N〉N exp(−〈N〉)/N! (7.224)

With the help of (7.223), one can easily verify that differentz-vectors are not
orthogonal to each other (in contrast toN-vectors),

〈z1|z2〉 =
∑

N

〈z1|N〉〈N|z2〉 = exp[−|z1 − z2|2/2+ iIm(z∗1z2)], (7.225)

|〈z1|z2〉|2 = exp(−|z1 − z2|2). (7.226)

This fact does not cancel the completeness property (as in the case of a usual
oblique-coordinate reference system): any arbitrary vector or diadic tensor can
be still expanded over the set of|z〉 vectors or|z1〉〈z2| diadic tensors, respectively.
Indeed, it follows from (7.222) that

|z〉〈z| = e−|z|
2
∑

MN

z∗MzN

(M!N!)1/2
|M〉〈N|. (7.227)

Let us sum these diadic tensors over allz≡ ρeiϕ,
∫

d2z|z〉〈z| =
∑

MN

|M〉〈N|(M!N!)−1/2
∫ ∞

0
dρe−ρ

2
ρM+N+1

∫ 2π

0
dϕei(N−M)ϕ,

(7.228)
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whered2z= dz′dz′′ = ρdρdϕ. The integral inϕ yields 2πδNM, while the integral
in ρ is equal toN!/2. Hence, taking into account (7.195), we obtain thez-diadic
expansion of the operator unity, i.e., the completeness condition, in the form

I = π−1
∫

d2z|z〉〈z|. (7.229)

Hence, an arbitrary vector can be represented as

| 〉 = π−1
∫

d2z|z〉〈z| 〉. (7.230)

In particular,

|z1〉 = π−1
∫

d2z|z〉〈z|z1〉. (7.231)

This relation, together with (7.225), shows that the basis vectors|z〉 can be ex-
pressed in terms of each other, i.e., thez basis isover-complete. Roughly speak-
ing, it means that the number of coordinates exceeds the dimensionality of the
space.

The time dependence of a coherent state can be easily found bysubstituting
(7.202) into (7.222),

|z, t〉 =
∑

|N〉〈N|z〉e−iNωt = |ze−iωt〉 ≡ |z(t)〉. (7.232)

Thus, free evolution does not turn a coherent state into some othertype of
state, similarly to the case of an energy state (see (7.202))and in contrast to the
cases ofq- andp-states (see below).

If all modes are in coherent states, then the state vector of the field will be

|{zk}〉 = |z1〉1|z2〉2 · · · ≡ |z1, z2, . . . 〉. (7.233)

According to (7.131), this vector is the eigenvector for thepositive-frequency

field operatorÊ
(+)

(r, t) with the eigenvalue

E(+)(r, t) ≡ i
∑

k

ckekzk exp(ik · r − iωkt). (7.234)

The mean value of the field in a coherent state is equal to the real part of this
expression,

〈{zk}|Ê(r, t)|{zk}〉 = 2ReE(+)(r, t). (7.235)

Further, according to (7.212), all normally ordered field moments (correlation
functions),

G(n)
1...2n ≡ 〈Ê

(−)
1 . . . Ê(−)

n Ê(+)
n+1 . . . Ê

(+)
2n 〉, (7.236)
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which usually determine the readings of optical detectors,are factorablein the
case of a coherent state, i.e., can be expressed in terms of the products of the first
moments,

G(n)
1...2n({zk}) = E(−)

1 . . .E(+)
2n . (7.237)

Here, the eigenvalues of the fieldsE(±)
i ≡ Eαi (r i , ti) are determined by the set{zk}

according to Eq. (7.234).

7.5.4 Coordinate and momentum states

By definition, the eigenvectors|q〉 of the coordinate operator ˆq satisfy the condi-
tion

q̂|q〉 = q|q〉. (7.238)

From q̂† = q̂, it follows thatq∗ = q and〈q|q̂ = q〈q|. Similarly, one can define
the eigenvectors|p〉 of the momentum operator, ˆp|p〉 = p|p〉. The spectrum of
q is continuous; therefore, theq-representation of an arbitrary state vector, the
orthonormality condition and the completeness condition have the form

| 〉 =
∫

dq|q〉〈q| 〉, (7.239)

〈q|q′〉 = δ(q− q′), (7.240)

Î =
∫

dq|q〉〈q|. (7.241)

According to (7.240),q-vectors have infinite norm,〈q|q〉 = ∞, which leads to
certain difficulties. As an example, let us find, using the general rule (7.189), the
probability density for the coordinate of a system in a state| 〉 = |q1〉:

P(q|q1) = C|〈q|q1〉|2 = C[δ(q− q1)]2, (7.242)

C−1 =

∫

dq|〈q|q1〉|2 =
∫

dq[δ(q− q1)]2. (7.243)

The squared delta-function has a meaning provided that one of its represen-
tations with a finite width∆q is used. In this case,δ(0) = 1/∆q (see (6.139)),
and one can replaceδ(q)2 by δ(q)/∆q. The width∆q is chosen from the physical
considerations: it should be much less than the interval on which the functions
that are multiplied by the delta function before the integration vary considerably.
In this example, however,∆q is canceled sinceC = ∆q,

P(q|q1) = δ(q− q1). (7.244)
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Sometimes, it is more convenient to use discreteq andp representations with
the usual normalization,〈qm|qn〉 = 〈pm|pn〉 = δmn. For passing to discrete spectra
{qn} and{pn}, the wave functionsψ(q) ≡ 〈q| 〉 or their Fourier transformsψ(p) ≡
〈p| 〉 should be considered either periodic or differing from zero only within finite
intervals,L and~K, respectively (compare with the discretization procedurefor
wavenumbers in Sec. 7.3). This restriction is equivalent tothe assumption that
ψ(q), ψ(p) vary very little on the intervals∆q ≡ 1/K,∆p ≡ ~/L, and is always
valid for sufficiently largeL andK.

Further, let us find the transformation function〈q|p〉, i.e., theq-representation
of a p-state, by assuming

〈q|p̂ = −i~
d
dq
〈q|. (7.245)

In this relation,q is a continuous parameter of the vector〈q|, and the differentiation
operator acts on this parameter. Multiplying (7.245) by|p〉, we obtain the equation

−i~
∂

∂q
〈q|p〉 = p〈q|p〉, (7.246)

whose solution, evidently, is

〈q|p〉 = (2π~)−1/2eipq/~. (7.247)

The normalization constant here was found by substituting into (7.240) the diadic
expansion of a unity,

∫

dp〈q|p〉〈p|q′〉 = δ(q− q′).

According to (7.247),in a q-state, all momentums are equally probable, while in
a p-state, all coordinates are equally probable,

P(p|q) ∼ |〈p|q〉|2 = 1/2π~,

P(q|p) ∼ |〈q|p〉|2 = 1/2π~.
(7.248)

Similarly, one can find a function of two variables〈q|z〉 ≡ ψz(q), whose square
determines the probability density distributionP(q|z) for the coordinate in azstate.
(Note that the symbolP(z|q) is meaningless since the non-Hermitian operatora
does not correspond to any physical observable.) From (7.121) and (7.245), we
obtain that

〈q|a = (q̃+ d/dq̃)〈q|/
√

2, (7.249)

whereq̃ ≡ (mω/~)1/2q and we have introduced the massm of an equivalent oscil-
lator. Multiplication by|z〉 with an account for (7.207), (7.209) yields

(∂/∂q̃+ q̃−
√

2z)〈q|z〉 = 0. (7.250)
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This equation is satisfied by the function

〈q|z〉 = C1(z) exp[−(q̃−
√

2z)2/2]. (7.251)

Similarly,

〈p|z〉 = C2(z) exp[−(p̃+ i
√

2z)2/2], (7.252)

wherep̃ ≡ p/(~ωm)1/2. The normalization constants are defined here only up to
the phase factors,

C1 = (mω/π~)1/4 exp[−z′′2 + iϕ1(z)],

C2 = (π~ωm)−1/4 exp[−z′2 + iϕ2(z)].
(7.253)

According to the definition (7.121),

q̃ = (a+ a†)/
√

2, p̃ = (a− a†)/i
√

2, (7.254)

hence it follows from (7.207), (7.209) that

〈q̃〉z ≡ 〈z|q̃|z〉 =
√

2z′, 〈p̃〉z =
√

2z′′. (7.255)

As a result, the distributions following from (7.251), (7.252) can be represented
in the form

P(q̃|z) = π−1/2 exp[−(q̃− 〈q̃〉)2],

P(p̃|z) = π−1/2 exp[−(p̃− 〈p̃〉)2].
(7.256)

Thus,for an oscillator in a coherent state, the coordinate and amplitude have
Gaussian distributions with the variances

〈∆q2〉 = ~/2mω, 〈∆p2〉 = ~ωm/2, 〈∆q̃2〉 = 〈∆p̃2〉 = 1/2 (7.257)

and the minimal possible product of uncertainties,r

∆q∆p = ~/2. (7.258)

The distributions of the coordinate and momentum atz , 0 differ from the
vacuum one only by the displacement of the center of reference by

√
2z′ and√

2z′′; their variances are not increased, in contrast to the energy variance (see
(7.215)). The relative widths of the distributions,∆q/〈q〉 and∆p/〈p〉, are inversely
proportional toz′ andz′′.

It follows from (7.232) that the evolution of an oscillator in a coherent state
is described by changingz to z0e−iωt. Let z0 = z∗0 ≡ q0/

√
2, then, according to

(7.255), one should set in (7.256)

〈q̃〉 = q0 cosωt, 〈p̃〉 = −q0 sinωt. (7.259)

rHere, as usual,∆x denotes two different values, the operatorx− 〈x〉 and the number〈(x− 〈x〉)2〉1/2.
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Fig. 7.18 Distribution of the coordinate for an oscillator in a Fock state (top) and a coherent state
(bottom) with the same mean photon numbers, equal to 5. The coordinateq is in

√
~/mω units.

As a result, the distributions shift without changing theirshapes (Fig. 7.18),

P(q̃|z, t) = π−1/2 exp[−(q̃− q0 cosωt)2],

P(p̃|z, t) = π−1/2 exp[−(p̃+ q0 sinωt)2].
(7.260)

Thus, the mean coordinate and momentum in the case of a coherent state de-
pend on time the same way as the corresponding values of a classical oscillator.
As |z0| increases, the relative fluctuations are reduced and a quantum oscillator
becomes more and more similar to a classical one.

