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1. Адиабатическое приближение 

Адиабатическое приближение – базовое приближение теории 

конденсированного состояния, использующее существенное различие в 

значениях � и � – масс электрона и атомных ядер, соответственно. 

Запишем гамильтониан системы, в которой много ядер и электронов: 

�� = ��� + ��
 + ���� + ��

 + ��
�  
��� = − ℏ��� ∑ ����� − кинетическая энергия электронов; 

��
 = − ℏ�� ∑ ��� ����� − кинетическая энергия ядер, где 

��, �� – координаты электронов и ядер, соответственно; 

���� = ��� ∑ ������� ��,�  – энергия кулоновского взаимодействия электронов; 

��

 = ��� ∑ "�"� #����� #�,� − энергия кулоновского взаимодействия ядер. 

Множитель «2» в знаменателе нужен, чтобы не учитывать одни и те же члены 

дважды. 

��
� = −$� ∑ "���������,�  – энергия кулоновского взаимодействия 

электронов c ядрами; 

% = &��'() ≪ 1 − безразмерный параметр. 

Так как выражение, записанное для гамильтониана, очень сложное, то 

нужно использовать приближение. Представим полный гамильтониан как 

сумму кинетической энергии ядер и электронного гамильтониана, который не 

содержит производных по координатам ядер ��: 

�� = ��
 + ���, 

��� = ��� + ���� + ��

 + ��
�. 
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Предположим, что задача на собственные значения для электронного 

гамильтониана может быть решена, и запишем уравнение Шредингера на 

собственные значения и функции для электронов: 

���  ,-.�, �/ =  Ս-.�/,-.�, �/, 

где Ս-.�/ и ,-.�, �/ − собственные значения энергии и собственные функции 

электронов при заданной конфигурации ядер, определяемой их координатами �, которые входят в уравнение в качестве параметра. 

Так как собственные функции электронов являются 

ортонормированным базисом, волновую функцию всей системы можно 

разложить по этому базису: 

1.�, �/ = ∑ Փ-.�/,-.�, �/, 

Փ-.�/ − коэффициенты разложения. 

В стационарное уравнение Шредингера с полным гамильтонианом 

подставляем волновую функцию 1.�, �/, разложенную по базису ,-.�, �/: 

��1 = 31 = ��
1 + 4 Փ-.�/Ս-.�/,-.�, �/-  
Затем домножим слагаемые справа и слева на сопряженное ,-∗  и 

проинтегрируем по r. После данной процедуры слева останется Փ-.�/ только 

для одного конкретного n: 

3Փ-.�/ = Ս-.�/Փ-.�/ + 4 6 ,-∗ .�, �/��
Փ- .�/,- .�, �/78�-  
Поскольку оператор кинетической энергии ядер ��
 содержит 

производную по R, она будут применяться и к коэффициентам разложения Փ- .�/, и к функциям ,- .�, �/, то есть ��
 либо два раза действует на Փ- .�/, 

либо один раз на ,- .�, �/ и один раз на Փ- .�/, либо два раза на ,- .�, �/. 

Таким образом, имеем: 
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3Փ-.�/ = Ս-.�/Փ-.�/ + ��
Փ- − ℏ� 4 1��
9Փ- 9�� :,-∗ 9,- 9�� ; −- ,�  

− ℏ�2 4 Փ- �� :,-∗ 9�,- 9��� ;�,-          .∗/ 
При отсутствии двух последних слагаемых получается уравнение 

Шредингера на собственные функции ядер: 

3Փ-.�/ = Ս-.�/Փ-.�/ + ��
Փ-.�/ 
Таким образом, адиабатическое приближение предполагает, что с точки 

зрения электронов ядра двигаются так медленно, что они практически стоят 

на месте; а с точки зрения ядер электроны двигаются так быстро, что их 

влияние на ядра можно описывать с помощью усредненной электронной 

плотности. Поэтому можно отдельно описывать ядерную и электронную 

системы, не учитывая явно одновременно и ту, и другую. Так от одной 

сложной задачи можно перейти к двум более простым.  

Для того, чтобы отдельно описывать ядерную и электронную системы, 

нужно доказать, что два последних члена в стационарном уравнении 

Шредингера .∗/ малы, и ими можно пренебречь. Для обоснования данного 

утверждения нужно рассмотреть характерные масштабы системы, которые 

удобно описывать в атомной системе единиц. 

В атомной системе единиц: 

=> = ℏ���� − боровский радиус – масштаб длины; 

3? = ��)ℏ� ≈ 27.2 эВ − атомный масштаб энергии; 

�E = FG� ≈ 13.6 эВ − энергия связи атома водорода. 
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Для системы электронов ,-.�, �/ и Ս-.�/ все характерные масштабы 

определяются атомными величинами. Следовательно, энергия по порядку 

величины: 

Ս-.�/ ∼ K3?, 

K – макроскопическое количество всех электронов и ядер. 

Характерные длины, на которых ,-.�, �/ меняется, определяются 

боровским радиусом: 

9,-9� ∼ 9,-9� ∼ |,-|=>  
Рассмотрим систему с большим количеством ядер. При смещении 

одного из них относительно остальных сильнее всего меняется энергия связи 

с ближайшими ядрами и электронами. При этом энергия связи с дальними 

атомами и электронами почти не изменится. Поэтому для оценки изменения Ս-.�/ при смещении ядра �� достаточно учитывать только его ближайшее 

окружение, а не макроскопическое количество ядер и электронов: 

MՍ-M�� ∼ 3?=> ; 9�Ս-9��� ∼ 3?=>�   
Разложим потенциал Ս-.�/ в окрестностях минимума: 

Ս-.�/ ≈ Ս-.�>/ + 12 9�O-9��� M��� 

Ս-.�>/ − минимум потенциала, в котором находятся ядра в основном 

состоянии; 

�> − конфигурация ядер, при которой O- − �PQ; 

M��� − малые смещения j-ого ядра. 

Рассмотрим задачу о движении ядра с массой �~10T � в одномерном 

потенциале: 
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O.U/ = 3?2=>� U� 
Во сколько раз размер пространственной локализации ядра отличается 

от =>? Потенциал – гармонический осциллятор, на дне которого лежит ядро. 

Запишем соотношение неопределенности: 

VWVU ≥ ℏ2 
Полная энергия имеет вид: 

W�2� + 3?2=>� U� 
Используя соотношение неопределенностей, заменим W ∼ ℏY и 

продифференцируем, чтобы найти минимум функции энергии: 

: ℏ�2�U� + 3?2=>� U�;Z =  − ℏ��U8 + 3?=>� U = 0 
Тогда M� − неопределенность координаты ядер на дне гармонического 

потенциала: 
M�~U = `ℏ�=>��3? = a��) `ℏ�=>��3?

) = %=> 

% = a��) ~ 110 ≪ 1 
Таким образом, потенциал, в котором двигается ядро, имеет кривизну, 

которая определяется атомными масштабами, но волновая функция Փ-.�/ 

локализована где-то в центре, и ее характерный масштаб M�. 

Это означает, что 

9Փ-9� ∼ |Փ-|%=>  
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Локализация волновой функции Փ-.�/ и потенциал O-.�/ 

Теперь можно обосновать адиабатическое приближение. Вернемся к 

стационарному уравнению Шредингера (*), в котором второе слагаемое: 

��-Փ- ∼ 1� 9�Փ-�9�� ∼ %T 1%� ∼ %� 
Третье слагаемое: 

ℏ� 4 1��
9Փ- 9�� :,-∗ 9,- 9�� ;- ,� ∼ %T 1% ∼ %8 

Четвертое слагаемое: 

ℏ� 4 Փ- �� :,-∗ 9�,- 9��� ;�,- ∼ %T 
Следовательно, сумма двух последних членов в стационарном 

уравнении Шредингера мала по сравнению с первыми членами, поэтому 

можно описывать движение ядер отдельно от движения электронов. 
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2. Типы химической связи 

Рассмотрим функцию Ս-.�/ для двух ядер, зависящую от расстояния 

между ядрами и имеющую минимум. Находясь в этом минимуме, ядра не 

могут отдалиться друг от друга и не могут сблизиться, так как в обоих случаях 

энергия будет расти. Следовательно, между ними реализована химическая 

связь. Свойства минимума собственной энергии электронного гамильтониана Ս-.�/ определяют, как устроена химическая связь. 

Виды химической связи: 

1. Ионная; 

2. Ковалентная; 

3. Металлическая; 

4. Водородная; 

5. Ван-дер-Ваальсова. 

Виды химической связи записаны в порядке убывания характерных 

масштабов энергии связи. 

Ионная связь – взаимодействие между двумя атомами, один из которых 

хочет какой-нибудь электрон забрать, чтобы заполнить свою оболочку, а 

другой может легко отдать один-два валентных электрона, которые находятся 

у него на внешней оболочке. Так получаются два иона с полностью 

заполненными оболочками, которые притягиваются. Энергия связи ∼ 10 эВ. 

Пример: кристалл NaCl.  

Ковалентная связь – связь между двумя одинаковыми атомами, 

которые точно не будут делиться электронами, так как непонятно, кому из них 

электрон нужнее. Оба ядра притягиваются к центру, если между ними 

находится максимум электронной плотности. Энергия связи ∼ 5–10 эВ. 

Пример 1: молекула водорода. Для того, чтобы максимум электронной 

плотности двух электронов мог находиться в середине молекулы, нужно, 
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чтобы их спины были разнонаправлены, иначе из-за принципа Паули они не 

смогут это сделать. 

 
Молекула водорода 

Пример 2: кристаллы кремния, углерода (графит, алмаз). 

Металлическая связь – это связь, в которой есть решетка из ядер, 

вокруг которой «плавает» жидкость электронов, наличие этой жидкости и 

удерживает решетку. Энергия связи ∼ 1 эВ. 

Металлическая связь гораздо более пластична, поскольку в ней нет 

отдельных связей в заданных направлениях. Поэтому металл обычно можно 

деформировать без разрывов. 

Водородная связь – связь, образованная за счет того, что в соединениях 

водород обычно отдает свой электрон, и от него остается отдельный протон – 

маленькая положительно заряженная частица, которая может связать два 

отрицательных иона друг с другом. Энергия связи ∼ 0.1 эВ. 

Пример: кристалл льда. Две молекулы воды образуют водородную 

химическую связь, поскольку ион водорода обеспечивает связь между ионами 

кислорода. При этом исходная молекула воды содержит ионную связь. В 

кристалле льда каждый ион кислорода образует 4 связи с соседями, которые 

формируют почти правильный тетраэдр. 

 
Молекула воды 
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Ван-дер-Ваальсова связь – связь между абсолютно нейтральными 

атомами, например, атомами инертного газа, которые при низких 

температурах могут образовывать кристаллы. Энергия связи ∼ 0.01 эВ. 

Рассмотрим данный вид химической связи более подробно. Допустим, 

есть два нейтральных атома, средний заряд которых равен нулю. Пусть 

средний дипольный момент каждого из этих атомов тоже равен нулю: 

〈7�〉  = 0 
Но при этом дипольный момент может флуктуировать и создавать 

электрическое поле диполя: 

Ԑ = 7��8 
Дипольный момент второго атома поляризуется под действием поля 

первого атома. Усредненная по флуктуациям дипольного момента энергия 

взаимодействия атомов зависит от квадрата дипольного момента, который 

отличен от нуля: 

〈3〉  ∼  e(e��f ∼ g〈e(�〉�h , 

i − поляризуемость. 