Note that the wave function (7.251) with the substitutionzt ≡ z(t) = z0eiωt

should satisfy the Schrödinger equation in theq representation,
(

2i
ω

∂

∂t
+
∂2

∂q2
− q2

)

ψz(q, t) = 0,

ψz(q, t) ≡ 〈q|zt〉.
(7.261)

(Here and below, we use dimensionless variablesq ≡ q̃, p ≡ p̃.) This condition
allows one to find the phase in (7.253). As a result, the ‘coherent’ wave function
can be represented as

ψz(q, t) = π−1/4 exp[−(q−
√

2zt)2/2− z′′2t + i(z′tz
′′
t − ωt/2)]

= π−1/4 exp{−(q− 〈qt〉)2/2+ i[(q− 〈qt〉/2)〈pt〉 − ωt/2]}. (7.262)

Above, we have found the matrices of transitions from theq-representation
to p- andz-representations. Similarly, one can find the functions〈N|q〉 ≡ ψN(q)
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determining the coordinate distribution in Fock states andthe photon-number dis-
tribution in q-states. These functions satisfy Eq. 7.261 with∂ψ/∂t replaced by
−iNωψ; they are equal to the Hermite polynomials multiplied by thevacuum func-
tion 〈0|q〉 = exp(−q2/2). They are obtained if one multiplies (7.200) by〈q| and
replaces〈q|a† with 2−1/2(q− d/dq)〈q|,

〈q|N〉 = (2NN!π1/2)−1/2(q− d/dq)N exp(−q2/2). (7.263)

7.5.5 Squeezed states

One should keep in mind that in the case of all states except the energy (Fock)
ones, the distributions and moments are time-dependent (see (7.259), (7.260) for
a coherent state). For instance, one can show thatq-states periodically become
p-states and vice versa (Fig. 7.20).

Consider the evolution of variances for the coordinate and momentum in the
case of an arbitrary initial state. Solutions to the Heisenberg equations for the
coordinate and momentum operators have the ‘classical’ form,

q̂(t) = q̂cosτ + p̂sinτ, p̂(t) = p̂cosτ − q̂sinτ, (7.264)

whereτ ≡ ωt, q̂ ≡ q̂(0), p̂ ≡ p̂(0).
In the general case, from (7.264) we can find the time dependence of the co-

ordinate and momentum variances,

Dq(τ) = Dp(τ − π/2) = Dq cos2 τ + Dp sin2 τ + Dqp sin 2τ. (7.265)

Here, the following notation was introduced:

Dx(t) ≡ 〈[∆x(t)]2〉, ∆x(t) ≡ x(t) − 〈x(t)〉, Dx ≡ Dx(0),

Dqp(t) ≡ 〈∆q(t)∆p(t) + ∆p(t)∆q(t)〉/2
= 〈a(t)2 − a†(t)2〉/2i − 〈q(t)〉〈p(t)〉;

the averaging runs over the initial state of the oscillator|t0〉. Thus,the variances
of the coordinate and momentum oscillate anti-phased with the frequency2ω, and
their sum is an integral of motion,

Dq(t) + Dp(τ) = Dq + Dp = 2(〈N〉 − 〈a†〉〈a〉) + 1 = 2Daa† . (7.266)

According to (7.265), the variances are constant only underthe condition that
Dq = Dp andDqp = 0. Using (7.254), one can verify that this is the case for Fock
states (Dq = Dp = N + 1/2) and coherent states (Dq = Dp = 1/2).
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Fig. 7.19 Coherent (a) and squeezed (b,c) states of an oscillator. The figure shows the time depen-
dencies of the mean coordinate and the coordinate uncertainty. The dependencies are calculated using
Eq. (7.265) withq0 = 5, Dqp = 0, ∆q∆p = 1/2 and∆q = 1/

√
2 (a), 0.2 (b), 2.5 (c).

Recently, it was proposed to generate and measure the so-called squeezed
states[Walls (1983)], for whichDq � 1/2 (or Dp � 1/2) andDqDp = 1/4
(Fig. 7.19).s For a mechanical oscillator or electromagnetic field in sucha state,
repeated stroboscopic measurements with an appropriate phase will reveal fluc-
tuations reduced with respect to the zero-point vacuum ones,

√
~/2mω. Thus, in

principle,zero-point vacuum fluctuations do not restrict the limitingaccuracy of
the coordinate or momentum measurement. Squeezed states can be of interest for
the information transmission and for the measurement of tiny forces caused, for in-
stance, by gravitational waves [Braginsky (1980)]. Note that up to now, attention

sEditors’ note: About the same time as the book was published,squeezed states were produced in
experiment, first through four-wave mixing and then via parametric amplification, see [Bachor (2004);
Walls (1994)]. Amplitude squeezing of photocurrent was also observed using a negative feedback
loop [Yamamoto (1999)].
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Fig. 7.20 Various states of a quantum oscillator shown on thephase plane. The horizontal and verti-
cal sizes of the figures correspond to the uncertainties in the coordinate and momentum, respectively;
the sizes along the radius and the azimuth correspond, respectively, to the amplitude and phase un-
certainties. 1, the vacuum state; 2, a coherent state; 3, a coordinate state; 4, a squeezed state; 5, a
momentum state; 6, a photon-number state; 7, a phase state.

is attracted to certain questions in the quantum measurement theory [Braginsky
(1975, 1980)].t

We have considered four types of states generated by the operatorsp2+q2, p+
iq, p, q, as well as the relations between these states. Similarly, one can construct
a lot of other states. Worth mentioning are the eigenstates of the phase opera-
tor [Fain (1972); Loudon (2000)], which are most close to a classical oscillation
with a fixed phase.

It is convenient to show various states on a phase diagram (˜q, p̃) as figures of
different shapes whose linear dimensions are equal to the uncertainties∆q̃,∆p̃ in
these states (Fig. 7.20). The area of each figure cannot be less than about a unity.
A classical state of an oscillator is shown by a point ( ˜q1, p̃1), a coherent state, by a
circle of a unity diameter and the center at point ( ˜q1, p̃1); anN-photon state, by a
thin circle with the diameter (N+1/2)1/2 centered at the origin; aq-state, by a thin

tEditors’ note: nowadays, squeezed states still attract a great attention in connection with different
applications. We refer to the following ones:
• optical communication and optical measurements, due to thefact that weaker signals can be trans-

mitted with the same signal-to-noise ratio and the same light power;
• gravitational-wave detection;
• precise measurement of spatial displacements with multimode squeezed states; super-resolution;
• quantum imaging with surpassing the quantum noise limit;
• one-way quantum computing with cluster states based on squeezed states;
• quantum memory based on squeezed-light interaction with atomic ensembles and single atoms;
• research in fundamental quantum physics.
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vertical straight line; ap-state, by a thin horizontal straight line.u However, one
should keep in mind that these figures have only qualitative meaning; strictly, they
do not correspond to any joint distributionsP(q, p), which do not exist in quantum
mechanics.

Similar to the states themselves, the figures depicting themon the phase plane
change in time due to the natural evolution (described by theSchrödinger equa-
tion) or due to thereductionas a result of the measurement back-action. For
instance, after an accurate measurement ofq, a coherent circle in Fig. 7.20 will
turn into a vertical line. The evolution due to free oscillations is described by the
counter-clockwise rotation of the figure around the origin,with the angular rate
ω, or, alternatively, the clockwise rotation of the frame of reference ˜q, p̃.

7.5.6 Mixed states

If the field is interacting (or has interacted) with another quantum object, for in-
stance, with an atom, then, by definition, there are no separate wave functions
for the field,ψ(xE, t), and the atom,ψ(xA, t); one can only speak of the joint wave
function,ψ(xE, xA, t). Similarly, one cannot speak of the state vector| 〉k of a given
modek if it is coupled with another modek′, or several modes. For instance, a
classical point-like source with the frequencyω excites a spherical wave, in which
case all plane waves with|k| = ω/c are coupled. Similar coupling of modes with
the same frequency (‘transverse’ modes) occurs due to the diffraction. Modes
with different frequencies (‘longitudinal’ modes) can be coupled due to the matter
anharmonicity [Klyshko (1980)].v

In all cases where the system is described by a non-complete set of variables,
one says that it is in amixedstate (Sec. 3.1). Then, instead of a state vector| 〉,
the system is characterized by a certainoperatorρ, called thedensity operator. In
the special case of a pure state, the density operatorρ is a projector,ρpure = | 〉〈 |,
while for a mixed state,ρ is given by a sum of projectors (see (7.186)).

The density operator, like any other field operator, can be written in vari-
ous bases (representations), in terms of the density matrices of the formρNN′ ≡

uEditors’ note: Probably one should add squeezed vacuum, a state generated at the output of an
unseeded optical parametric amplifier. In the diagram, it will be shown by an ’ellipse’ at the origin,
with the area being the same as for a coherent state [Bachor (2004); Walls (1994)].
vEditors’ note: Note that the description of a composite system consisting of two or several interacting
sub-systems (or sub-systems having interacted in the past)directly relates to the concept of entangled
states ([Peres (1993); Nielsen (2000); Bouwmeester (2000)], Sec. 7.5.7). This family of states was not
considered in the original book at all, partly due to the factthat in 1986, entangled states were not as
popular as nowadays. At the same time the author put a lot of efforts to avoid using vague terms while
describing physical phenomena ([Klyshko (1994)]).
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〈N|ρ|N′〉, ρqq′ , ρzz′ and so on. In most cases, the density operator of the field is
written in theN-basis, but in some cases thez-basis is more convenient. For a
single mode,ρ can be written in terms ofN- andz-projectors as (the mode index
k is omitted)

ρ =
∑

NN′
|N〉〈N′| (7.267)

=

∫

d2zP(z)|z〉〈z|. (7.268)

Note that here, thediagonal z-representation is used, which is possible in many
cases and is provided by the over-completeness of thez-basis. Equation (7.268)
is called theGlauber-Sudarshan representationor theP-representation. The nor-
malization and Hermiticity conditions ofρ are

∑

N

ρNN = 1, ρNN′ = ρ
∗
N′N,

∫

d2z P(z) = 1, P(z) = P∗(z).