Таким образом, Ван-дер-Ваальсова связь реализуется за счет 

флуктуаций дипольных моментов, которые связаны в двух атомах. Полный 

потенциал в данном случае имеет вид потенциала Леннарда-Джонса: 

O ∼ j��� − k�l 
Первый член в данном выражении возникает из-за быстрого роста 

энергии при сближении двух оболочек. С помощью теории возмущений 

можно показать, что второй член всегда будет отрицателен.  
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3. Решетка Браве, ячейка Вигнера-Зейтца. Группы 

симметрии кристаллов. Кристаллографический базис 

В данном разделе и далее будет говориться не о твердом теле вообще, а 

о кристаллах, которые обладают некой регулярной структурой. Начнем с 

описания такой регулярной структуры. 

Решетка Браве – совокупность узлов, которые задаются тремя 

векторами: 

�m- = Q�=m� + Q�=m� + Q8=m8, 

=m�, =m�, =m8 – вектора трансляции решетки Браве, которые не лежат в одной 

плоскости; Q�, Q�, Q8 − любые целые значения. Таким образом, получаем 

бесконечную структуру узлов, задающуюся векторами �m-. 

Элементарная ячейка – область пространства, которая за счет 

трансляций на вектора Браве занимает весь объём. 

Пример: рассмотрим косоугольную кристаллическую решетку, в 

плоскости такой решетки можно выделить два вектора трансляции (третий 

будет пространственный), на которых можно построить элементарную ячейку. 

Путем трансляции этой элементарной ячейки на произвольные вектора можно 

заполнить всю плоскость (или в трехмерном случае весь объём).  

 
Косоугольная кристаллическая решетка на плоскости 

Элементарная ячейка минимального объёма – примитивная ячейка. 

Также можно ввести понятие условной ячейки не минимального объёма. 

Чтобы заполнить всю плоскость такой ячейкой, ее достаточно транслировать 

только на часть векторов Браве. 
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Примитивная (синяя) и условная (красная) ячейки 

Симметрия элементарных ячеек, рассмотренных выше, не обязательно 

совпадает с симметрией кристалла. 

Элементарная ячейка Вигнера-Зейтца – это совокупность всех точек, 

которые ближе к одному из узлов решетки, чем ко всем остальным. Симметрия 

такой ячейки совпадает с симметрией всей решетки. 

Построение ячейки Вигнера-Зейтца (на примере решетки с 

гексагональной симметрией). Проведем линии, соединяющие узлы решетки со 

всеми соседними. Далее строим срединные перпендикуляры к этим линиям и 

получаем правильный шестиугольник – элементарную ячейку, симметрия 

которой совпадает с симметрией всей решетки. 

 
Элементарная ячейка Вигнера-Зейтца 

Преобразования симметрии – преобразования, которые переводят 

решетку саму в себя. Например, трансляции на любые вектора решетки Браве. 

Точечные преобразования симметрии – преобразования, при которых 

одна точка остается на месте. Например:  
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● Поворот вокруг какой-либо оси. При повороте все точки оси 

остаются на месте. Поворот может быть на любой угол, равный 
�n- .  

Ось симметрии n-ого порядка обозначается o- (или просто числом 

n). Молекула может иметь ось симметрии любого порядка n. Для 

кристалла порядок симметрии Q = 2, 3, 4, 6, оси других порядков 

невозможны (пятиугольниками или семиугольниками нельзя замостить 

всю плоскость). 

● Зеркальное отражение относительно плоскости, 

обозначающееся σ или m. 

● Поворот вокруг оси и отражение относительно плоскости, 

перпендикулярной оси, обозначается q- или Qm. Частным случаем 

является инверсия q� – отражение относительно центра. 

Также возможны их всевозможные комбинации. 

Для того, чтобы классифицировать кристаллические структуры по 

видам симметрии, говорят о группах симметрии. Для того, чтобы некое 

множество образовывало группу, требуется выполнение следующих условий: 

1) ℎ = st – существование понятия произведения двух 

элементов множества, которое дает третий элемент множества; 

2) ассоциативность: .st/ℎ = s.tℎ/; 

3) существование единичного элемента: $s = s$ = s − 

тождественное преобразование, при котором ничего не меняется; 

4) существование обратного элемента: s��s = ss�� = $. 

Если эти условия выполняются, то совокупность множества 

преобразований является группой. При выполнении условия 

коммутативности: st = ts группа называется абелевой группой. Пример 

абелевой группы – трансляции на вектора решетки Браве. 
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Для трехмерных решеток Браве имеется 7 точечных групп симметрии и 

14 пространственных групп, к которым добавляются трансляции на вектора 

решетки Браве.  

Для примера рассмотрим все возможные группы симметрий двумерных 

решеток: 

1) квадратная; 

2) прямоугольная; 

3) прямоугольная центрированная; 

4) гексагональная 

5) косоугольная – параллелограмм, у которого есть только ось 

симметрии второго порядка. 

 
Некоторые примеры двумерных решеток 

Для полного описания реальных кристаллов решетки Браве 

недостаточно. Рассмотрим некоторую элементарную ячейку, привязанную к 

некоторому узлу. В этой элементарной ячейке могут быть другие атомы 

(например, другого типа), положение которых никак не описывается 

векторами решетки Браве, а описываются каким-то другим набором векторов �uv – кристаллографическим базисом. Слово «базис» в данном случае не 

имеет никакого отношения к математическому понятию базиса. Полностью 

задать положение некого ядра в кристалле можно путем задания и вектора 

решетки Браве �m-, и вектора кристаллического базиса �̅u. При анализе 

симметрии кристаллов, с учетом возможных кристаллографических базисов, 

имеется 32 точечные группы симметрии и 230 пространственных групп. 
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4. Обратная решетка, зоны Бриллюэна 

Введем понятие обратной решетки через описание дифракции света на 

решетке Браве. Пусть есть некая регулярная структура – решетка Браве, на 

которую падает электромагнитная волна (луч лазера). Допустим, что толщина 

падающего луча гораздо больше, чем расстояние между атомами. Тогда луч 

лазера (по крайней мере в области центра) можно описывать как плоскую 

волну. Эта плоская волна рассеивается на узлах решетки Браве. Далее 

рассеянные в некотором направлении лучи в дальней зоне собираются на 

детекторе, и измеряется их суммарная интенсивность. Для того чтобы 

интенсивность этого излучения была велика, необходимо, чтобы рассеянные 

лучи сошлись на детекторе в фазе, что выполняется, если для всех узлов 

решетки Браве разность путей рассеянных на них лучей равна целому числу 

длин волн. 

 
Упругое рассеяние электромагнитной плоской волны  

на узлах решетки Браве 

Рассмотрим рассеяние электромагнитной волны на двух узлах решетки 

Браве и запишем выражение для разности фаз: 

V, = xZ�yz{.|Z/ − x�yz{.|/ = }xZv �m~ − }xm�m~ = }Vxm�m~, 

}Vxm�m~ − относительный набег фаз лучей, рассеянных на двух узлах. 
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Разность хода лучей при упругом рассеянии }�xm� = �xZv �~ 

Тогда поле, рассеянное в направлении xZv , определяется суммой по всем 

узлам решетки Браве: 

3~ 4 $���m ��mmmm
-  

Поскольку узлов много, то сумма будет отлична от нуля, только если 

выполняется условие дифракции 

Vxm�m- = 2��, где � − целое число. 

В противном случае экспоненты будут флуктуировать и в среднем 

давать очень малую величину. Если условие выполняется, то интенсивность 

рассеяния в этом направлении пропорциональна числу узлов, т.е. 

интенсивность имеет большое значение. Именно в таких направлениях 

наблюдается дифракция на периодической структуре. Как удовлетворить 

такому условию? 

Так как �m- − вектор решетки Браве, который строится на векторах 

трансляции решетки Браве, то для этих векторов должно выполняться: 

Vxm=m� = 2���;  Vxm=m� = 2���;   Vxm=m8 = 2��8,  
��, ��, �8 − целые числа. 
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Отсюда следует, что Vxm должен представляться в виде суперпозиции 

векторов �m�, �m�, �m8: 

Vxm = ���m� + ���m� + �8�m8, 
где вектора �m�, �m�, �m8 удовлетворяют условиям: 

=m��m� = 2�M�� 

M�� − символ Кронекера. Выражения для �m�: 

�m� = �n�?m�,?m��}?m�?m�?m�~ , где �, x не совпадают с P. 
Вектора �m� задают некоторую дополнительную решетку Браве. Эти 

вектора заданы не в обычном пространстве, так как их размерность – обратная 

длина, а в пространстве волновых векторов. Таким образом, к исходной 

решетке Браве, построенной на векторах =m�, =m�, =m8, была построена решетка в 

пространстве волновых векторов – обратная решетка. Вектора, 

соответствующие векторам обратной решетки, обозначаются t�v : 

t�v = ���m� + ���m� + �8�m8 

Вектора t�v  появились как условие, что изменение волнового вектора при 

рассеянии будет равно вектору обратной решетки: 

Vxm = xZv − xm = t�v ⇒ xZv = t�v + xm         .∗/ 
То есть – как объяснение условий, в каких направлениях будет идти 

интенсивная дифракция от регулярной периодической структуры. Это условие 

эквивалентно условию дифракции Брэгга-Вульфа. 

При необходимости можно поменять знак t�v  без ограничения общности: 

t�v = −����v − ����mmm − �8�8mmm 
Возведем (*) в квадрат: 

�xZv �� = t�v � + �xm�� + 2}t�v xm~ 
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Так как рассеяние упругое и �xm� = �xZv �, то: 

t�v � = 2}t�v xm~ = 2|t�v |�xm�yz{|    ⇒ 
�xm�yz{| = |t�v |2  

Если провести из одной точки волновой вектор падающего излучения xm 

и вектор обратной решетки t�v , то для того, чтобы дифракция на регулярной 

структуре шла интенсивно, конец вектора xm должен лежать на срединном 

перпендикуляре к вектору обратной решетки. 

 
Условие интенсивной дифракции 

Таких различных векторов обратной решетки для кристалла можно 

построить много, и для любого xm, конец которого лежит на срединном 

перпендикуляре любого из t�v , будет выполнено условие дифракции. 

Если построить в пространстве обратной решетки ячейку Вигнера-

Зейтца, то волновой вектор, конец которого попадает на границу этой ячейки, 

соответствует дифракции. Ячейку Вигнера-Зейтца в пространстве векторов 

обратной решетки называют первой зоной Бриллюэна. Симметрия первой 

зоны Бриллюэна совпадает с симметрией всей решетки, как для любой ячейки 

Вигнера-Зейтца. Для построения других зон Бриллюэна можно смещать 

первую зону Бриллюэна на вектора обратной решетки, т.е. замостить все 

пространство ячейками Вигнера-Зейтца. Но в этом случае остальные зоны 

Бриллюэна относительно центральной точки не будут иметь той же 
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симметрии. Вместо этого можно продолжить построение срединных 

перпендикуляров не только к ближайшим соседям, но и к следующим. Тогда 

зоны Бриллюэна будут состоять из нескольких частей, но сохранять исходную 

симметрию всей решетки. Такое построение становится важным при описании 

электронов. 