The mean value of any field operatorf can be expressed in terms ofρ accord-
ing to the relation〈 f 〉 = Tr(ρ f ) (Sec. 3.2), or according to (7.267), (7.268),

〈 f 〉 =
∑

NN′
ρNN′ fN′N =

∫

d2zP(z)〈z| f |z〉. (7.269)

Hence, with the help of (7.212), we find

〈: f (a†, a) :〉 =
∫

d2zP(z) f (z∗, z). (7.270)

Thus, theP(z) function provides an easy way to calculate the mean values of
normally ordered operators. In particular, the normally ordered moments can be
found as

G(n) =

∫

d2zP(z)|z|2n. (7.271)

Equations (7.269), (7.270) show that the weighting function P(z) plays the
role of the probability for the oscillator to have a complex amplitudez, i.e., q̃ =√

2z′, p̃ =
√

2z′′. However,P(z) can take negative values; besides, even with
P(z) = δ(2)(z−z1), i.e., in the case of a pure coherent state, ˜q andp̃ have zero-point
fluctuations.w Therefore,P(z) is called aquasi-probability.

wEditors’ note: also called shot-noise fluctuations.
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Moreover, the quasi-probability of a coherent stateP(z) allows one to find the
probability distributionP( f ) of an arbitrary observablef . For this, one should
replacef in (7.269) by the projectorP( f ) = | f 〉〈 f |,

P( f ) =
∫

d2zP(z)|〈z| f 〉|2 =
∫

d2zP( f |z)P(z). (7.272)

The two-dimensional Fourier-transform of the quasi-probability P(z) is called
the normally orderedcharacteristic function,

χ(µ, µ∗) ≡ 〈eµa†e−µ
∗a〉 =

∫

d2zP(z)eµz∗−µ∗z. (7.273)

This definition yields a usual (not generalized) function for all states, in contrast
to P(z).x From the definition ofχ, it follows thatG(n) can be calculated by means
of differentiation, instead of more complicated integration,

G(n) =

(

− ∂

∂µ

∂

∂µ∗

)n

χ(µ, µ∗) |µ=0 . (7.274)

Thus,a mixed state of a mode can be described by theρNN′ matrix, or one of
the functions P(z), χ(µ, µ∗).

A mixed state of a multi-mode field is given by the density matrix

〈N1,N2, . . . |ρ|N′1,N′2, . . . 〉 = 〈{Nk}|ρ|{N′k}〉,

or by the quasi-probabilityP({zk}), or by its Fourier transform,χ({µk, µ
∗
k}). In

the case of independent modes, these values are factorable,‘reducible’. It should
be stressed that with the help of the quasi-probability function, the operation of
quantum averaging of normally ordered operators (which areusually of interest)
takes the ‘classical’ form (7.270), which is also maintained in the case of a multi-
mode field. For instance, the correlation functions (7.236)are found by averaging
their mean values in a coherent state (7.237) with the quasi-probability,

G(n)
1...2n =

∫

. . .

∫

P({zk})G(n)
1...2n({zk})

∏

k

d2zk. (7.275)

Recall that here,zk ≡ z(k, ν) has the meaning of the amplitude (in 2ck units) of
the plane waveEk0 propagating in thek direction and having polarizationeν.

Further, let us consider some examples of mixed states of thefield.
In the case of astationaryfield, the density operator does not depend on time,

i.e., [ρ,H ] = 0, which in theN-representation yields

〈{Nk}|ρ|{N′k}〉
∑

k

(N′k − Nk)ωk = 0.

xFor instance,P(z) for N states contains the 2Nth-order derivative of the delta function [Perina (1972)].
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Hence,a stationary density matrix is diagonal in the occupation numbers of modes
with different frequencies.The functionP({zk}) depends then only on the absolute
values|zk|, sincezk(t) ∼ e−iωt.

In a stationary state, all simultaneous moments,〈 f m(t)〉, and correlation func-
tions,〈 f (t)g(t+τ) . . . 〉, are independent oft. Usually, one assumes that the system
is ergodic, i.e., that the ensemble means〈 f 〉 coincide with the values measured
in experiment,fexp(t), and averaged over time, and that the observed variations
(fluctuations) offexp(t) in time are caused by the uncertainty off̂ in a pure quan-
tum or mixed ensemble. An important role is also played by theperiodically
non-stationary states, which include, in particular, coherent states.

Often, one can use the approximation of statistically independent modes,ρ =
∏

k ρk. Then, the diagonal element〈Nk|ρk|Nk〉 has the meaning of the population
(occupation number) of thekth modeN-photon state. In the case of a stationary
field with independent modes, populations fully characterize the properties of the
field. In particular, the mean photon number per mode, which determines the main
photometry parameter, the spectral brightness, is

〈Nk〉 = Tr(a†kakρk) =
∞
∑

N=0

N〈N|ρk|N〉. (7.276)

In anequilibrium state, the density operator is determined by the Gibbs dis-
tribution, ρk ∼ exp(−Hk/κT), whereT is the thermostat temperature (Sec. 3.2).
In an equilibrium state, the population of anN-photon level, i.e., the probability
to find simultaneouslyN photons in one mode, or the probability for the mode
energy to take the value~ω(N + 1/2), depends onN exponentially,

PT(N) = Ce−Nx, (7.277)

where

C = P(0) = 1− e−x, x ≡ ~ω/κT.

Equation (7.277) is called thePlanck’s, or geometric, distribution, as it forms
a geometric sequence, or theBose-Einstein distribution. By substituting (7.277)
into (7.276), we find the mean number of photons per mode, alsocalled the de-
generacy factor of the photon ‘gas’,

〈N〉T = (ex − 1)−1 ≡ N ≡ δ. (7.278)

This equality enablesδ to be used instead ofx as the parameter of the distribution;
then (7.277) takes the form

PT(N) = P(0)/(1+ 1/δ)N, P(0) = 1/(1+ δ). (7.279)
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In a non-equilibrium field, the modes can also have exponential energy distri-
bution, provided that they are chaotically excited by many independent sources.
This is the case for thermal radiation, fluorescence, or superfluorescence (in the
linear regime, see Sec. 7.1). Then, the dependence of〈Nk〉 on |k| = ω/c de-
termines the frequency spectrum of the radiation, while thedependence on the
direction, k/k, determines the angular spectrum and the direction of incoherent
radiation. Recall that in non-laser light, usually all〈Nk〉 � 1. For instance, for the
green part of the sunlight spectrum,〈Nk〉 ∼ 10−2, hence the probabilities to find
0, 1, and 2 photons in one mode are approximately equal to 0.99, 10−2, and 10−4.

One can show [Glauber (1965)] that the quasi-probability ofa chaotically ex-
cited mode is a two-dimensional Gaussian function with the variance〈N〉/2,

PT(z) = exp(−|z|2/〈N〉)/π〈N〉. (7.280)

Hence, taking into account (7.273),

χT(µ, µ∗) = exp(−µµ∗〈N〉) (7.281)

and, according to (7.274), only even symmetric moments are nonzero,

G(m)
T ≡ 〈: Nm :〉T = m!〈N〉m. (7.282)

It follows from (7.282) and (7.211) thatan m-quantum transition is m! times as
probable in a thermal field than in a coherent field with the same〈N〉 (see (6.212)),
which is due to the long ‘tail’ of the thermal distribution. At m = 2, (7.282)
describesphoton bunching(Secs. 7.2, 7.6).

By substituting (7.280) into (7.272), one can see that the distribution of the
coordinate and momentum for a thermal state are Gaussian as well, with zero
mean values and the variances determined by the relation〈N〉+1/2 = 〈p̃2+ q̃2〉/2,
i.e.,

〈∆q̃2〉T = 〈∆p̃2〉T = 〈N〉T + 1/2 = (1/2) coth(x/2). (7.283)

Note that additive multi-mode parameters of the field, such as, for instance, the
electric field amplitudeEα at point (r, t), will have Gaussian distribution regardless
of the states of separate modes (provided that they are independent), by virtue of
the central limit theorem.

As we have already mentioned, a pure coherent state does not belong to the
class of stationary states, sincez(t) = ρexp(−iωt+iϕ). However, one can construct
a ‘stationary coherent state’ by forming a mixture of coherent states with the same
amplitudesρ and random phasesϕ. Such a state, apparently, is described by the
quasi-probability of the form [Glauber (1965)]

P(z) = δ(|z| − ρ)/2πρ = δ(|z|2 − ρ2)/π, (7.284)
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which describes an ensemble of ideal lasers with uncertain phases. It is easy to
check, with the help of (7.272), (7.224), that the energy distribution for such an
ensemble will be still Poissonian, with〈N〉 = ρ2.

7.5.7 Entangled states (added by the Editors)

There is an important class of quantum states, namedentangled states, which at
the time when the book was published were only starting to be discussed, mainly
in connection with the experiments on Bell tests. Now, thesestates form the base
for such important branches of modern science as quantum information and quan-
tum communications. The details can be found in many beautiful books and re-
view articles [Peres (1993); Scully (1997); Nielsen (2000); Bouwmeester (2000);
Bachor (2004); Bruss (2002)]. Below, we present just a briefreview of their prop-
erties.

For the first time the entangled state was introduced by Schr¨odinger in 1935,
who mentioned that ‘the best possible knowledge of the whole does not include the
best possible knowledge of its parts’ [Schrödinger (1935)]. One can interpret this
statement as follows: it is impossible to describe the subsystemsA, B, . . . , forming
a composite system, in terms of wave functions while the whole state does possess
a wave function.A pure state of a bipartite system is called separable if and only
if it can be written as

|ΨΣ〉 = |ΨA〉 ⊗ |ΨB〉; (7.285)

otherwise it is entangled.
In the simplest case of two qubits,|Ψ1〉 = α1|01〉 + β1|11〉 and|Ψ2〉 = α2|02〉 +

β2|12〉, their joint state belongs to the 2× 2 = 4-dimensional Hilbert space and, in
the general case, is not separable,

|Ψ12〉 = c1|01〉|02〉 + c2|01〉|12〉 + c3|11〉|02〉 + c4|11〉|12〉,
4

∑

j=1

|c j |2 = 1; (7.286)

apparently,|Ψ12〉 , |Ψ1〉 ⊗ |Ψ2〉.
However, definition (7.285) does not tell us whether a given state is more

entangled or less entangled. Forquantifying entanglement, there is a simple pa-
rameter introduced by Wootters, theconcurrence C, which indicates how much
entanglement is stored in a composite state of two qubits:

0 ≤ C ≡ 2|c1c4 − c2c3| ≤ 1. (7.287)

If the state is separable, thenC = 0. An example of maximally entangled two-
qubit states (C = 1) are theBell states, which form a complete basis for two-qubit
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systems:

Ψ
(±)
12 ≡

1
√

2
[|01〉|12〉 ± |11〉|02〉], (7.288)

Φ
(±)
12 ≡

1
√

2
[|01〉|02〉 ± |11〉|12〉]. (7.289)

The stateΨ(−)
12 is calledthe singlet stateand plays a special role due to its remark-

able symmetry properties. The other three states form thetriplet. For instance
the singlet state is invariant with respect to choice of basis. The Bell states are an
important tool in modern quantum optics but probably they are most famous for
violating the Bell inequality [Klyshko (1998); Grynberg (2010)]

Another way to quantify entanglement is through the so-called Schmidt de-
composition, which exists for any bipartite composite system:

ΨAB =

D
∑

j=1

√

λ j |u j〉|v j〉,
D

∑

j=1

= 1, (7.290)

where|u j〉 and|v j〉 are bases for subsystemsA andB, both having dimensionality
D. The degree of entanglement can be estimated with the Schmidt number,

1 ≤ K ≡
















D
∑

j=1

λ2
j

















−1

≤ D, (7.291)

which can be interpreted as the number of nonzero Schmidt modes in the expan-
sion (7.290). It is easy to calculate the Schmidt number for the Bell states (7.288),
(7.289): K = 2. A state is separable if and only ifK = 1. The Schmidt decom-
position is a very useful approach from the physical viewpoint as it allows one to
interpret the natural eigenmodes|u j〉 and|v j〉 of the system under study (called the
Schmidt modes) in terms of entanglement [Mandel (2004)].

Another closely related measure of entanglement is the von Neumann entropy,

S ≡ −
D

∑

j=1

λ j log2 λ j = S(ρA) = S(ρB), (7.292)

whereS(ρA,B) ≡ TrB,AρAB is the reduced density matrix for subsystemA (B).
This definition returns us to the initial meaning of entanglement introduced by
Schrödinger. Indeed, the notion of the entropy relates to the uncertainty in the
(sub)system. For a pure state the von Neumann entropy equalszero, while for
completely mixed states it takes the maximal value.
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The definition (7.285) can be also formulated for mixed states. Namely,a
mixed state is called separable if and only if it can be written as

ρΣ =
∑

j

p j |Ψ j
A〉〈Ψ

j
A〉 ⊗ |Ψ

j
B〉〈Ψ

j
B〉, (7.293)

where
∑

j p j = 1, 0 ≤ p j ≤ 1. Otherwise, the stateρΣ is entangled.
As an example let us consider the so-calledWerner states,

ρW ≡ x|Ψ−〉〈Ψ−|+{1−x} (|Ψ−〉〈Ψ−| + |Ψ+〉〈Ψ+ | + |Φ+〉〈Φ+| + |Φ+〉〈Φ+|) . (7.294)

It turns out that the state (7.294) is separable forx < 1/3.
Let us mention that sometimes one falsely associates entanglement with the

violation of the Bell inequalities. In this connection, theWerner states (7.294)
represent an important example: at 1/3 < x < 1/

√
2 they are not separable (and

hence are entangled) but do not violate the Bell inequalities.
It is worth noting that the concept of entangled states was actively developed

in quantum information science and formally relates to systems of quantum bits
(qubits) or quantum dits (qudits) which are rather abstract notions. Nowadays
there are several physical systems that play the role of qubits, such as polarization
states of single photons, two-level atoms or ions in traps, etc. Real physical qubits
need to be carefully specified to avoid a contradiction with the formal description.
For instance, the well-known permutation property of identical particles leads to
entanglement since their wave function should be symmetrized, hence the singlet
state of two spin-1/2 particles takes the form

Ψ− =
1
√

2
[| ↑〉| ↓〉 − | ↓〉| ↑〉]. (7.295)

However, this sort of states can not serve as a resource of quantum information
since it is impossible to perform local operations over the subsystems and there
is no possibility to change the coefficients in the coherent superposition (7.295).
This fact was discussed by Zanardi and Peres [Peres (1993)] but using systems of
identical particles in the protocols of quantum information and quantum commu-
nication seems to be still an open question.

Starting with the pioneering experiments performed by Fry and independently
by Aspect [Grynberg (2010)] with two-photon fluorescence ofatoms, entangled
states were actively studied in quantum optics. In particular, the most popular
object was the two-photon state (biphoton) [Klyshko (1998)] created via sponta-
neous parametric down conversion (see Secs. 6.5 and 7.6). Several types of bipar-
tite entangled states were suggested depending on the available degrees of free-
dom under consideration: entanglement between polarization and momentum, po-
larization and frequency, energy and time, frequency and momentum. The partic-
ular type of entanglement is determined by the phase-matching conditions and/or
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further transformations performed over the biphotons. Forinstance, polarization-
momentum entangled state can be achieved by choosing the non-collinear degen-
erate regime of SPDC when two photons with the same frequencies propagate
along different directionsθ, θ′ and carry orthogonal polarizationsH (horizontal)
or V (vertical):

Ψ =
1
√

2
[|Hθ〉|Vθ′〉 + eiϕ|Vθ〉|Hθ′〉]. (7.296)

Sometimes the entangled state can be created by means of post-selection, i.e.
by taking into account only part of the state, for instance using a coincidence
circuit, which measures only events corresponding to incoming photons coincid-
ing in time. Such a scheme exploiting energy-time entanglement was suggested
by Franson. The scheme contained unbalanced Mach-Zehnder interferometers in
both signal and idler channels, which introduced delays exceeding the coherence
length (see Sec. 7.2) of each photon,

lcoh = cτcoh = c

(

d2k
dω2

|ωp/2 l

)1/2

, (7.297)

wherel is the length of the crystal generating biphotons andωp is the pump laser
frequency. Starting with a separable state of two photons (the same frequency but
different angles of propagations),

Ψs,i =
1
√

2
[|S〉s+ eiϕs|L〉s] ⊗

1
√

2
[|S〉i + eiϕi |L〉i ] = Ψs ⊗Ψi , (7.298)

and using post-selection technique by picking up only photons passing through the
long (L) or short (S) paths simultaneously, the final state (after the renormalization
caused by the non-unitary operation of post-selection) becomes an entangled one,

Ψ =
1
√

2
[|S〉s|S〉i + ei(ϕs+ϕi )|L〉s|L〉i ], (7.299)

whereϕs,i are the phase delays introduced in the signal and idler channels. By
varying the phase delays one can observe the second-order interference in the
coincidence counts, while there is no modulation in the intensities both for the
signal and idler channels. Note that sign “+” in the phase of (7.299) is typical for
two-photon interference experiments (compare with the typical sign “−” observed
for usual classical interference experiments).

Many other types of entangled states have been studied. We would like to
specially mention some important cases, namely:

• bipartite multidimensional systems and the so-called Fedorov’s ratio, which
serves as an operational entanglement quantifier;
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• bright-light entanglement and, in particular, quadratureand polarization entan-
gled states [Bachor (2004)];
• multi-particle entanglement likeGHZ andW-states.

A special class of entangled states,cluster states, attracts a great attention
due to one-way quantum computation scheme suggested by Raussendort, Browne,
and Briegel in 2003. Also, a special class ofgraph statesseems to be useful for
quantum computation, quantum error correction, and other applications of multi-
particle entangled states.

Perhaps one of the most stupendous applications of entangled states relates to
quantum key distribution, where entangled photon pairs are used for establishing
a secret key between remote parties both in free space and using single-mode
fibres. Another field under an unquenchable interest istesting the foundations of
the quantum theory, where the use of multidimensional entangled systems gives
unexpected results with respect to the case of bipartite systems.

7.6 ◦Statistics of photons and photoelectrons

Let us consider in more detail the statistics of the photon number N (see also
Ref. [Loudon (2000)]). For simplicity, we will mostly consider a single mode.
Below, we will show that the distributionP(N) ≡ ρNN or the moments〈Nm〉 ≡
∑

NmP(N) can be experimentally obtained from the statistics of the number of
photocounts, i.e., the number of electrons released by light from the photocathode
of a PMT during some sample timeT. Such methods form the base for the optical
mixing spectroscopy [Cummins (1974)] where the traditional spectral analysis of
light is replaced by thestatistical analysis of photocurrentat the PMT output.

7.6.1 Photon statistics

The distributionP(N) at a fixed time moment for an arbitrary instantaneous state
of the mode is determined by the general rule,

P(N) = Tr{ρ|N〉〈N|}, (7.300)

where|N〉〈N| ≡ P̂(N) is the projection operator. Assuming in (7.272)f = N̂ =
a†a, we obtain thez-representation forρNN,

P(N) =
∫

d2zP(z)|z|2Ne−|z|
2
/N! (7.301)
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Further, using (7.270), one can writeP(N) as an infinite series of normally ordered
moments of ordersm1 N,

P(N) =
1
N!
〈: N̂Ne−N̂ :〉 = 1

N!

∞
∑

k=0

(−1)k

k!
G(N+k). (7.302)

Thus,the photon-number distribution has the form of a Poissonianone,µNe−µ/N!,
with the random parameterµ ≡ N̂, which requires additional quantum averaging
with normal ordering.

Above, we have considered two examples ofP(N) distributions: the Poisso-
nian one, (7.224), for a coherent state, and the geometric one, (7.279), for a chaotic
(thermal) state. These are single-parameter distributions: they are fully character-
ized by, for instance, the first moment,〈N〉. One can show (see, for instance,
Ref. [Loudon (2000)]) that for a single-mode laser much above the oscillation
threshold,P(N) is Poissonian and for a laser below the threshold, it is geometric.
Near the threshold, the distribution has a shape that is intermediate between these
two limiting cases. This distribution, in the simplest models, is determined by two
parameters, for instance,〈N〉 and the excess inversion above the threshold.

It is useful to consider another type of states, namely, an incoherent mixture
of the vacuum,|0〉, and theK-photon state,|K〉. Then,P(N) differs from zero only
at two points,

P(N) = P(0)δN0 + P(K)δNK. (7.303)

Hence,〈N〉 = KP(K), and all values can be expressed in terms of a single param-
eter, the mean photon number,

P(K) = 〈N〉/K, P(0) = 1− P(K), (7.304)

〈Nm〉 = KmP(K) = Km−1〈N〉, 0 0 N 0 K. (7.305)

In the limiting case〈N〉 = K, we obtain a pure energy state withK photons;
however, it is interesting to consider the more realistic case〈N〉 � K. Such states
can be generated via aK-photon decay of a single excited atom into one mode.
Repetition of this process in time leads to the appearance of‘ K-photon light’,
radiation consisting ofK-photon groups. Two-photon light can be also generated
via the spontaneous (〈N〉 � 1) parametric down-conversion of ‘usual’ light, in
which photons have Poissonian or Bose-Einstein distribution.

Figure 7.21 shows the plots of all three distributions we have considered.
Below, it will be shown that the termination of theK-photon distribution at
N > K leads to the effect of photon anti-bunchingfor 〈N〉 > K − 1, while at
K > 1, 〈N〉 � K − 1, it leads to the effect of super-bunching. (Conventionally, the
Poissonian distribution is considered as having no bunching.)
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Fig. 7.21 Typical photon-number distributions: (a) geometric; (b) Poissonian; (c) two-photon mixed.
The dashed line shows a Gaussian function with the mean value9.5 (see (7.320)).