 
Зоны Бриллюэна 

Вернемся к обсуждению дифракции. Пусть есть некая решетка Браве в 

реальном пространстве. Если через какие-то два узла на плоскости (или три 

узла в пространстве) проходит прямая (плоскость), то в решетке Браве можно 

провести бесконечно большое количество параллельных ей прямых 

(плоскостей). Если в плоскости лежит хотя бы три узла, то в ней лежит 

бесконечное количество узлов решетки Браве. Таким образом, если построить 

хотя бы одну плоскость, в которой лежит бесконечно много узлов решетки 

Браве, то существует бесконечно много таких плоскостей – получается 

семейство таких плоскостей. Отсюда следует, что если есть семейство 

атомных плоскостей, и расстояние между ближайшими из них d, то для этого 

семейства атомных плоскостей существует вектор обратной решетки t�v , 

который направлен перпендикулярно ко всем атомным плоскостям и равен: 
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|t�v | = 2�7  
При этом обратное утверждение тоже является верным: для любого 

вектора обратной решетки существует семейство атомных плоскостей, 

которое ему перпендикулярно, и расстояние между которыми равно 7. 

 
Семейство атомных плоскостей  

Если вектор такой обратной решетки задать числами ��, ��, �8, то этими 

же числами можно задать семейство атомных плоскостей. Эти индексы ��, ��, �8 

называются индексами Миллера, и ими, например, описывают поверхности 

кристаллов. Для того чтобы найти индексы Миллера для какого-то семейства 

атомных плоскостей, следует проделать следующее построение. Пусть 

существует три направления, соответствующие направлениям векторов 

трансляций решетки Браве. По каждому из этих направлений можно выделить 

узлы, которые отсекает ближайшая к началу координат атомная плоскость. 

Соотношение ��: ��: �8 определяется соотношением обратным к количеству 

узлов, отсекаемых этой плоскостью. Индексы Миллера определяются 

минимальными целыми числами, имеющими такое соотношение: 

 ��: ��: �8 = 11 : 12 : 13 → .6; 3; 2/ 
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Индексы Миллера 
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5. Колебания кристаллических решеток. 

Классификация колебательных мод 

Стационарное положение решетки описывается положением ядер в 

узлах, определяемых решеткой Браве и кристаллографическим базисом 

данного кристалла – неким набором векторов �>mmm. 

Предположим, что ядра начинают смещаться относительно положения 

равновесия на малый вектор �m. Так как смещение небольшое, то энергию ядра 

можно разложить в ряд: 

O.�> + �m/ = O.�>/ + 12 4 9�O9���9�� � ����� � + ⋯          .∗/�,� �,� 
 

O.�>/ − энергия равновесного положения ядер, 

�, �Z = �U, �, �� − индексы отклонений в разных направлениях, 

��� , �� � − малые отклонения координат ядер при смещении. 

Координаты всех ядер задаются и решёткой Браве, и 

кристаллографическим базисом: 

�>mmm = �-mmmm + �uv 
В реальном кристалле Q = �1, … K�, где K ∼ K? − макроскопически 

большое число элементарных ячеек в кристалле, { = �1, … �� − индексы 

векторов кристаллографического базиса �uv. Например, в кристалле NaCl на 

одну элементарную ячейку приходится 2 атома.  

Так как ��Q, {� состоит из двух индексов n и s, отделим эти индексы друг 

от друга и введем новый индекс %�{, ��. Теперь будем отдельно суммировать 

по % и по n. Так как O.�>/ – константа, будем рассматривать только второе 

слагаемое (*): 
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O = 12 4 j-,- �,� �-��- � -,- �,� 
 

j-,- �,� 
 – вторая производная энергии системы – называется матрицей силовых 

коэффициентов. Запишем второй закон Ньютона: 

�u�� -� = − 9O9�-� = − 4 j-,- �,� �- � - � ,  

Производная 
������ со знаком «минус» – сила, которая действует на отклонение 

ядра от положения равновесия. Таким образом, получаем уравнение движения 

для каждого из имеющихся узлов, точнее, систему уравнений для отклонения 

всех ядер во всевозможных направлениях.  

Из-за трансляционной инвариантности j-,- �,� 
 не зависит от Q, QZ, а только 

от Q − QZ. Также важно отметить, что j-,- �,� − положительно определенная 

матрица (иначе O.�>/  не была бы минимум энергии системы). Таким образом, 

имеется линейная система макроскопически большого числа уравнений: 

�u�� -� + 4 j-�- �,� �- � - � , = 0 
Эта система линейна, поскольку в разложении потенциала более 

высокие члены разложения были опущены. Другими словами, используется 

гармоническое приближение: потенциал похож на многомерный 

гармонический осциллятор. 

Общее решение линейной системы является суперпозицией частных 

решений. Ищем частные решения в виде: 

�-� ∼ $��  
Подставляем в уравнение: 
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�u¡�}�-�~ = 4 j-�- �,� �- � - � , = j¢}�-�~ 

j¢}�-�~ − матричный оператор. В таком виде это уравнение имеет вид 

уравнения на собственные значения и собственные вектора оператора j¢. Его 

матрица – положительно определенная и симметричная, так как: 

j-�- �,� = j- �-� ,�  
Также данная матрица – действительная. Отсюда следует, что j¢ – 

эрмитов оператор, следовательно ¡� − действительные и положительные ⇒ 
решения не будут затухать. 

Ищем решение в гармоническом виде по t и по �m-: 

�-� = ��$�� ���m �m� 
Подставляем в уравнение и получаем: 

−�u¡��� + 4 j�,� .x/�� � = 0,             .∗∗/ 
где j�,� .x/ = ∑ j��,� $��m �m£�  – новая матрица, которая является Фурье 

преобразованием от исходной матрицы. Полученная новая матрица j�,� .x/ − 

комплексная, эрмитова матрица. Сделаем замену: 

xm → xm + t�v , 

t�v − вектор обратной решетки. Тогда: 

$�.�m ¤¥¦mmm/�m� = $��m �m�$�¥¦mmm�m� = $��m �m� 
$�¥¦mmm�m� = 1, т. к.  t�v �m- = 2�� (по определению) 

Поэтому вектор xm достаточно рассматривать только внутри первой зоны 

Бриллюэна: �xm�˂ nа в одномерном случае, где а – период решетки. 
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Так как xm определен с точностью до вектора обратной решетки, то xm 

называют квазиволновым вектором. Также можно ввести понятие 

квазиимпульса: 

W̅ = ℏxm 
При этом j¢ не изменяется при xm → xm + t�v : 

j¢.x + t�/ = j¢.x/ 
Вернемся к (**). Так как μ – небольшое число, то для получившейся 

системы уравнений можно записать условие существования решения: 

7$ª«−�u¡�M�,� + j�,� .x/« = 0 

Данная система для каждого k имеет q решений, и каждое из этих 

решений имеет вид закона дисперсии ¡�.x/, .1 ≤ � ≤ �/, где x – 

квазиволновой вектор, который меняется в пределах первой зоны Бриллюэна.  

Рассмотрим свойства полученных решений:  

1) Так как j¢ − эрмитов оператор, то 

­� &¡��.x/' = 0 и �$ &¡��.x/' ≥ 0 ⇒ никакие волны не затухают; 

2) ¡��.x + t�/ = ¡��.x/ 

3) ¡��.−x/ = ¡��.x/ − чётная зависимость от k. 

Кроме того, можно показать, что в трехмерном случае три решения ¡�.x/ оказываются выходящими из нуля. Они могут совпадать или не 

совпадать в зависимости от симметрии кристалла. Эти решения дают закон 

дисперсии акустических фононов, при малых частотах они соответствуют 

звуку. При малых k эти решения имеют вид линейной зависимости 

(выделенная область на графике). Остальные 3� − 3 (где � – количество 

атомов в кристаллической ячейке, а три – количество направлений в 

трехмерном случае) решений не выходят из нуля. Эти решения соответствуют 



27 

 

оптическим фононам. Полученные законы дисперсии описывают волны 

смещения ядер в кристалле. 

 
Закон дисперсии ¡.x/ 

В звуковых колебаниях два ядра в элементарной ячейке почти одинаково 

отклоняются в одну и ту же сторону. Поэтому дипольный момент 

элементарной ячейки не изменяется, и атомы не взаимодействуют с 

электромагнитной волной. В оптических колебаниях, наоборот, при 

распространении электромагнитной волны атомы движутся навстречу друг 

другу, дипольный момент изменяется, и атомы взаимодействуют с 

электромагнитными волнами.  

Чтобы показать, что закон дисперсии акустических фононов выходит 

из нуля, и что их ровно три ветви, рассмотрим смещение всех узлов в решетке 

на один и тот же вектор y- = ®yY , yE , y¯°. При сдвиге всех ядер никакой силы 

не возникает: 

±-� = − 4 j-�- �,� y�- ,� = 0 
∑ j-�- �,� $����- ,� = 0 = j.x/ при x = 0 

Таким образом, существуют такие решения, в которых j.x/ = 0, и их 

ровно три, поскольку есть три степени свободы.  
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6. Закон дисперсии волн в линейных цепочках 

В качеств примера общих закономерностей, полученных в предыдущем 

разделе, рассмотрим одномерную модель кристалла с периодом a – 

бесконечную цепочку шариков массой M, соединенных пружинками с 

жесткостью K.  

 
Одномерная бесконечная модель кристалла  

Запишем выражение для потенциальной энергии всех пружинок: 

O = 12 ² 4.�-¤� − �-/�
-  

Смещение двух соседних шариков определяет сжатие или растяжение 

пружинки между ними. Запишем закон движения: 

��� - = − 9O9Q =  −².�- − �-¤� + �- − �-��/ 
��� - + ².2�- − �-¤� − �-��/ = 0 

Выражение .�-¤� + �-�� − 2�-/ является дискретно-разностным 

аналогом второй производной. В приближенном виде уравнение сводится к: 

��   − ²�YY = 0 − волновое уравнение. 

Данное приближение допустимо, только если ³ ≫ = (или x ≪ n?). В общем 

случае ищем решение в виде: 

�- = �>$�� ���?- 

Подставляя его в уравнение, получаем: 

− �¡� + ²}2 − $��? − $���?~ = 0 
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¡� = ²� .2 − 2 yz{ .x=/ / = 2 ²� µ1 − 1 + 2{PQ� ¶x=2 ·¸ ⇒ 
¡ = 2a¹� {PQ &�?� ' − закон дисперсии 

 
Закон дисперсии, характерный для акустической фононной моды 

Оптические фононные моды отсутствуют, поскольку их должно быть � − 1, а в данном случае � = 1. Чтобы появились оптические моды, можно 

сделать цепочку из шариков разной массы. Тогда в элементарной ячейке будет 

два шарика, и появятся оптическая фононная мода. 

 
Модель шариков с акустическими и оптическими фононными модами 

Рассмотрим такую модель. Запишем уравнения движения для нечетных 

и четных шариков отдельно. 

º���� �-¤� + ²�.��-¤� − ��-/ − ²�.��-¤� − ��-¤�/ = 0 ���� �- − ²�.��-¤� − ��-/ + ²�.��- − ��-��/ = 0  

Поведение системы можно описать так: один шарик колеблется на 

какой-то частоте и дергает соседний шарик на этой же частоте. Отсюда 

следует, что частоты нечетных и четных шариков совпадают, а вот амплитуды 

различаются. Поэтому ищем решение в виде: 
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»��-¤� = ��$�����¼(���   ��- = ��$��������   

��- = = · 2Q 

��-¤� = = · .2Q + 1/ 

��-, ��-¤� − координаты шариков; 2= − вектор решетки Браве. 