Often, calculations and interpretation of the experimentsare much simplified
by passing, from usual moments〈Nm〉, to factorial moments,

G(m) ≡ 〈: Nm :〉 = 〈N(N − 1) . . . (N −m+ 1)〉, (7.306)

and their generating functions,

Q(x) ≡
∞
∑

N=0

(1+ x)NP(N) = 〈: exN :〉. (7.307)

The last equality follows from (7.302). Note thatQ(x) differs from the〈exN〉
function, whose derivatives yield usual moments. IfQ(x) is known, the factorial
moments and the distributionP(N) can be easily found by differentiating it at
pointsx = 0 andx = −1. Indeed, it follows from the definitions that

G(m) = Q(m)(0), (7.308)

P(N) = Q(N)(−1)/N!, (7.309)

where

Q(m)(x) ≡ dmQ(x)/dxm. (7.310)
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By substituting into (7.307) one-by-one the distributions(7.224), (7.279),
(7.303), we find the generating functions for the three considered types of os-
cillator states,

Qz(x) = ex〈N〉, (7.311)

QT(x) = 1/(1− x〈N〉), (7.312)

QK(x) = 1+ 〈N〉[(1 + x)K − 1]/K. (7.313)

Hence, according to the rule (7.308), we immediately obtain

G(m)
z = 〈N〉m, G(m)

T = m!〈N〉m,
G(m)

K = 〈N〉(K − 1) . . . (K −m+ 1), 1 < m0 K.
(7.314)

An important property of the generating functions (GFs) follows from the def-
inition (7.307): the GFQ(x) of a sumN =

∑

Ni of independent integersNi is
equal to the product of the GFs for these integers,

Q(x) =
∏

i

Qi(x). (7.315)

For instance, let a set ofM similar atoms independentlyy emit K-photon light;
then, using (7.313) and (7.315), we find

Q(x) =
M

∏

i=1

{1+ 〈Ni〉[(1 + x)K − 1]/K} ≈ exp{〈N〉[(1 + x)K − 1]/K}, (7.316)

where we assumedM → ∞ and〈Ni〉 → 0 with a finite〈N〉 ≡ ∑〈Ni〉. In the case
K = 1, (7.316) becomes (7.311), i.e., weak single-photon radiation from a large
number of independent atoms results in a Poissonian distribution (in the absence
of interference). AtK > 1, (7.316) describes Poissonian distribution for groups of
K photons. For instance, in the case of two-photon radiation,

Q(x) = exp[µ(2x+ x2)], µ ≡ 〈N〉/2,

P(2N) = µNe−µ/N!, P(2N + 1) = 0.
(7.317)

Apparently, this example also includes the case whereM is the number of inde-
pendent modes andN is the total number of photons in these modes.

Consider another example of applying the composition rule (7.315). Let us
focus on the total photon numberN in M independent modes with the geomet-
ric distributions and the same mean photon numbers,〈Nk〉 = 〈N〉/M ≡ δ (the
yHere we neglect interference, which one can do in the case of multi-mode detectors with a large
detection volume (Sec. 7.2).
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degeneracy factor). The generating function, according to(7.312) and (7.315), is

Q(x) =
M

∏

k=1

1/(1− x〈Nk〉) = 1/(1− xδ)M. (7.318)

Hence, atM � 1, xδ � 1, with finite 〈N〉 we once again obtain a Poissonian
distribution,

Q(x) ≈ ex〈N〉 (M � 1). (7.319)

Thus, the total number of photons in a large number of independent modes
with geometric distributions tends to a Poissonian distribution. Note that at〈N〉 �
1, a discrete Poissonian distribution can be approximated by a normal distribution
(Fig. 7.21(b)) with the first moment and variance coinciding,

P(N) ≈ exp{−(N − 〈N〉)2/2〈N〉}/
√

2π〈N〉. (7.320)

Relative fluctuations become small atN � 1,

∆N/〈N〉 = 〈N〉−1/2 = (~ω/〈E〉)1/2� 1. (7.321)

Thus,for high mean energy and large mode number we have obtained a Gaussian
distribution, according to the central limit theorem and classical thermodynamics.

In the general case, (7.318) leads to the Pascal distribution,

G(k) =
(k+ M − 1)!

(M − 1)!
δk = 〈N〉k

(

1+
1
M

)

. . .

(

1+
k− 1

M

)

,

P(N) =
(N + M − 1)!
N!(M − 1)!

δN

(1+ δ)M+N
.

(7.322)

Hence, assuming k= 2, we find that the relative fluctuations decrease with the
growth of the number of modes,

∆N
〈N〉 =

(

1
〈N〉 +

1
M

)1/2

. (7.323)

7.6.2 Photon bunching and anti-bunching

Among various types of instantaneous states of a quantum oscillator, the coherent
ones are special because, in a certain sense, they are most close to the state of a
classical oscillator with fixed coordinate and velocity. According to (7.224), the
distribution of the photon numberN for a coherent state is Poissonian, so that the
variance coincides with the mean photon number,

〈∆N2〉z = 〈N〉 = |z|2. (7.324)
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Thus, theN distribution for a coherent quantum ensemble coincides with the
distribution of chaotically scattered classical particles over a set of cells, either in
space or in time. For an arbitrary state, the variance〈∆N2〉 can certainly differ
from 〈N〉; in this case, for〈∆N2〉 > 〈N〉 one speaks ofphoton bunching, while
for 〈∆N2〉 < 〈N〉, of photon anti-bunching. These effects can be quantitatively
described in terms of the normalized second factorial moment,

g ≡ 〈: N2 :〉
〈N〉2 =

〈N2〉 − 〈N〉
〈N〉2 = 1+

〈∆N2〉 − 〈N〉
〈N〉2 . (7.325)

For a Poissonian distribution,g = 1, in the case of bunchingg > 1, and in
the case of anti-bunchingg < 1. Because the rate of a stimulated two-photon
transition scales as〈: N2 :〉, g determines the ratio oftwo-photon efficienciesfor
a given field and for a coherent field with the same mean energy.Note that if we
ignore the normal ordering in the definition ofg (7.325), theng will be always
greater than a unity,

gclass≡ 〈N2〉/〈N〉2 = 1+ 〈∆N2〉/〈N〉2 > 1. (7.326)

In a chaotic (thermal) state, there is always bunching, since, according to
(7.314), for the geometric distribution,

〈∆N2〉T = 〈N〉(1+ 〈N〉), (7.327)

andgT = 2. The variance is above〈N〉 due to the relatively slow decay of the ge-
ometric (‘exponential’) distribution (Fig. 7.21), which makes ‘groups’ ofN pho-
tons withN , 〈N〉 occur more often than in the case of a Poissonian distribution.
As a result, relative fluctuations of the photon number in a thermal state tend at
〈N〉 � 1 to the unity (and not to zero, as for a coherent state),

(∆N/〈N〉)T = (1/〈N〉 + 1)1/2→ 1. (7.328)

Sometimes one says that the first and the second terms in (7.327) and (7.328)
correspond, respectively, to the corpuscular and wave sides in the wave-particle
duality of a photon, and that the bunching effect (i.e., the second term) confirms
that the photons have a tendency to joining in groups. This terminology masks
the fact that the variance of some observablef characterizes the state, and not
the properties off . This approach also ignores the presence of states with anti-
bunching, i.e., with the relative fluctuations less than 1/

√
〈N〉 and with two-photon

efficiency less than the one for a coherent state with the same mean energy.
An evident example of an anti-bunched state are photon-number states. In a

K-photon state, the fluctuations ofN are absent,P(N) = δNK, so that〈Nm〉 = 〈N〉m
andg = 1− K−1 < 1.
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Fig. 7.22 A typical distribution of 10 photons in time in the cases of (a) chaotic light (bunching);
(b) coherent light; (c) single-photon light (anti-bunching); (d) two-photon light (super-bunching).

The above-considered mixture of the vacuum and theK-photon state (7.303)
also manifests anti-bunching under the condition〈N〉 > K − 1. Indeed, it follows
from (7.305) that

gK = (K − 1)/〈N〉. (7.329)

Hence, single-photon decay of separate atoms turns the fieldinto an anti-bunched
state,g = 0, which was observed in the resonance fluorescence (Sec. 5.2) of
sodium atomic beam [Paul (1977)]. Certainly, in experimentthe averaging runs
not over the ensemble of experimental setups but over time.

This effect can be explicitly explained by the fact that the decay of asingle
atom cannot create two photons; therefore, the emitted photons are always sepa-
rated by a certain time intervalτ required for a second excitation and de-excitation
of the same atom or the next atom in the beam (Fig. 7.22(c)). Recall that our
‘single-mode’ theory relates only to time intervalsT much less thanτ; therefore,
P(N) = 0 for N > 1.

Radiation with anti-bunching (‘single-photon light’) canalso emerge as a re-
sult of multi-photon absorption (Sec. 6.4) of ‘usual’ (chaotic or coherent) radia-
tion. The reason is thatK-photon absorption, apparently, influences only the ‘tail’
of theP(N) distribution atN 1 K, which leads to the rarefication of photon groups
and the reduction of fluctuations in the initial radiation. On the contrary, the sat-
uration effect in single-photon absorption (Sec. 4.3) makes fluctuations more pro-
nounced, i.e., leads to photon bunching. This forms the basefor a method of
obtaining very short (picosecond)z pulses in mode-locked lasers.

In the case of weak multi-photon light,K > 1, 〈N〉 � K − 1, Eq. (7.329)
yields g � 1 (Fig. 7.23). This effect can be called ‘photon super-bunching’. It
zEditors’ note: at present, tens of femtoseconds are achieved.
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Fig. 7.23 The bunching parameterg as a function of the mean photon number〈N〉 in the cases of
single-photon light (1), two-photon light (2), three-photon light (3), coherent light (4), and chaotic
light (5). In range I, there is photon anti-bunching, in range II, bunching, in range III, super-bunching.

can be explained by the existence of regular groups ofK photons separated by
large time intervals (Fig. 7.22(d)). A convenient way of obtaining directed two-
photon light is parametric down-conversion (Sec. 6.5) in piezoelectric crystals.
Below, it will be shown (see (7.356)) that super-bunching can be used for the
absolute (reference-free) measurement of the quantum efficiency of photodetec-
tors [Klyshko (1980)].

States of field with anti-bunching and the above-mentioned squeezed states
attract much attention nowadays, similarly to the way the bunching effect was very
popular soon after its discovery by Hanbury Brown and Twiss in 1955. The anti-
bunching effect, observed in 1977, is considered as disproving the semi-classical
radiation theory (see (7.326)). Indeed, according to this theory, a single-mode
laser with stabilized intensity should create photocurrent with minimal possible
fluctuations, which, similarly to the shot noise, should be Poissonian due to the
equivalence of all time moments. Thus, it seems to be impossible to create a more
uniform time distribution of photoelectrons than a Poissonian one. In contrary,
from the photon viewpoint, a flux of photons that are equidistant in time (obtained,
for instance, via a periodic excitation of a single atom) will cause an equidistant
flux of photoelectrons, provided that the quantum efficiencyη is high enough.

It is typical that in states withg < 1, for instance,K-photon ones, quasi-
probabilitiesP(z) have huge singularities or take negative values [Glauber (1965);
Perina (1972)], which allows one to consider such states as essentially non-
classical, i.e., having no classical analogues.
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Consider now the quantum interpretation of interference experiments like the
Young one and the Hanbury Brown–Twiss one (Sec. 7.2). While quantizing the
field, it is now convenient to expand it not over plane waves but over orthogonal
eigenfunctionsun(r) of the corresponding boundary problem, which takes into
account the existence of screens with slits and semi-transparent mirrors. In the
simplest case of a monochromatic field and single-mode detectors, all field can be
represented as a single mode,

E(r, t) = u(r)a(t) + u∗(r)a†(t) ≡ E(+) + E(−), (7.330)

wherea(t) = ae−iωt is the photon annihilation operator in this mode.
The counting rate of a single-photon detector placed at point r1 scales as the

mean intensity,

G(1)
1 ≡ 〈E

(−)
1 E(+)

1 〉 = |u1|2〈N〉, (7.331)

where the subscript 1 substitutes the argumentr1, N ≡ a†a, and the averaging runs
over the initial state of the field. We stress thatu(r) is the solution to the classical
wave equation, it describes the propagation of classical waves, their diffraction and
interference. Thus, theconcepts of a photon and a wave by no means contradict
each other, and here we do not need to speak about the wave-particle duality.
The operatorsa, a†, N do not depend on the coordinate; therefore, a photon is an
elementary excitation of thewholefield and the question ‘which slit did the photon
go through?’ is meaningless. The space structure of the fieldis determined by the
functionu(r), its square gives the probability to discover a photon at anarbitrary
point r; therefore, it plays the role of the wavefunction of a photon.

The corpuscular properties of a photon are only revealed through detection,
when the energy of the whole field,~ω (in the case|t0〉 = |1〉), ‘gets focused’ at
a single ‘point’. This is manifested most clearly while observing flashes on the
screen of an image intensifier. Note that the duality of wavepackets, discussed
quite often, is not typical for only quantum mechanics; the same property is pos-
sessed by classical waves.

Further, correlation of the counts ofmsingle-photon detectors placed at points
r1, . . . , rm scales as the normally ordered moment of orderm,

G(m)
1...m ≡ 〈E

(−)
1 . . .E(−)

m E(+)
m . . .E(+)

1 〉 = |u1 . . .um|2〈: Nm :〉. (7.332)

The first factor here describes the influence of the spatial positions of the detectors.
For the casem = 2, this result was obtained in Sec. 7.2 from a simple model
assuming the binomial distribution of photons at pointsr1, r2.

Let, for instance, two-photon light be incident on an intensity interferometer
(Fig. 7.13); then, according to (7.314), the readings of thecorrelator will scale as

G(2)
12 = |u1u2|2〈N〉,
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while the mean counting rate will scale asG(1)
n . Hence, the relative correlation is

g(2)
12 = G(2)

12/G
(1)
1 G(1)

2 = 1/〈N〉. (7.333)

In the case of a pure two-photon state,〈N〉 = 2, and the so-called negative corre-
lation, or anti-correlation, takes place, withg(2)

12 < 1 (Fig. 7.12).
Above, for simplicity we discussed the statistics of a single mode; however,

many conclusions can be generalized to the case of a multi-mode field. Indeed, in
spontaneous two-photon emission (Sec. 6.2) and in spontaneous parametric down-
conversion (Sec. 6.5), photons in pairs usually belong to different modes,k1 and
k2, which differ both in frequency and in direction. Then, a small contribution
from the state|1〉1|1〉2 is added to the vacuum, which provides the equality between
the moments,

〈N1N2〉 = 〈N1〉 = 〈N2〉.

As a result, at〈Ni〉 � 1, the probability of discovering two photons is much
greater than the product of single-photon probabilities,

g(k1, k2) ≡ 〈N1N2〉/〈N1〉〈N2〉 = 1/〈Ni〉 � 1. (7.334)

This inequality, which can also be interpreted as thesuper-bunching effect (com-
pare with (7.329) atK = 2), was experimentally confirmed by measuring the rate
of coincidences between two PMTs.

7.6.3 Statistics of photoelectrons

LetVdet� Vcoh, then the radiation incident on a PMT photocathode can be consid-
ered as single-mode (Sec. 7.2). Following Scully [Arecchi (1974)], from explicit
combinatorics considerations we will now show (see also Refs. [Loudon (2000);
Klauder (1968); Glauber (1965); Perina (1972)]) that the Mandel formula (7.71)
maintains its form even in the framework of the quantum theory if αI is replaced
by ηN, whereη is the PMT quantum efficiency andN is the operator of the photon
number in the detection volume (equal to the operator of the photon number in
one mode times the factorVdet/Vcoh).

Consider first a field in a pure Fock state with the photon number N incident
on a photodetector (PMT). Let the probability of registering a single photon beη
(0 0 η 0 1), then the probability of registering anym photons out of their total
numberN 1 m, apparently, is determined by the Bernoulli binomial distribution
(Fig. 7.24),

P(m|N) = Cm
Nη

m(1− η)N−m. (7.335)
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Fig. 7.24 Distributions of the photon number,P(N), and the photoelectron number,P(m), in the case
of the detector efficiency 0.3 and the field being in a four-photon Fock state.

Hence, in the case of an arbitrary state of the field, we find therelation between
the distribution of photons,P(N) ≡ ρNN, and the distribution of photoelectrons (or,
in other words,photocounts),

P(m) =
∞
∑

N=m

P(m|N)P(N). (7.336)

In the caseη = 1, we haveP(m|N) = δmN, and the distributions of electrons and
photons coincide. Atη < 1, the binomial transformation (7.336) adds additional
stochasticity, distortsP(N) and complicates solving the inverse problem, which is
the determination of the field statistics from the measured photocount statistics.
(Using (7.346), one can show thatP(N) can be formally expressed in terms of
P(m) through a relation similar to (7.336) but withη replaced by 1/η.)

Note that ifη is understood as the probability of a photon ‘survival’ after light
passing a layer of matter with single-photon absorption, thenm has the meaning
of the photon number at the output of the layer, whileN is the input number
of photons. Then,η = e−αI , whereα is the absorption coefficient andl is the
layer thickness. Thus, Eq. (7.336) and all its corollaries are also applicable to the
transformation of the field statistics caused by linear absorption of the field by
cold matter.

Let us pass from theN-representation to thez-representation using (7.301).
As a result, (7.336) leads to the quantum analogue of the Mandel formula (7.71),
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which gives the photoelectron distribution in terms of the quasi-probabilityP(z)
of a zstate,

P(m) =
∫

d2zP(z)(η|z|2)me−η|z|
2
/m! (7.337)

This relation, after taking into account (7.270), can be represented in an invariant
form,

P(m) = 〈: (ηN)me−ηN :〉/m!, (7.338)

whereN = a†a. Thus, the distribution of photoelectrons is of a Poissonian form
but has additional quantum averaging including the operation of normal ordering.
Note that the obtained expression differs from the photon distribution (7.302) only
by the replacement ofN by ηN.

The integral transformation (7.337)can be easily realizedfor the cases of co-
herent and chaotic states. Then, it turns out that the functional forms of the dis-
tributions for photons and photoelectrons in these two cases coincide. Indeed,
assuming in (7.337)P(z) = δ(2)(z− z1), we find

Pz(m) = 〈m〉me−〈m〉/m!; (7.339)

further, it follows from (7.337) and (7.280) that

PT(m) = 〈m〉m/(1+ 〈m〉)m+1, (7.340)

where〈m〉 = η〈N〉.
Recall thatP(m) can be also understood as the photon distribution at the output

of a cold layer with single-photon absorption (η = e−αI ). Thus, linear absorption at
T = 0K does not change the form of the photon distribution in the cases of chaotic
and coherent incident radiation (in contrast toN-photon absorption, see (??)).
Absorption or amplification atT , +0 is accompanied by chaotic spontaneous
emission, which changes the shape of the distribution.

The obtained relations (7.336), (7.337), (7.338) between the distributions of
photons and photoelectrons are rather complicated. The relations between the
generating functions and the factorial moments are much simpler,

m(k) = ηkN(k), (7.341)

where

m(k) ≡ 〈m(m− 1) . . . (m− k+ 1)〉, (7.342)

N(k) ≡ 〈: Nk :〉 = 〈N(N − 1) . . . (N − k+ 1)〉. (7.343)
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Here, the functions ofmare averaged using the discrete distributionP(m),

〈 f (m)〉 ≡
∞
∑

m=0

f (m)P(m). (7.344)

The quantum mean value,〈 f (N)〉, has a similar form in theN representation.
Equation (7.341) can be easily obtained using the formalismof generating

functions for photons,Qphot(x) (see (7.307)), and electrons,

Qel(x) ≡
∞
∑

m=0

(1+ x)mP(m). (7.345)

By substituting (7.338), we find

Qel(x) = Qphot(ηx) = 〈: exηN :〉. (7.346)

Hence, with an account for (7.308), we come to (7.341).
From (7.341), we easily obtain relations between usual moments,

〈m〉 = η〈N〉, (7.347)

〈m2〉 = η〈N〉 + η2(〈N2〉 − 〈N〉), (7.348)

and between the variances (compare with (7.78)),

∆m2 = 〈m〉(1− η) + η2〈∆N2〉. (7.349)

Thus, to the usual shot noise of the photocurrent,〈m〉, ‘photon noise’,〈∆N2〉,
is added with the weightη2 (which seems natural), but simultaneously, the term
η2〈N〉 is subtracted (which is surprising for semi-classical theory). In the case of
photon anti-bunching,〈∆N2〉 < 〈N〉, so that the photocurrent noise is less than the
Poissonian, i.e., electrons appear with some regularity, ‘repulse’ each other.

Note that, according to (7.341),the bunching parameters (as well as all nor-
malized factorial moments) of photons and electrons coincide,

g = m(2)/〈m〉2 = N(2)/〈N〉2.