Подставляя решения в уравнения, получаем систему алгебраических 

уравнений относительно двух амплитуд: 

»−��¡��� + ²�}�� − ��$���?~ − ²�}��$��? − ��~ = 0−��¡��� − ²�}��$��? − ��~ + ²�}�� − ��$���?~ = 0 

Видно, что зависимость от n в данной системе уравнений сократились. 

Условием существования решения этой системы является равенство нулю 

детерминанта, составленного из коэффициентов уравнений: 

¾−��¡� + .²� + ²�/ −²�$���? − ²�$��?−²�$��? − ²�$���? −��¡� + .²� + ²�/¾ = 0 

Несложно увидеть, что отсюда получается биквадратное уравнение, т.е. 

решений для ¡� будет два ⇒ появится дополнительная ветка на графике 

(оптическая мода).  

����¡T − .²� + ²�/.�� + ��/¡� + .²� + ²�/� − 
− .²�� + ²�� + 2²�²� yz{.2x=// = 0 

Чтобы уменьшить количество параметров, нужно ввести суммарный 

коэффициент и приведенный коэффициент для жесткости и массы, 

соответственно: 

² = ²� + ²�             � = �� + �� 

²¿ = ²�²�²� + ²�                 �¿ = ������ + �� 

Также можно ввести две частоты:  
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¡> = a¹�¿            À> = a¹¿�, при этом ¡> Á À> 

После несложных преобразований в уравнении для частоты остаются 

только ¡> и À>. Запишем сразу решение уравнения: 

¡� = ¡>� Â12 Ã `14 − ¶2À>¡> {PQ.x=/·�Ä 
Проанализируем поведение решения в случае, когда x= ≪ 1. Тогда то, 

что находится под корнем, можно разложить: 

¡� ≈ ¡>� Â12 Ã 12 `1 − 16À>�¡>� x�=�Ä ≈ ¡>� :12 Ã 12 ∓ 12 8À>�¡>� x�=�; 

 
Иллюстрация решений уравнений для колебаний бесконечной цепочки 

шариков с разными массами 

При выборе знака «+»: 

¡� ≈ ¡>� :1 − 4À>�¡>� x�=�;     ⇒    
¡ ≈ ¡> &1 − �ÇÈ��È� x�=�' − оптическая фононная ветвь 

¡.0/ = ¡> 
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Данное решение имеет вид перевернутой параболы. 

При выборе знака «–»: 

¡� ≈ 4À>�x�=�     ⇒ 
¡?.x/ ≈ 2À>x= − акустическая фононная ветвь 

Данное решение имеет линейную зависимость от x. 

Также можно найти отношения амплитуд колебаний: 

���� = ² − ��¡�²�$���? + ²�$��? 
Чтобы понять поведение этого выражения, нужно подставить ¡. Но в 

акустических волнах ¡ мало, и тогда: 

���� ≈ ²²� + ²� = 1 
Таким образом, получаем, что в акустических волнах два шарика 

одинаково колеблются в одну и ту же сторону. По мере роста волнового 

вектора между ними будет постепенно нарастать фазовая задержка, которая 

станет существенной при больших k. 

При рассмотрении оптической ветви в первом приближении ¡� = ¡>�. 

Тогда: 

���� = ² − �� ²�¿²� + ²� = 1 − �� �� + ������ = − ���� 
Таким образом, в оптической ветви два шарика колеблются в разных 

направлениях, и у легкого шарика амплитуда больше, чем у тяжелого. 
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7. Локализованные на дефектах колебания 

Рассмотрим цепочку одинаковых шариков на пружинках с дефектом – 

один шарик в этой цепочке имеет другую массу �>, что является нарушением 

трансляционной инвариантности. Пусть из − ∞ по данной цепочке 

распространяется волна. При взаимодействии этой волны с шариком массой �> она частично отразится, в результате чего произойдет рассеяние.  

Однако кроме бегущих волн вблизи дефекта может возникнуть 

дополнительная мода, которая будет экспоненциально убывать при удалении 

от дефектного шарика, то есть возникнет локализованное возмущение, 

привязанное к данному дефекту. 

 
Цепочка шариков с дефектом 

Здесь стоит поговорить о поверхностных волнах. Если есть некая 

поверхность – граница раздела двух сред, то вдоль нее может 

распространяться волна с вектором xY, которая в перпендикулярном 

направлении экспоненциально затухает. В рассматриваемой задаче дефект –

шарик с массой �> – играет роль поперечной границы. И решение, которое 

будет экспоненциально спадать в обе стороны в пространстве, но не затухать 

по времени, является аналогом поверхностной волны.  

 
Поверхностные волны 
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Вернемся к закону дисперсии. При попытке раскачивать какой-либо 

шарик на частоте, находящейся между двумя ветвями закона дисперсии, т.е. 

на частоте запрещенной зоны (запрещенной эта зона является потому, что там 

нет решений), амплитуда вынужденных колебаний будет затухать при 

удалении от этого шарика. Тоже самое произойдет, если частота вынужденной 

силы больше, чем ¡>, поскольку эта зона также является запрещенной. Таким 

образом, существуют некие области энергии (частот), в которых есть решения, 

и запрещенные зоны, в которых нет решений, существующих сами по себе, без 

приложения внешней силы. Но при наличии дефекта в цепочке шариков 

возможно существование незатухающих локализованных колебаний вблизи 

этого дефекта без дополнительных воздействий.  

 
Уточнение к закону дисперсии 

Теперь решение системы нужно искать в виде: 

�- = �>$��� ¤�� -?��"|-|?, 

где x" – мнимая часть волнового вектора, которая определяет затухание в обе 

стороны от дефекта. 

Нужно выяснить, при каких значениях частоты и действительной и 

мнимой части волнового вектора такое решение может существовать. 
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Запишем уравнения движения для шариков Q = 0 и Q = 1, 

соответственно: 

�>�� > = −².2�> − �� − ���/ 
���� = −².2�� − �> − ��/ 

Подставляем вид решения в первое уравнение и получаем: 

�>¡��> = ²}2�> − �>$�� ?��"? − �>$��� ?��"?~ 
�>¡� = ² &2 − 2$��"?yℎ.xZ=/'            .∗/ 

Подставляем вид решения во второе уравнение и получаем: 

�¡�$�� ?��"? = ²}2$�� ?��"? − 1 − $��� ?���"?~           |: $�� ?��"? 
�¡� = ²}2 − $��� ?¤�"? − $�� ?��"?~ 

Поскольку решение должно быть незатухающим ⇒ ¡� − действительное и 

положительное ⇒ мнимая часть выражения должна быть равна 0.  

Запишем экспоненты с мнимой единицей через синусы и косинусы: 

�¡� = ² &2 − $�"?}yz{ .xZ=/  − P{PQ.xZ=/~ − $��"?}yz{ .xZ=/  + P{PQ.xZ=/~' 
�¡� = ².2 − 2yℎ.x"=/ yz{ .xZ=/  + 2P{ℎ.x"=/ {PQ.xZ=//            .∗∗/ 
Последний член нужно приравнять к нулю для того, чтобы частота была 

действительной. Важно отметить, что x"= ≠ 0, так как мы ищем решение с 

затуханием. Следовательно, 

{PQ.xZ=/ = 0   ⇒ 
xZ= = �Q   ⇒ 

yz{ .xZ=/  = Ã1 
Так как yℎU Á 1 всегда, то при yz{ .xZ=/ = 1 частота окажется мнимой. 

Поэтому выбираем решение yz{ .xZ=/  = −1 ⇒ xZ= = � + 2�Q. 



36 

 

В частности, xZ= = � ⇒ xZ = n?, фактически соседние шарики двигаются 

в противофазе. Теперь определим x". Запишем систему уравнений, состоящую 

из (*) и (**): 

»�¡� = 2x}1 + yℎ.x"=/~�>¡� = 2x}1 + $��"?~  

Отсюда следует, что 

�>� = 1 + $��"?1 + yℎ.x"=/ 
Введем переменную U = $�"? Á 1, так как x" Á 0. 

�>� = 1 + 1U
1 + U + 1U2

= U + 12U + U� + 12 = 2 U + 1.U + 1/� = 2U + 1 ˂1   ⇒    �>˂� 
Таким образом получаем, что масса шарика с дефектом должна быть 

меньше, чем масса другого шарика, иначе локализованного колебания не 

существует. Найдем U: 

U + 1 = 2��>      ⇒     $�"? = U = 2��> − 1 = 1 + 2%1 − % 

% = � − �>� < 1 
Тогда: 

¡� = 4 ²� 11 − %� Á 4 ²� 

Таким образом, найденное решение находится на границе зоны 

Бриллюэна и на частоте выше, чем максимальная частота регулярных 

колебаний цепочки, т.к. ¡� Á 4 ¹�. Данное решение – локализованные 

колебания, которые уменьшаются при удалении от шарика с дефектом. 
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8. Квантование колебаний решетки, фононы 

Следующим шагом в изучении колебаний кристаллической решетки 

будет квантование движения всех ядер.  

Запишем функцию энергии системы – функцию Гамильтона: 

� = 12 4 Í-���u-� + 12 4 j-�- �,� �-��- � -,- �,� 
 

Í-� − импульсы;  

j-�- �,� − матрица силовых коэффициентов; 

�u − разные массы ядер в элементарной ячейке. 

Введем суммарную массу всех ядер в одной элементарной ячейке: 

� = 4 �uu  
Используя коэффициенты �u = a�Î� , введем новые обозначения: 

�Ï-� = �u�-� 
jÐ-�- �,� = j-�- �,� 

�u, �uZ 
Тогда получим уравнение движения без различающихся масс: 

��Ï� -� + 4 jÐ-�- �,� �Ï-Z�Z- ,� = 0 
Будем искать решение в гармоническом виде: 

�Ï-� = �Ï�.x/$�������  
При подстановке гармонического решения в уравнение движения 

получаем уравнение на собственные значения и вектора матрицы jÐ.x/, 
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которая, как и раньше, является Фурье-преобразованием от матрицы силовых 

коэффициентов: 

¡��.x/��Ï�.x/ = 4 jÐ�,� .x/�Ï�Z.x/�  
Собственные значения – это, как и раньше, набор дисперсионных 

соотношений ¡��.x/, который дает акустические и оптические моды. А 

вектора ®�Ï�� .x/° – это собственные вектора матрицы jÐ.x/, где � – номер ветви, %  – играет роль индекса компонент вектора. При любом j и x существует 

набор амплитуд �Ï�, которые показывают, с какими амплитудами колеблются 

в один и тот же момент все атомы в одной элементарной ячейке.  

Поскольку матрица силовых коэффициентов – эрмитов оператор, то 

совокупность собственных векторов этой матрицы образует базис: 

4 ¶�Ï�� .x/·∗ �Ï�� .x/� = «�Ï �.x/«�M�,�  
Если � ≠ �Z, то сумма равна нулю; если � = �Z, то сумма равна квадрату 

нормы вектора � – сумме квадратов соответствующих компонент вектора. 

Можно ввести вектора нормированного базиса: 

$̃��.x/ = �Ï�� .x/‖�Ï �.x/‖ 

Таким образом, сначала был получен набор собственных колебаний, 

описывающихся законом дисперсии, а затем были введены соответствующие 

собственные вектора, которые показывают, как колеблются атомы в каждой 

колебательной моде. 

Опишем теперь движение произвольного атома в кристалле. Его 

движение складывается из колебаний, относящихся ко всем различным ветвям � и x. 
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Пусть есть кристалл конечных размеров. В этом кристалле могут 

распространяться различные волны. Но волны, у которых Vx˂ �nÓ , где Ô − 

размер кристалла, неразличимы, так как различие этих волн проявляется на 

расстояниях больших, чем размер всего кристалла. Можно ввести 

периодические границы, представив, что кристалл многократно повторяется 

во всем пространстве. Тогда получим, что волновой вектор меняется не 

непрерывно, а изменяется дискретно с шагом Vx = �nÓ . После этого можно 

перейти от интегрирования к суммированию по всем возможным значениям 

волнового вектора. 

Запишем разложение по всем возможным модам колебаний: 

�Ï-� = ∑ .O��$̃��.x/$��������.�/  + к. с/�,� , 

где O�� − коэффициенты разложения. Колебание каждого атома в решетке 

является суммой колебаний со всевозможными � и x. Введем вектора: 

$̃-�� .x/ = 1√K $̃��.x/$���� 
Записанные таким образом единичные вектора можно считать 

базисными векторами для колебаний ядер во всем кристалле, так как 

выполняется следующее условие: 

4 &$̃-��Z .xZ/'∗ $̃-�� .x/-� = M�,� M�,�  
Сумма по n в этом выражении 

�
 ∑ $�.� ��/��- = M�,� , так как если x =xZ, то получаем сумму единиц по количеству ячеек в кристалле, а если x ≠ xZ, 
то экспонента случайно флуктуирует и в среднем дает ноль. 

Вернемся к функции Гамильтона, но перепишем ее с общей массой: 
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� = 12� 4 Í×-��
-� + 12 4 jÐ-�- �,� �Ï-��Ï-Z�Z-,- �,� 

          .∗/ 
При этом �Ï-� = ∑ .���.ª/$̃-�� .x/ + к. с. /��  – разложение отклонений 

ядер по базисным векторам; 

���.ª/ = √KO��$����  – амплитуды колебаний в отдельных модах; 

Í×-� = − P� ∑ ¡�.x/®���.ª/$̃-�� .x/ − к. с. °��  – аналогичное разложение для 

импульсов ядер. 

Поскольку все ядра взаимодействуют друг с другом, описывать 

колебания в этих переменных неудобно. Удобнее сделать переход от 

исходного набора координат всех ядер (набора отклонений и импульсов для 

каждого ядра) к новым переменным (набору амплитуд колебаний в разных 

модах и сопряженным им значениям): 

®�Ï-�; Í×-�°   →   ®��� , ���∗ ° 
Переход к новым координатам диагонализует исходную квадратичную 

форму – колебания в нормальных модах не взаимодействуют друг с другом. 

Чтобы показать это, подставим �Ï-� и Í×-� в (*): 

� = − ��2� 4®���$̃-�� .x/ − к. с. °®�� � $̃-��Z .xZ/ − к. с. °¡�.x/¡� .xZ/ +-,��,�� ,� 
 

+ 12 4 j-�- �,� ®���$̃-�� .x/ + к. с. °®�� � $̃-Z�Z�Z .xZ/ + к. с. °-,- �,� �,�� ,� 

 

Первый член соответствует кинетической энергии, второй –

потенциальной. Произведения фигурных скобок содержат произведения 

собственных векторов на комплексно-сопряженные $̃�∗
 и $̃�Z∗

. В первой сумме 
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произведения разных собственных векторов дают ноль, и остаются только 

члены, соответствующие произведениям собственных векторов на такие же 

комплексно-сопряженные вектора. Во второй сумме происходит то же самое, 

если учесть, что вектора $̃�∗
 - собственные для матрицы j-�- �,� 

: 

� = � 4 ¡��.x/.������∗ + к. с. /�,�  
Теперь энергия всей системы выглядит как сумма по энергиям 

отдельных колебательных мод. Полученную систему можно проквантовать. 

При этом амплитуды ��� станут операторами рождения/уничтожения с 

точностью до коэффициентов. Для исходных обобщенных координат �Ø-� и Í�-� выполняются стандартные коммутационные условия: 

��Ø-�; Í�-Z�Z � = PℏM-,- M�,�     ↔     ��Ø��; �Ø�Z�Z¤  � = ℏ2�¡�.x/ M�,� M�,�  
Введем оператор: 

=Ø�� = `2�¡�.x/ℏ �Ø��  
Гамильтониан принимает вид суммы гармонических осцилляторов, и 

каждый гармонический осциллятор описывает колебания в кристалле с 

заданным волновым вектором k и определенной модой j: 

�� = 4 ℏ¡�.x/ ¶=Ø��¤ =Ø�� + 12·��  
Таким образом, колебания в решетке можно описывать на языке 

фононного газа. Существует много мод, каждая из которых характеризуется 

номером моды и частотой ¡�.x/. Для каждого � и x существует оператор числа 

частиц (фононов) QØ��: 

QØ�� = =Ø��¤ =Ø��  
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Если подействовать оператором =Ø¤ или =Ø на состояние с каким-то 

числом фононов, это число фононов увеличивается или уменьшается на 

единицу. 

Кристалл можно представлять как замкнутый объем, в котором много 

фононов. Мы сперва описали колебания ядер как множество волн, бегущих по 

кристаллу, а потом представили каждую волну набором квазичастиц – 

фононов. Такую обратную замену волн на частицы в рамках квантовой 

механики называют вторичным квантованием. 

Именно фононы отвечают за перенос тепла в кристалле, поскольку 

колебания атомов – это и есть тепловое движение. Поэтому, при нагревании 

кристалла количество фононов во всех модах растет. Выражение для 

теплопроводности кристалла имеет вид: 

Ú = �8 yÛ�, 
где y − теплоёмкость фононного газа; 

Û − характерная скорость, для акустических фононов – скорость звука; 

� − характерная длина пробега фононов. 

Теплоемкость всего кристалла определяется в основном фононным 

газом.  
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9. Теплоемкость фононной системы. 

Рассмотрим вопрос термодинамики фононного газа. Для того, чтобы 

учесть температуру при квантовом описании системы, необходимо ввести 

оператор матрицы плотности, который обеспечивает связь между 

классической термодинамикой и квантовыми состояниями: 

ÜØ = $UW :Փ − �� + %K�x� ; 

% − химический потенциал. 

K� = ∑ =Ø��¤ =Ø���� − сумма операторов числа частиц по всем модам. 

C помощью матрицы плотности можно найти среднее любого оператора 

в смешанном состоянии: 

ÝÔ�Þ = ��}Ô�ÜØ~ 

При этом след матрицы плотности равен единице. 

С одной стороны, величина Փ в выражении для матрицы плотности 

нужна для нормировки:  

Փ = −x��Q ¶�� &$UW �
��ß��à '·, 
а с другой стороны Փ − большой термодинамический потенциал. Также 

вводят á = $UW &− Փ�à' – статистическую сумму, которую тоже можно 

использовать для нормировки. 

Химический потенциал выражается через производную большого 

термодинамического потенциала при постоянных температуре и давлении: 

% = − ¶9Փ9K·à,ã 
Также через большой термодинамический потенциал можно выразить 

свободную и обычную энергии, соответственно: 
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± = Փ + %K;   3 = ± − � 9±9� 
Для безмассовых частиц, таких как фононы и фотоны, их число 

переменное. В этом случае условие экстремальности термодинамического 

потенциала дает равенство химического потенциала нулю. Поэтому в 

дальнейшем его можно будет обнулить.  

Найдем большой термодинамический потенциал. Несложно показать, 

что его можно представить как сумму больших термодинамических 

потенциалов для отдельных колебательных мод. 

Փ = 4 Փ��  

Փ� = −x��Q Â��$�-Ø�ℏ��&-Ø¤��'�à Ä 

Т.к. след – сумма по возможным состояниям, то есть по числу частиц, то: 

Փ� = −x��Q 4 $}��ℏ��~-�ℏ����àä
-å>  

Членом 
ℏ���  можно пренебречь, поскольку он дает постоянный 

множитель. Для отдельно взятой моды получаем сумму геометрической 

прогрессии: 

Փ� = x��Q ¶1 − $�æℏç��è ·  

Зная Փ�, можно найти среднее число частиц в моде �: 

ÝQØ�Þ = − �Փ��� = x� (�è��æℏç�è
����æℏç�è = �

�ℏç�æ��è �� − распределение Бозе-Эйнштейна. 
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Если % = 0 ⇒ получаем Планковский множитель 
�

�ℏç��è ��. Также, если % =
0, свободная энергия совпадает с Փ: 

± = Փ = x� 4 �Q :1 − $�ℏ��.�/�à ;��  

Для оптических фононов с характерной частотой ¡> ∼ 10�8с��: 

ℏ¡>x� = 10��é · 10�8�эрг�4,14 · 10��T�эрг� ∼ 14     ⇒ 

�Q ¶1 − $��T· ∼ �Q ¶14· ∼ 1 

Для акустических фононов, частота которых пренебрежимо мала: 

1 − $�ℏ�ак�à ≈ ℏ¡акx� ≪ 1     ⇒      �Q ¶ℏ¡акx� · ≫ 1 
В итоге получается, что наибольший вклад в выражение для свободной 

энергии при комнатной температуре и ниже дают акустические фононы. 

± = 3x� 4 �Q ¶1 − $�ℏ�ак.�/�à ·�  
Множитель «3» появляется, так как считаем все три акустических моды 

примерно одинаковыми, а вкладом оптических мод пренебрегаем. Вычислять 

сумму для отдельно взятой моды надо, используя закон дисперсии ¡.x/. 

 
Закон дисперсии ¡.x/ 
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Данную задачу упрощает приближение Дебая, которое заключается в 

замене нелинейного закона дисперсии линейной зависимостью: 

¡ = Ûаx 

Ûа − скорость звука; 

x − волновой вектор. 

Для фононов данная зависимость рассматривается до частоты Дебая ¡ë. 

Как определить частоту Дебая? Главное, что нужно сохранить при изменении 

закона дисперсии – это количество степеней свободы, т.е. количество шагов в 

сумме по x. Количество степеней свободы в кристалле равно 3K, где K – 

количество ядер в кристалле. Каждый шаг по x определяется размерами всего 

кристалла и равен 
�nÓ . Тогда: 

3K = 4 1�£Gìå�íîа
�å>  

Так как система трехмерная, то: 

3K = 3 6 78x&2�Ô '8�£Gì
�å> = 3 ï 78x78�.2�/8  

Величина &e�eð�nℏ ' − элемент фазового пространства. При этом 7x = eðℏ . 

Тогда: 

3K = 3�.2�/8 6 78x�£Gì
�å> = 3�.2�/8 4�3 ¶¡ëÛа ·8

 

� − объем кристалла; ñ 78x�£Gì�å> − объем трехмерной сферы. 

Если поделить объем всего кристалла на количество элементарных 

ячеек, то получим объем одной элементарной ячейки a: 
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1 = 4�3.2�/8 ¶¡ë=Ûа ·8 ⇒ 

¡ë = .6��/� 8ò îаа − частота Дебая. 

При такой частоте Дебая замена закона дисперсии на линейную 

зависимость сохраняет число степеней свободы. 