If N is understood in these equations as the total number of photons in M
independent modes, then the equations will describe the statistics of anM-mode
detector. For instance, in (7.315) and (7.346) we find that

Qel(x) =
M

∏

k=1

Qk(ηx), (7.350)

whereQk(x) is the generating function for thekth mode.
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In the case of modes with a geometric (thermal) distributionof photons,
(7.312) leads to (compare with (7.318))

Qel(x) = 1/(1− xηδ)M, (7.351)

whereδ = 〈N〉/M is the mean number of photons in one mode.
At M � 1 andxηδ � 1, this function tends to (compare with (7.319))

Qel(x) ≈ exηδM = ex〈m〉. (7.352)

Hence,a multi-mode detector registering a thermal field produces photocounts
with Poissonian statistics and does not manifest bunching(similarly to a multi-
mode field, see (7.319)).

For a finite number of modesM, from (7.351) we find the distribution and
factorial moments that coincide with (7.322) after the replacement ofδ by ηδ, or
〈N〉 by 〈m〉. In particular, from (7.323) we find relative fluctuations,

∆m/〈m〉 = (1/〈m〉 + 1/M)1/2. (7.353)

Similarly, replacingx by ηx in (7.317), we find the generating function for a
multi-mode detector registering two-photon light,

Qel(x) = exp[〈m〉(x+ ηx2/2)]. (7.354)

It is important that atη , 1, this function differs from (7.317), which opens an
interesting possibility of absolute (reference-free) measurement of the PMT quan-
tum efficiencyη. Indeed, from (7.354) we find that

〈m2〉 = 〈m〉(〈m〉 + 1+ η), (7.355)

or

η = 〈∆m2〉/〈m〉 − 1 = 〈m〉(g− 1). (7.356)

Thus,by measuring the mean value and variance (or the bunching parameter)
of the photocounts one can find the quantum efficiency.

7.7 ◦Interaction of an atom with quantized field

So far, we have been calculating the probabilities of quantum transitions in the
framework of the semiclassical approach, where the spontaneous transitions were
described not rigorously, with the help of additional rulesor analogies introduced
without sufficient justification. In the present section, we will fill thisgap. It will
be shown that the interaction between two stationary quantum systems can be con-
veniently described phenomenologically in terms of normally and anti-normally
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ordered correlation functions (CFs). These functions havemore direct relation
to the energy exchange than the symmetrized CFs that are commonly used. We
will also consider the symmetry of CFs, the relations between different CFs, and
the dependence of CFs on the microscopic parameters of the systems and their
Green’s functions, i.e., response to coherent perturbations.

7.7.1 Absorption and emission probabilities

Consider the interaction of a single atom with quantized field. Let the atom and
the field be independent at the initial time moment,|t0〉 = |m〉|i〉 ≡ |mi〉, where|m〉,
|i〉 are the initial states of the atom and the field, respectively. In the first order
of the perturbation theory, the amplitudecn f (t) of the transition into some state
|n f〉 is determined by the matrix element of the interaction operator, 〈n f |V|mi〉
(Sec. 2.1). In the dipole approximation,

cn f = −
1
i~

∫ t

t0

dt′〈n f |d(t′) · E(t′)|mi〉, (7.357)

where the operators are considered in the interaction picture, i.e., without the ac-
count for the perturbation.

Let us split these operators into the positive- and negative-frequency parts. At
t − t0 ≡ T � 1/ω̄, fast oscillating (with approximately twice the mean frequency
ω̄) productsd(+) ·E(+) andd(−) ·E(−) have no contribution into the integral (7.357);
therefore, one can write

−V(t) ≈ d(−)(t) · E(+)(t) + d(+)(t) · E(−)(t). (7.358)

This is the rotating-wave approximation, which we already discussed in Sec. 2.2.
Further, assume that the initial and final states of the atom and/or the field

are energy ones, then the first term in (7.358) gives a nonzerocontribution only
for a quantum transmitted from the field to the atom, while thesecond one, only
for a quantum transmitted from the atom to the field. Hence, the probability of a
transition with absorption is

P↑(n f |mi) = ~−2
∫ t

t0

dt′dt′′d(+)
mn(t′)d(−)

nm(t′′)E(−)
i f (t′)E(+)

f i (t′′), (7.359)

where we have used the equalityf (+)
mn = ( f (−)

nm )∗ and assumed, for simplicity, that
the vectorsd andE are parallel. In the case of emission, apparently, the super-
scripts (+) and (−) in (7.359) should be interchanged. Note that the approximation
(7.358) does not influence the transition probability in thecase where one of the
interacting systems is in an energy state, since the products of the form f (+)

mn f (+)
nm

are zero then.
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If we are not interested in the final state of the system, (7.359) should be
summed over all possible states|n f〉. These states form a complete set; therefore,
the total probability of the transition ‘up’ will be (compare with (2.82))

P↑ = ~
−2

∫ t

t0

dt′dt′′F(−)(t′, t′′)G(+)(t′, t′′), (7.360)

where

F(−)(t′, t′′) ≡ 〈d(+)(t′)d(−)(t′′)〉, G(+)(t′, t′′) ≡ 〈E(−)(t′)E(+)(t′′)〉 (7.361)

are, respectively, the anti-normally ordered CF for the dipole moment of the atom
and the normally ordered CF for the field at the initial state (which, apparently,
can be mixed as well).

Similarly, the probability of the emission of a quantum is determined by the
square of (7.357) with only the second term in (7.358) taken into account,

P↓ = ~
−2

∫ t

t0

dt′dt′′F(+)(t′, t′′)G(−)(t′, t′′). (7.362)

Thus, the probability of an energy quantum transfer from one quantum sys-
tem to another one is determined by the product of the unperturbed correlation
functions, the normal one for the emitting system and the anti-normal one for the
absorbing system(provided that the initial states are independent and at least one
of them is not coherent). The last condition is to exclude coherent interactions,
which depend on the phases of the states.

The mean variation of the total photon number within timeT, in the second
order of the perturbation theory, is equal to the difference between (7.362) and
(7.360),

∆N = ~−2
∫ t

t0

dt′dt′′(F(+)G(−) − F(−)G(+)). (7.363)

In the ground states, normal CFs are equal to zero; therefore, the spontaneous
emission of an atom is determined byF(+) (this conclusion was already used in
Chapter 5), while the probability of a cold detector registering a photon is deter-
mined byG(+) (Secs. 7.2, 7.6).

Note that the obtained result (7.363) is valid for any systems with the interac-
tion energy of the form

∑

figi .

7.7.2 Spontaneous emission

According to (7.362), the probability of a spontaneous transition is

Psp = ~
−2

∫ t

t0

dt′dt′′F(+))Gvac, (7.364)
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whereGvac is the anti-normally ordered CF of the field in the vacuum state.
According to (7.131),

Gvac(t′, t′′) =
∑

k′k′′
ck′ck′′〈0|ak′(t

′)a†k′′(t
′′)|0〉 =

∑

k

c2
ke−iωk(t′−t′′), (7.365)

wherec2
k = 2π~ωk/L3. Note that regardless of the state of the field,

G(−)(t′, t′′) = G(+)(t′′, t′) +Gvac(t′, t′′). (7.366)

If only two levels are taken into account (see (5.30)),

d(+)(t) = d0σ
12e−iω0t, d(−)(t) = d∗0σ

21eiω0t, (7.367)

whered0 ≡ d12, d11 = d22 ≡ 0, ω0 ≡ ω21 > 0, σ12 = (σ21)† ≡ |1〉〈2|. Since

σklσmn = σknδlm, 〈σmn〉 = ρnm, (7.368)

it follows that
F(+)(t′, t′′) = |d0|2eiω0(t′−t′′)ρ22,

F(−)(t′, t′′) = |d0|2e−iω0(t′−t′′)ρ11.
(7.369)

Thus,the correlation functions of a two-level atom scale as the populations
of the two levels: the normally ordered one, as the upper-level population, the
anti-normally ordered one, as the lower-level population.

With an account for (7.365) and (7.369), Eq. (7.364) takes the form

Psp = ~
−2|d0|2ρ22

∑

k

c2
k sin2 ϑk

∫

dt′dt′′ei(ωk−ω0)(t′′−t′),

whereϑk is the angle betweenk andd0. At t, t0 → ±∞, the integral yields

[2πδ(ωk − ω0)]2 = 2πTδ(ωk − ω0). (7.370)

Passing to integration over modes (see (7.100)), we obtain

Wsp ≡
P
T
=
|d0|2ρ22

2π~

∫

d3kωk sin2 ϑkδ(ωk − ω0). (7.371)

The integral of sin2 ϑk over all directions equals 8π/3; as a result, atρ11 = 1 we
again obtain the familiar equation for the probability of a spontaneous transition
of an excited two-level atom,

Wsp = (4k3
0/3~)|d0|2, (7.372)

wherek0 ≡ ω0/c.
Spontaneous emission from a three-level system has been already considered

in Sec. 5.2, where it was shown thatPsp(T) oscillates with the frequencyω32

corresponding to the splitting between the two upper levels(the quantum beats
effectwith the coherent initial state of the atom). Also, recall that the spontaneous
emission ofN two-level atoms leads to thesuperradiance effect in which Wsp is
increased by a factor ofN2 (Sec. 5.3).
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7.7.3 Interaction of stationary systems

If the initial unperturbed states of both interacting systems are stationary, then all
CFs in (7.363) depend only on the difference of the integration variables,t′ − t′′ ≡
τ. (This assumption excludes from consideration the quantumbeats, see Sec. 5.2,
and the coherent states, see Sec. 7.5.) If, in addition, the observation timet−t0 ≡ T
is much greater than the correlation times of the atom and thefield, then the double
integral in (7.363) scales asT, and one can introduce time-independent rates of
‘up’ and ‘down’ transitions,W ≡ P/T.

Let us define the correlation functions of a single variable,

F(±)
τ ≡ F(±)(t, t + τ) = 〈d(∓)(0)d(±)(τ)〉 = F(±)∗

−τ ,

G(±)
τ ≡ G(±)(t, t + τ) = 〈E(∓)(0)E(±)(τ)〉 = G(±)∗

−τ ,
(7.373)

then (7.363) becomes

∆N = ~−2
∫ T

0
dτ(T − τ)[F(+)

τ G(−)
τ − F(−)

τ G(+)
τ + (τ→ −τ)]. (7.374)

If T is much greater than the correlation time of the atom and the field, then it
follows from (7.374) that

W = ~−2
∫ ∞

−∞
dτ(F(+)

τ G(−)
τ − F(−)

τ G(+)
τ ), (7.375)

whereW ≡ (P↓−P↑)/T and the sign ofW determines the direction of the quantum
transfer (from the atom to the field atW > 0).

Our initial model describes the time evolution of the statesof the atom and
the field. Angle brackets in (7.373) denote averaging over the ensemble of experi-
ments with the same initial conditions and differentτ. If, however, we assume that
both systems are in contact with their thermostats (Fig. 7.25), which continuously
restore and maintain the initial stationary states, we willobtain an ergodic model.
Then, (7.375) describes a continuous flux of energy quanta transmitted from one
thermostat to the other one through the ‘atom-field’ system.