Аналогично перейдем в выражении для свободной энергии от 

суммирования к интегрированию: 

± = x� 3Ô82��Ûа8 6 �Q ¶1 − $�ℏ��à · ¡�7¡�í
>  

Теперь найдем обычную энергию: 

3 = ± − � 9±9� = −�� 99� ¶±�· 

3 = −�� 99� : 3Ô8x2��Û?8 6 �Q ¶1 − $�ℏ��à · ¡�7¡�í
> ; 

Учтем, что Û?8 = ?f�ífln� , K = Óf?f − число элементарных ячеек. Тогда: 

3 = 9x��K¡ë8 6 ô ℏ¡x�� $�ℏ��à
1 − $�ℏ��à õ ¡�7¡�í

> = 9x�K¡ë8 6 Â ℏ¡x�$ℏ��à − 1Ä ¡�7¡�í
>  

Сделаем переход к безразмерной величине: 

U = ℏ¡x� ⇒ ¡�7¡ → U�7U 

Также введем:  

U> = ℏ¡ëx�  

Тогда: 
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3 = 9x�K¡ë8 ¡ë8U>8 6 : U8$Y − 1;YÈ
> 7U = 3Kx� Â 3U>8 6 : U8$Y − 1;YÈ

> 7UÄ 

Величина в скобках называется функцией Дебая и обозначается ö.U/. 

Функция Дебая зависит от температуры через U>. Введем температуру Дебая: 

x�ë = ℏ¡ë 

Проанализируем, как ведет себя ö.U/ при малых и больших 

температурах: 

1) Если � ≫ �ë ⇒ U> ≪ 1 ⇒ ö.U/ = 8YÈf ñ &YfY 'YÈ> 7U ≈ 1 − 8÷ U> + YÈ��>  

Можно пренебречь более высокими порядками разложения, тогда ö.U/ ≈ 1 ⇒ o = 3Kx = yzQ{ª − теплоемкость при высоких температурах. 

2) Если � ≪ �ë ⇒ U> ≫ 1 ⇒ ö.U/ = 8YÈf ñ &Yf�ì'YÈ> 7U ≈ �÷YÈf 

Более точный расчет интеграла дает 
n)øYÈf, тогда o ∼ �8 − теплоемкость 

фононной системы (но не всего кристалла) при низких температурах. 

Численный расчет функции Дебая позволяет описать плавное изменение 

теплоемкости от низких температур до высоких. При низких температурах 

также надо учитывать электронную теплоемкость – полная теплоемкость 

кристалла определяется суммой теплоемкостей фононной и электронной 

подсистем. 
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10. Ангармонизм колебаний кристаллических 

решеток. Распад фононов 

Снова запишем разложение для эффективной потенциальной энергии, 

но теперь учтем дополнительный нелинейный член, отвечающий за 

ангармонизм: 

O = 12 4 j-�- � � �-��- � - - � � 
+ 16 4 k- - -  � � �  �-��- � �-  �  - - -  � � �  

 

j-�- � � − матрица силовых коэффициентов – 2-ая производная исходного 

потенциала по координатам частицы; 

k- - -  � � �  
 – 3-я производная исходного потенциала по координатам 

частицы: 

k- - -  � � �  = M8OM�-�M�- � M�-  �   

Вспомним, что �-� можно разложить по колебаниям различных мод: 

�-� =  4 ` ℏ2�¡�K }=Ø�$̃��$���� + эрмитово сопряженное~��  

Теперь запишем ангармоническую добавку к энергии W через операторы 

рождения/уничтожения фононов на различных модах: 

� = 16.2K/8 �ò 4 k- - -  � � �  
- - -  � � �  

4 ` ℏ8�8¡�.x/¡� .xZ/ ¡�  .xZZ/� � �  � � �  
× 

× $��.x/$� � .xZ/$�  �  .xZZ/=Ø��=Ø� � =Ø�  �  $�}�m �m�¤� mmm�m� ¤�  mmmm�m�  ~ + 

+ 7 аналогичных слагаемых,  
где: xm�m + xm Z�m- + xm ZZ�m-  = xm Z.�m- − �m-/ + xm ZZ.�m-  − �m-/ + �m-}xm + xm Z + xm ZZ~ 
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Суммирование по векторам .�m- − �m-/ и .�m-  − �m-/ дает Фурье-

преобразование от матрицы k- - -  � � �  ≡ k-�- ,-�-  � � �  
, а при суммировании по �m- 

получаем: 

∑ $��m�.�m ¤�m  ¤�m   /- = KM�m ¤�m  ¤�m   ,¥m¦, 

 
Закон сохранения квазиимпульса для фононов 

где t̅� – произвольный вектор обратной решетки. Теперь, с учетом Фурье-

преобразования: 

� = 16√8K 4 ` ℏ8�8¡�.x/¡� .xZ/ ¡�  .xZZ/ k� � �  .xZ, xZZ/ ×� �  � � �  × =Ø��=Ø� � =Ø�  �  M�m  ¤�m   ¤¥¦mmm,�m + 7 аналогичных слагаемых 
А как ведут себя операторы =Ø��? В них входит зависимость от времени: 

=Ø��  ~ $���.�/  

Произведение 3-х таких операторов выглядит следующим образом: 

$�¶��.�/¤�� .� /¤��  .�  /· 
 

При интегрировании по времени такая экспонента будет быстро 

осциллировать и в среднем даст 0. Именно так проявляется закон сохранения 

энергии: одновременное исчезновение фононов в трех модах невозможно. 

Процесс, который описывается с помощью трех операторов рождения =Ø��¤ , также невозможен, так как появление фонона в каждой из трех мод тоже 

противоречит закону сохранения энергии. 

Но в других слагаемых есть члены вида: 
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=Ø��=Ø� � ¤ =Ø�  �  ¤ − распад одного фонона на два: из одной моды фонон 

исчезает, а в двух других появляется по фонону, при этом частота исходного 

фонона равна сумме частот двух других фононов. И обратный процесс: 

=Ø��¤ =Ø� � =Ø�  �  − слияние двух фононов в один фонон в новой моде. 

Вероятность такого процесса меньше вероятности предыдущего, но она может 

увеличиваться с ростом температуры. 

Таким образом, из 8 слагаемых: 2 дают невозможные процессы, а другие 

6 дают по 3 слагаемых каждого типа. 

Как теперь рассчитать вероятность этих процессов?  

Общая процедура расчета вероятности распада фонона на два выглядит 

следующим образом. Для трех мод, участвующих в процессе: 

Начальное состояние: |P Á = ���� , �� � , ��  �  Á 

Финальное состояние: |s Á = ���� − 1, �� � + 1, ��  �  + 1 Á 

Начальное состояние системы определено, а финальных состояний 

может быть много, т.к. мы не знаем наверняка, в каких модах появятся новые 

фононы → имеем непрерывный спектр финальных состояний. 

Найдем матричный элемент перехода: 

〈s#=Ø��=Ø� � ¤ =Ø�  �  ¤ #P〉  = a���}�� � + 1~}��  �  + 1~ 

Вероятность перехода в непрерывный спектр в единицу времени 

описывается золотым правилом Ферми и равна: 

�
 = 2�ℏ ������Ü}3�~ 

��� – величина матричного элемента перехода между начальным и 

финальным состояниями системы; 
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Ü}3�~ − плотность финальных состояний. 

Вероятность перехода в непрерывный спектр постоянна во времени, 

следовательно, исходное состояние распадается по экспоненте (как для 

любого процесса, имеющего период полураспада).  

При этом должны выполняться законы сохранения: 

¡�� = ¡�  �  + ¡� �  
xm = xm Z + xm ZZ.+t̅�/ 

Эти условия могут быть одновременно выполнены при распаде 

длинноволнового (xm ≈ 0) оптического фонона с частотой ¡0~¡opt на два 

акустических с волновыми векторами xm Z и xm ZZ = − xm Z и частотой ¡?�.xmZ/ = ¡?�.xm ZZ/  =  ¡> 2ò . Окончательная оценка для времени жизни 

длинноволнового оптического фонона: 
�ð ~10��� y  при ¡>��~10��8 y. 
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11. Электроны в кристалле. Теорема Блоха. 

Теорема о средней скорости электронов 

Так как электроны неразличимы, используется приближение, в котором 

каждый электрон движется в самосогласованном потенциале, который 

создается всеми ядрами в кристалле и всеми электронами. 

Запишем уравнение Шредингера для одного электрона: 

µ− ℏ�2� �� +�.�/¸ 1 = 31 

Период потенциала �.�/ равен периоду решетки Браве: 

�.�/ = �.� + �-/ 

Введем семейство операторов трансляций на вектора решетки Браве: 

��-1.�/ = 1.� + �-/ 

Операторы ��- коммутируют – группа трансляций является абелевой. 

Кроме того, операторы ��- коммутируют с оператором Гамильтона ��, т.к. 

потенциал поля периодичен: 

���, ��-� = 0 

Из условия коммутации операторов ��- и �� следует, что у них существует 

общая система собственных функций: 

��-1.�/ = ª-1.�/ = 1.� + �-/ 

Запишем результат последовательной трансляции на два вектора 

решетки Браве: 

��-��� 1.�/ = ª- · ª�1.�/ = ª-¤�1.�/ 

Прологарифмируем: 

�Q ª- + �Q ª� = �Q ª-¤� 
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Из этого условия и условия нормировки |ª-| = 1 можно определить вид 

собственных значений ª-: 

ª- = $���� 

В результате мы доказали теорему Блоха: волновые функции УШ в 

периодическом потенциале имеют вид периодических функций, 

домноженных на фазовый множитель, линейно зависящий от координаты: 

1.�/ = $����.�/;  �.� + �-/ = �.�/ 

$��� – дополнительный фазовый множитель, обеспечивающий появление 

собственных значений для операторов трансляций. Важно, что функции Блоха 

не являются периодическими, хотя и имеют периодическую часть. 

Теперь можно искать собственные функции гамильтониана �� в виде 

функций Блоха. Учитывая, что волновой вектор x = ðℏ, получаем: 

1.�/ = �.�/ $�ð̅�̅ℏ  

При добавлении к квазиимпульсу любых векторов обратной решетки t̅� 
функция сохраняет вид функции Блоха: 

�.�/ $�ð̅�̅ℏ = }�.�/ $��¥m¦�̅~ $�.ð̅¤ℏ¥m¦/�̅ℏ  

Следовательно, мы всегда можем изменить квазиимпульс W так, чтобы 

он находился в 1-ой зоне Бриллюэна. Подставляя функцию Блоха в уравнение 

Шредингера, получаем: 

Ô�ð�ð� = 3�.W/ �ð� 

Ô�ð = − ℏ�2� �� + P ℏW̅� �m + W�2� +�.�/ 

Здесь Ô�ð − эрмитов оператор, зависящий от квазиимпульса W, а индекс j 

нумерует его собственные значения и функции. 
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Полученное уравнение достаточно решать в пределах одной 

элементарной ячейки, т.к. функция �.�/ периодична на ее границах. Таким 

образом, для любого квазиимпульса W можно решить задачу и получить 

систему собственных функций �ð�. Условие ортогональности для волновой 

функции: 

6 �ð�∗ .�/ �ð�  .�/78� 
Ç = M��        

À − интеграл по одной элементарной ячейке.  

Для функций Блоха 1ð�.�/ =  �ð�.�/ $��v�vℏ  тоже можно записать условия 

ортогональности: 

  6 1ð�∗  1ð�  78� 

Ç = M��  K Mðð  

KÀ − интеграл по всем элементарным ячейкам. Чтобы получить второй 

символ Кронекера, интеграл по всем элементарным ячейкам нужно разбить на 

интегралы по отдельным элементарным ячейкам и на сумму по всем 

элементарным ячейкам: 

4 $��ð�m�ℏ ¤�ð �m�ℏ- = K Mðð  

Таким образом, получаем решение в виде нормированных Блоховских 

функций: 

1ð�.�/ = 1√K �ð�.�/ $�ð̅�̅ℏ  

В результате мы получаем полный базис, описывающий электроны в 

кристалле. Этот базис нумеруется индексами W и �, где W – непрерывный 

квазиимпульс, изменяющийся в пределах 1-ой зоны Бриллюэна, а индекс �, как 

мы увидим, нумерует энергетические зоны в кристалле. 
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Следующий вопрос: чему равна средняя скорость электрона, 

описываемого Блоховской функцией? Введем оператор скорости: 

�� = − Pℏ� � 

Тогда, средняя скорость: 

〈�〉  = 6 1ð�∗  .�/ ¶− Pℏ� �· 1ð� 78� 

Ç = 

= 1K 6 �ð�∗  .�/  $��ð̅�̅ℏ ¶− Pℏ� �· �ð� .�/ $�ð̅�̅ℏ 78� 

Ç = 

= W̅� + 6 �ð�∗  .�/ ¶− Pℏ� �· �ð� .�/78� 

Ç  

Выясним, что представляет собой последний интеграл. 

Продифференцируем по W уравнение для оператора Ô�ð, домножим его на 

сопряженную ВФ �ð�∗  и проинтегрируем: 

9 9W } Ô�ð �ð� .�/ = 3� .W/ �ð� .�/ ~ 

¶− Pℏ� � + W�· �ð� + Ô�ð 9�ð�  9W = 93� .W/ 9W �ð� + 3� .W/ 9�ð�  9W  

6 �ð�∗ ¶− Pℏ� � + W�· �ð� 78� + 6 �ð�∗  Ô�ð�ð� 78� = 3� .W/ 6 �ð�∗  9�ð�  9W 78� 

Учитывая эрмитовость оператора Ô�ð, получаем, что средняя скорость 

электрона имеет вид: 

〈�〉  =  93� .W/ 9W = 7¡.x/7x  

Физический смысл полученного выражения: электрон – это некая волна, 

распространение которой в кристалле описывается законом дисперсии 3�.W/. 
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12. Приближение почти свободных электронов. 

Их эффективная масса 

Рассмотрим теперь задачу о движении частиц в периодическом 

потенциале. Запишем уравнение Шредингера: 

− ℏ�2� ��1 +�.�/1 = 31 

Для некоторых потенциалов можно решить уравнение Шредингера, 

используя теорему Блоха. Для произвольного потенциала сделать это тяжело, 

следовательно, необходимо использовать приближения. 

Пусть потенциал мал. В рамках приближения почти свободных 

электронов будем считать, что �.�/ – это возмущение, и учитывать его в 

рамках общей теории возмущений. Обычно такое приближение применимо к 

электронам в металлах. 

В нулевом приближении будем считать, что электроны свободно 

двигаются и не взаимодействуют с ядрами решетки. Волновая функция в 

нулевом приближении имеет вид: 

1ð.>/ = 1√K  $�ð�ℏ               3ð.>/ = W�2� 

Т.к. потенциал �.�/ − периодичен, разложим его в ряд Фурье: 

�.�/ = 4���  $�¥m¦�̅ 

Запишем первую поправку теории возмущений для энергии и волновой 

функции: 

3ð.�/ =  〈1ð.>/ |�.�/|1ð.>/〉  = 6 1K $��ð�ℏ  �.�/ $�ð�ℏ  78� = �> 

1ð.�/ = 4 〈 1ð .>/ |�.�/|1ð.>/〉3ð.>/ − 3ð .>/ð  #1ð .>/� 
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Распишем матричный элемент: 

〈1ð .>/ |�.�/|1ð.>/〉  =  1K 6 $��ð �ℏ  �.�/ $�ð�ℏ  78� = 

= 1K 6�.�/ · $�.ð�ð /�ℏ  78� = Mð,ðZ¤ℏ¥¦�� 
Видим, что суммирование по всем возможным WZ заменяется 

суммированием по векторам обратной решетки t�. Тогда поправка к волновой 

функции примет следующий вид: 

1ð.�/ = 4 ��3ð.>/ − 3ð¤ℏ¥¦.>/ℏ¥¦
#1ð¤ℏ¥¦.>/ � 

Отсюда следует условие применимости теории возмущений: 

|��| ≪ ℏ�t��2�  ~ 3? 

3? − характерный атомный масштаб энергии. 

Запишем теперь поправку 2-го порядка к энергии: 

3ð.�/ = 4 |��|�3ð.>/ − 3ð¤ℏ¥¦.>/ℏ¥¦
              W�2� = .W̅ + ℏt̅�/�2�  

В общем случае �� мало, и условие применимости теории возмущений 

выполняется. Однако, возможны условия, при которых знаменатель равен 

нулю: 

W� = .W̅ + ℏt̅�/� 

W� = W� + 2 W̅ℏt̅� + ℏt�� 

Получаем: 

2 Wℏt� yz{� = ℏt�� 

W yz{� = ℏt�2  
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Квазиимпульс W на границе зоны Бриллюэна 

Видно, что на границах зоны Бриллюэна теория возмущений перестает 

работать из-за вырождения. Для таких случаев существует теория возмущений 

для систем с вырождением. Если два состояния 1ð и 1ð¤ℏ¥¦ имеют одинаковые 

или близкие энергии, то необходимо снимать вырождение – искать новые 

состояния 1, являющиеся комбинациями исходных, которые не будут 

взаимодействовать: 

1 = o�1ð.>/ + o� 1ð¤ℏ¥¦.>/
 

�3ð ���� 3ð¤ℏ¥¦� �o�o�� = 3 �o�o�� 
Таким образом, получаем задачу на диагонализацию гамильтониана. 

Приравняем определитель к нулю: 

�3ð − 3 ���� 3ð¤ℏ¥¦ − 3� = 0 

Решение имеет вид: 

3 = 12 &3ð.>/ + 3ð¤ℏ¥¦.>/ ' Ã `14 &3ð¤ℏ¥¦.>/ − 3ð.>/'� + |��|� = 

= 12 ⎣⎢⎢
⎢⎡3ð.>/ + 3ð¤ℏ¥¦.>/ Ã &3ð¤ℏ¥¦.>/ − 3ð.>/'�1 + 4|��|�

&3ð¤ℏ¥¦.>/ − 3ð.>/'�⎦⎥⎥
⎥⎤ ≈ 
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≈ 12 �3ð.>/ + 3ð¤ℏ¥¦.>/ Ã &3ð¤ℏ¥¦.>/ − 3ð.>/' Â1 + 2|��|�
&3ð¤ℏ¥¦.>/ − 3ð.>/'�Ä� = 

=
⎩⎪⎨
⎪⎧ 3ð.>/ − |��|�3ð¤ℏ¥¦.>/ − 3ð.>/

3ð¤ℏ¥¦.>/ + |��|�3ð¤ℏ¥¦.>/ + 3ð.>/
 

Мы получили два решения в зависимости от знака ± в области, далекой 

от вырождения, которые имеют вид обычных поправок теории возмущений. 

Возможен и другой вариант – случай близкий к вырождению. Тогда 

решение будет выглядеть следующим образом: 

3 ≈ 12 &3ð.>/ + 3ð¤ℏ¥¦.>/ ' Ã |��| Ã &3ð¤ℏ¥¦.>/ − 3ð.>/'�
8|��|  

 
Закон дисперсии и зонная структура 

Изображая исходную зависимость энергии свободных электронов от 

импульса в виде параболы, добавляя разрывы величиной |��| на границах зон 

Бриллюэна и приводя все зависимости к первой зоне Бриллюэна, получаем 

зонную структуру. 
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Из-за принципа Паули при заполнении зонной структуры электроны 

занимают все состояния, начиная с нижнего и до энергии Ферми. Если уровень 

Ферми находится в запрещенной зоне, то материал является диэлектриком или 

полупроводником, а если посреди какой-то зоны – металлом. 

В точках экстремумов закона дисперсии, где 
eFeð = 0, энергию можно 

представить в следующем виде: 

3 = 3� + 12 7�37W� MW� = 3� + MW�2���� 

3� − уровень, от которого отсчитывается энергия; 

MW − отклонение квазиимпульса от точки экстремума.  

Эффективная масса электронов или других носителей заряда в 

кристалле определяется выражением: 

���� = :7�37W� ;��
 

В приближении почти свободных электронов 

7�37W� = �ð Ã ℏ�t��4���� ≈ ℏ�t��4�� �� 
���� = 4� ��ℏ�t�� � ≪ � 

Эффективная масса ���� может сильно отличаться от исходной массы �, но именно она является характерной для носителей в кристалле. 

Отметим, что эффективная масса дырок отрицательна: ���� < 0, то есть 

они движутся в противоположном направлении. 
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13. Приближение сильно связанных электронов 

Рассмотрим еще одно приближение – приближение сильной связи, 

обычно используемое для полупроводников и диэлектриков. 

Потенциал решетки можно представить как совокупность глубоких 

потенциалов отдельных ядер. В нулевом приближении электрон находится на 

каком-то уровне в одном из ядерных потенциалов. В других потенциалах есть 

такие же уровни – их макроскопически большое количество. Так как энергии 

всех этих уровней одинаковы, электрон с какой-то вероятностью может 

протуннелировать в другой потенциал. Вероятность туннелирования 

определяется интегралом перекрытия волновых функций электрона в этих 

двух состояниях.  

 
Потенциал в приближении сильно связанных электронов 

Полный потенциал можно записать как сумму потенциалов по всем 

векторам решетки Браве: 

�.�/ = 4 �.� − �-/-  

Для каждого одноядерного потенциала можно решить уравнение 

Шредингера: 
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− ℏ�2� ��,� + �.�/,� = 3�,� 

Остальные потенциалы для этого решения будут являться 

возмущениями. Однако возникает сложность – т.к. электрон может находиться 

в любом из потенциалов с одной и той же энергией 3� , то состояние электрона 

оказывается N-кратно вырождено. Для снятия вырождения запишем решение 

как суперпозицию собственных функций, отвечающих каждому из 

потенциалов: 

1.�/ = 1√K 4 o-,�.� − �-/-  

Подставим волновую функцию 1.�/ в полное уравнение Шредингера: 

1√K 4 o- !− ℏ�2� ��,�.� − �-/ + µ4 �.� − �- /- ¸ ,�.� − �-/"- = 

= 1√K 3 4 o-,�.� − �-/-  

Используя решение УШ для одиночного потенциала, это выражение 

можно упростить: 

4 o- &�.�/ − �.� − �-/,�.� − �-/'- = }3 − 3�~ 4 o-,�.� − �-/-  

После домножения на сопряженную функцию на одном из узлов 

получаем линейную систему уравнений для каждого n: 

}3� − 3~ 4 j-- � o- - + 4 k-- � o- - = 0 

j-- � = 6 ,�∗.� − �-/ ,�.� − �- /78� = j-�- �
 

– интеграл перекрытия волновых функций на двух узлах; 
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k-�- � = 6 ,�∗.� − �-/ }�.�/ − �.� − �-/~,�.� − �- /78� 

– матричный элемент потенциала, описывающий взаимодействие между 

разными узлами и играющий роль возмущения. Именно он в данном 

приближении является параметром малости: �k-�- � � ≪ 3?. 