Fig. 7.25 Stationary interaction between an atom and a field.The atom-field coupling is often the
‘bottleneck’ for the energy exchange between the thermostats T1, T2.
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Let us now write the CF (7.373) in terms of the microscopic parameters of the
systems. Averaging with the help of stationary density matrices (not necessarily
equilibrium ones) yields

G(+)
τ =

∑

k

c2
k〈Nk〉e−iωkτ,

G(−)
τ =

∑

k

c2
k(〈Nk〉 + 1)eiωkτ,

F(+)
τ =

∑

m>n

|dmn|2ρmme−iωmnτ,

F(−)
τ =

∑

m>n

|dmn|2ρnne
iωmnτ,

(7.376)

where〈N〉k ≡ 〈a†kak〉 are mean photon numbers in the modes andρnn are relative
populations of the atomic levels. After substituting (7.376) into (7.375), the rate
of quantum exchange takes the form

W = 2π~−2
∑

k,m>n

c2
k|dmn|2δ(ωk − ωmn)[(〈Nk〉 + 1)ρmm− 〈Nk〉ρnn]. (7.377)

The three terms of the last factor correspond to the three types of transitions be-
tween each pair of levels according to Einstein (Chapter 2).

By inserting into (7.377) the energy of a quantum~ωk, apparently, we find the
power of emission or absorption,

P = (2π)2L−3
∑

k,m>n

ω2
k|dmn|2δ(ωk − ωmn)(ρmm− ∆nm〈Nk〉), (7.378)

where∆nm ≡ ρnn − ρmm is the population difference. This equation at〈Nk〉 = 0
describes the spontaneous emission of an atom into the vacuum and atρmm = 0,
the radiation heating of a cold atom.

Note that the normally and anti-normally ordered CFs introduced by (7.373)
are not real and do not possess a certain parity (in contrast to classical CFs). How-
ever, one can construct even (symmetrized) and odd (anti-symmetrized) combina-
tions,

F(s)
τ ≡ ReFτ =

1
2
〈d0dτ + dτd0〉 = F(s)

−τ ,

F(a)
τ ≡ ImFτ =

1
2i
〈d0dτ − dτd0〉 = −F(a)

−τ ,

(7.379)

and similar functionsG(s)
τ , G(a)

τ for the field. Here, we have also introduced the
‘total’ CF Fτ, equal to the sum of normally and anti-normally ordered CFs,

Fτ ≡ 〈d0dτ〉 = 〈d(−)
0 d(+)

τ + d(+)
0 d(−)

τ 〉 = F(+)
τ + F(−)

τ = F∗−τ. (7.380)
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In order to find the inverse transformation (expressF(±)
τ in terms ofFτ), it is nec-

essary to use the spectral expansion.
Often, it is only the symmetric combinationF(s)

τ that is used, and it is called
the CF. Below, it will be shown that the antisymmetric combinationF(a)

τ is closely
connected with the response of the system to a coherent perturbation, i.e., with
its susceptibility or the Green’s function. Note that in experimental optics, one
usually deals with non-coherent systems, so that, according to (7.375), CFF(±)

τ

provide a more direct description of the observed effects.
From the definitions (7.379) and (7.376), we find the microscopic formulas,

G(s)
τ =

∑

k

c2
k(2〈Nk〉 + 1) cos(ωkτ), (7.381)

G(a)
τ =

∑

k

c2
k sin(ωkτ) = ImGvac

τ , (7.382)

F(s)
τ =

∑

m>n

|dmn|2(ρmm+ ρnn) cos(ωmnτ), (7.383)

F(a)
τ =

∑

m>n

|dmn|2∆nmsin(ωmnτ). (7.384)

Below, it will be shown (see (7.390), (7.394)) that in the case of a linear or equi-
librium system, the only difference between various types of CFs is the different
contributions of zero-point fluctuations into these functions.

7.7.4 Spectral representation

The Fourier transforms of stationary CFs are calledthe spectral densities(of the
fluctuations of the corresponding observables, such as, forinstance, the electric
field or the dipole moment of an atom). It is clear from definitions (7.373) that
the Fourier transformF(+)

ω of the normally ordered CFF(+)
τ is nonzero only at

ω > 0, while the Fourier transform of the anti-normally orderedCF, only atω < 0.
Therefore, they can be combined into a single functionFω, the Fourier transform
of Fτ,

Fω ≡
∫

dτeiωτFτ/2π, Fω = F∗ω = F(s)
ω + iF (a)

ω = F(+)
ω + F(−)

ω 1 0,

F(±)
ω = Fωθ(±ω), F(s)

ω = (Fω + F−ω)/2, F(a)
ω = (Fω − F−ω)/2i,

(7.385)

and similarly for the field CFsG(±)
ω . Here, we have also introduced the Fourier

transforms of symmetric and anti-symmetric real CFs, whichhave the following
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properties:

F(s)
ω = F(s)∗

ω = F(s)
−ω, F(a)

ω = −F(a)∗
ω = −F(a)

−ω. (7.386)

Substituting into (7.375) the inverse transformation,

F(±)
τ =

∫ ∞

0
dωe∓iωτF±ω, (7.387)

with the factor~ω, we obtain the spectral expansion of the power,

P = 2π
~

∫ ∞

0
dωω(FωG−ω − F−ωGω) =

2π
~

∫ ∞

−∞
dωωFωGω, (7.388)

where all spectral CFs are positive. Thus, we have separatedpositive and nega-
tive terms, corresponding to emission and absorption. If wepass to the Fourier
transforms of symmetric and anti-symmetric CFs, (7.388) takes the form

P = 4π
i~

∫ ∞

0
dωω(F(s)

ω G(a)
ω − F(a)

ω G(s)
ω ), (7.389)

where such separation is absent.
The explicit expressions for the spectral CFs in terms of themicroscopic pa-

rameters can be easily found through the Fourier transformation of (7.376) and
(7.381)–(7.384),

G(+)
ω =

∑

k

c2
k〈Nk〉δ(ω − ωk),

G(−)
ω =

∑

k

c2
k(〈Nk〉 + 1)δ(ω + ωk),

G(s)
ω =

∑

k

c2
k

(

〈Nk〉 +
1
2

)

[δ(ω − ωk) + δ(ω + ωk)],

G(a)
ω =

i

2

∑

k

c2
k[δ(ω − ωk) − δ(ω + ωk)],

F(+)
ω =

∑

m>n

|dmn|2ρmmδ(ω − ωmn),

F(−)
ω =

∑

m>n

|dmn|2ρnnδ(ω + ωmn),

F(s)
ω =

1
2

∑

mn

|dmn|2(ρmm+ ρnn)δ(ω + ωmn),

F(a)
ω =

1
2i

∑

mn

|dmn|2∆nmδ(ω + ωmn).

(7.390)
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Comparing the last expression with Eq. (4.57) for the linearsusceptibility (polaris-
ability) αω of a single atom atγ = 0, one can see that the anti-symmetric spectral
CF of a stationary system coincides (up to the factor 2π/i~) with the imaginary
part of the susceptibility of the system with respect to a coherent excitation,

α′′ω = (2π/i~)F(α)
ω . (7.391)

The response functionατ and its Fourier transform are called theretarded part
of the Green’s functionof the system. Note that in order to determine the suscep-
tibility of matter, experimentally or theoretically, one requires the field to be in a
coherent quantum state (Sec. 7.5). And vice versa, the definition of the suscepti-
bility of the vacuum (Sec. 4.1) is based on the coherent stateof the matter. From
the comparison between (7.390) and (7.365), it follows thatG(a)

ω = (ImGvac
τ )ω, i.e.,

the role ofα in the case of the field is played by the anti-normally orderedCF of
the vacuum.

Recall thatα′′ω, in its turn, unambiguously determinesα′ω (Sec. 4.1). Thus,
the kinetic parameters of a stationary system are in one-to-one correspondence
with its unperturbed fluctuation characteristics.aa In the case of equilibrium sys-
tems, this relation can be inverted, so that each one of the four CFs of the system
determines the other ones.

7.7.5 Equilibrium systems. FDT

At thermodynamic equilibrium, we have Planck’s distribution for the photons and
Boltzmann’s distribution for the populations,

〈Nk〉 = N(ωk), ρmm= ∆nmN(ωmn), (7.392)

where

N(ω) =

[

exp
~ω

κT
− 1

]−1

≡ Nω. (7.393)

Due to theδ functions in (7.390), the temperature factors ofN can be removed
from the sum; as a result, all CFs can be expressed in terms of each other or in
terms of the susceptibility imaginary part. For instance, in the case of an atom,

F(+)
ω =

~

π
Nωα

′′
ωθω,

F(−)
−ω =

~

π
(Nω + 1)α′′ωθω = F(+)

ω exp
~ω

κT
, (7.394)

F(s)
ω =

~

π

(

Nω +
1
2

)

α′′ω,

aaSuch relations are called the Kubo formulas, see, for instance, Ref. [Zubarev (1971)].
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whereθω equals unity atω > 0 and zero atω < 0. The last equation in (7.394)
is called thefluctuation-dissipation theorem (FDT)or theNyquist-Callen-Welton
theorem.

Let the atom and the field be in equilibrium states with the temperaturesT1

andT2, respectively. Then, according to (7.394) and similar equations for field
CFs, (7.388), (7.389) take the form

P = −4i
∫ ∞

0
dωωα′′ωG(a)

ω (N1 − N2), (7.395)

whereNn ≡ [exp(~ω/κTn) − 1]−1. If the temperatures are close, the last factor
in (7.395) scales asT1 − T2, then the ratioP/|T1 − T2| determines, throughα′′ω,
the ‘heat conductivity’ of the atom-field link, which provides the heat exchange
between the two thermostats.

Here, we only considered single-quantum transitions and linear susceptibility,
which are described in the first orders of the perturbation theory. A similar consid-
eration can be performed for multi-quantum transitions, nonlinear susceptibilities,
and higher-order CFs. The corresponding generalizations of the FDT, obtained by
Efremov and Stratonovich, are described in short in Ref. [Klyshko (1980)].

In conclusion, let us mention that the interaction between an atom and a field
leads not only to the energy exchange but also to a certain shift of the energy
levels. In the case of the vacuum state of the field, this shiftleads to a variation of
the eigenfrequencies by a value about 109 Hz (for the hydrogen atom). This effect
is calledthe Lamb shift(see, for instance, Ref. [Allen (1975)]). If the field is in
an excited state, the shift is called theStark effect in alternating field(5.48). This
phenomenon has to be taken into account in many problems of laser spectroscopy.
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