При этом для j-�- �
 выполняется: j>� ≡ 1, j-�- � ≪ 1 

Т.к. полученная система уравнений является линейной и периодической, 

будем искать решение в гармоническом виде: 

o- = $�ð��ℏ  

Подставим o- в уравнение: 

}3� − 3~ 4 j-�- � $�ð.�� ���/ℏ- + 4 k-�- � $�ð.�� ���/ℏ- = 0 

Используя Фурье-преобразования: 

jð� = 4 j�� $��ð��ℏ� ≈ 1             kð� = 4 k�� $��ð��ℏ�  

получаем: 

}3� − 3~jð� + kð� = 0 

3 = 3� + kð�jð� ≈ 3� + 4 k�� $��ð��ℏ� = 3� + 2 4 k�� yz{ ¶W�-ℏ ·�               
Полученное выражение описывает строение зонной структуры в 

рассматриваемом случае. 

Каждый многократно вырожденный уровень превратился в зону, причем 

ширина этой зоны много меньше ширины запрещенной зоны. По-прежнему 

важно, где находится уровень Ферми. 
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Зонная структура 

Таким образом, практически в любом случае можно воспользоваться 

одним из двух рассмотренных приближений (слабой или сильной связи). 
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14. Движение электронов в кристалле под 

действием электрического поля. Осцилляции Блоха 

Ранее были рассмотрены способы описания состояний электронов в 

кристалле. Теперь посмотрим, что будет, если наложить на кристалл внешнее 

постоянное электрическое поле. Запишем измененный гамильтониан: 

�� = ��> − $E�̂ 

��> − гамильтониан, для которого ранее были найдены Блоховские функции. 

Тогда полное уравнение Шредингера имеет следующий вид: 

Pℏ 919ª = }��> − $E�̂~1 

Представим полную волновую функцию электрона в кристалле в виде 

разложения по всем Блоховским функциям: 

1.�/ = 4 oð�.ª/1ð�.�/ð�  

1ð� = 1√K �ð�.�/$�ð̅�̅ℏ                 
В отсутствии внешнего поля oð�.ª/~$�$�.�/%ℏ . Подставляя эту волновую 

функцию в уравнение Шредингера, получаем: 

Pℏ 4 9oð�9ª 1ð�ð� = Pℏ 4 oð�®3�.W/ − $E�̂°1ð�ð�  

Pℏ 9oð�9ª = Pℏoð�3�.W/ − 4 oð � 6 1ð�∗ $E�ð � 1ð � 78� 

Рассмотрим отдельно член, содержащий интеграл: 

4 oð � 6 1ð�∗ $E�ð � 1ð � 78� = 1K 4 oð � 6 �ð�∗ $E�ð � �ð � $��ℏ.ð�ð /�78� 
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Интегрируя по частям, получаем: 

1K 4 oð � 6 �ð�∗ $E�ð � �ð � $��ℏ.ð�ð /�78�
= Pℏ$E 99W 4 oð � 1K 6 �ð�∗ $��ð�ℏ �ð � $�ð � ℏ 78� −ð � 
− Pℏ$E 4 oð � 1K 6 9�ð�∗9W �ð � $��.ð�ð /�ℏ 78� 


Çð �  

KÀ − интеграл по всему объему кристалла. Интеграл в первом члене 

получившегося выражения – это просто скалярное произведение двух ВФ. 

Раскроем экспоненты в последнем члене: 

−Pℏ$E 4 oð � 1K 6 9�ð�∗9W �ð � $��.ð�ð /�ℏ 78�ð � = 

= »$��.ð�ð /�ℏ = $��.ð�ð /��ℏ ��.ð�ð /�̃ℏ & = 

= Pℏ$E 4 oð � 1K 6 9�ð�∗9W �ð� $��.ð�ð /�̃ℏÇ 78�̃ð � × !4 $��.ð�ð /��ℏ = KMðð - " = 

= Pℏ$E4 oð � 6 9�ð�∗9W �ð� Ç 78�̃�  

�̃ − радиус-вектор внутри одной элементарной ячейки; 

À − интеграл по элементарной ячейке. 

Теперь соберем все части вместе и запишем получившееся уравнение: 

Pℏ 9oð�9ª = 3ð�oð� − Pℏ$E9oð�9W − $E4 oð� ��� .W/�  

��� = Pℏ2 6 :�ð�∗ 9�ð� 9W − 9�ð�∗9W �ð� ; 78�̃ 
Ç  
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Получившееся уравнение позволяет найти изменение коэффициентов 

разложения oð� при наличии внешнего электрического поля. 

Член ���  отвечает за межзонные переходы.  ��� ≠ 0 возможно только в 

случае специфических свойств кристаллов (топологические свойства). Если 

внешнее поле меняется медленно, то межзонные переходы маловероятны, т.к. 

требуют большого изменения энергии (необходима эл/м волна с 

соответствующей энергией фотонов). Поэтому последний член в уравнении 

является несущественным и им можно пренебречь. 

Если не учитывать последний член, получим уравнение бегущей волны: 

Pℏ 9oð�9ª = 3�.W/oð� − Pℏ$E9oð�9W  

Его решение имеет вид: 

oð�.ª/ = o�.W − $Eª/ ∙ $��ℏ ñ F� .ðZ/e  %È  

WZ = W − $E.ª − ªZ/ 

В случае начального условия o�.W/ = MððÈ получаем: 

oð�.ª/ ~ M.W − W> − $Eª/ ∙ $��ℏ ñ F� .ðZ/e  %È  

Таким образом, хотя волновая функция электрона описывается 

Блоховскими функциями, изменение квазиимпульса описывается 

зависимостью, совпадающей с классическим поведением импульса во 

внешнем электрическом поле: 

7W7ª = $E 

В то же время средняя скорость электрона (в физическом пространстве) 

определяется свойствами закона дисперсии: 

〈�〉 = 73.W/7W  
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Движение электрона в пространстве импульсов 

Если на электрон с начальным импульсом W = 0 начинает действовать 

внешнее поле, его квазиимпульс начинает расти. При этом энергия меняется в 

соответствии с законом дисперсии. Однако на границе зоны Бриллюэна, где eFeð = 0, электрон «перескакивает» на противоположную границу той же зоны 

Бриллюэна и возвращается к исходной точке. При этом его скорость в 

физическом пространстве меняет свой знак, и когда электрон снова 

оказывается в точке W = 0, в физическом пространстве он возвращается в 

начальную точку. 

Таким образом, под действием постоянного электрического поля 

электрон в идеальном кристалле совершает колебательное движение – 

осцилляции Блоха. Наблюдение таких осцилляций возможно в кристалле с 

идеальной структурой при достаточно низких температурах. В обратном 

случае рассеяние на дефектах или фононах сделает движение электрона в 

пространстве квазиимпульсов более хаотическим. 

  



70 

 

15. Заполнение зон. Поверхность Ферми в 

приближении почти свободных электронов 

Рассмотрим зонную структуру в пространстве импульсов: 

 
Зонная структура 

В состоянии с заданным квазиимпульсом и энергией могут быть только 

два электрона (с противоположно направленными спинами). Квазиимпульс 

находится в первой зоне Бриллюэна, например, в одномерном случае |W| ≤ℏt� = ℏ n?, где а – период решетки. Интервал между соседними значениями 

квазиимпульса в кристалле конечных размеров определяется его размерами: 

∆W = 2�ℏÔ  

Тогда количество состояний электрона в одной зоне в одномерном случае: 

Q = 2�ℏ=2�ℏÔY
∙ 2 = 2 Ô= = 2KY 

где 
�nℏ?  – диапазон изменений, 

�nℏÓì  – шаг, множитель 2 связан с двумя 

направлениями спина электрона в каждом состоянии. Nx – количество 

элементарных ячеек во всем кристалле вдоль оси, которую рассматриваем. 

Если учесть все три оси, получаем, что в каждую энергетическую зону 

помещается 2 электрона в расчете на одну элементарную ячейку. 
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Для примера рассмотрим кристалл натрия. Первые две оболочки Na 

содержат 10 электронов и заполняют 5 зон, на третьей оболочке один 

валентный электрон – поэтому шестая зона заполнена наполовину и является 

зоной проводимости.  

В общем случае кристаллы элементов Ⅰ и Ⅲ групп – металлы, Ⅱ и Ⅳ 

(четное число валентных электронов) – должны были бы быть диэлектриками, 

но это далеко не всегда так, потому что зоны могут перекрываться. Зонная 

структура в кристалле в разных направлениях квазиимпульса может 

выглядить следующим образом.  

 
Несимметричная структура зон 

Если бы зоны не перекрывались, в случае четного числа электронов на 

элементарную ячейку нижняя зона была бы полностью заполнена, а верхняя 

была бы свободна. Но если при каком-то значении энергии первая зона еще не 

кончилась, а уже появилась вторая – вблизи уровня Ферми возникают 

«карманы», в которых есть электроны проводимости, и кристалл является 

металлом или полуметаллом. 

Рассмотрим щелочной металл, у которого на верхней оболочке один 

валентный электрон. Закон дисперсии в зоне проводимости имеет вид: 
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Симметричная зонная структура в пространстве импульсов 

Уровень Ферми находится посередине (зона заполнена наполовину). В 

трехмерном пространстве вместо уровня Ферми рассматривают поверхность 

Ферми, которая в данном случае имеет форму сферы, объем которой равен 

половине объема зоны Бриллюэна. Для простоты рассмотрим кристалл с 

кубической симметрией, тогда зона Бриллюэна – тоже куб: 

 
Поверхность Ферми в зоне Бриллюэна при наличии  

электрического поля 

При наличии постоянного электрического поля сфера начнет смещаться, 

импульс меняется на величину MW = $E
, где 
 – время свободного пробега 

электрона. 

В идеальном случае сфера смещается до границы зоны Бриллюэна и 

возвращается назад с другой стороны обратно – происходят осцилляции Блоха 

(в идеальном холодном кристалл). В реальных же кристаллах создать условия 

для наблюдения осцилляций Блоха трудно, время свободного пробега 

уменьшается из-за рассеяния электронов на фононах, примесях и дефектах.  
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Если на внешней оболочке два валентных электрона, тогда объем сферы 

равен объему зоны Бриллюэна. Однако в приближении слабой связи форма 

поверхности Ферми остается почти сферической и не совпадает с формой зоны 

Бриллюэна. Вблизи границы зоны Бриллюэна форма поверхности Ферми 

искажается, возникают незаполненные области первой зоны Бриллюэна и 

небольшие части поверхности Ферми во второй зоне Бриллюэна: 

  

Поверхность Ферми, переходящая во вторую зону Бриллюэна 

Если валентных электронов больше одного, части поверхности Ферми 

оказываются в разных зонах Бриллюэна – возникает набор поверхностей, 

которые ведут себя независимо друг от друга. Вблизи каждой поверхности 

Ферми могут быть электроны проводимости, может возникать ток и прочие 

эффекты, связанные с изменением состояний электронов. 

Ток проводимости � можно выразить следующим образом: 

� = Q$∆) = :Q$�
� ; E 

где n – концентрация электронов, e – заряд, ∆) – изменение скорости, &-��*� ' = + – проводимость, E – электрическое поле. 
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16. Зонная структура графена 

Графен – мономолекулярный слой графита – весьма простая система 

(двумерная решетка атомов только одного типа – углерода). 

На внешней оболочке атома углерода находится 4 электрона, три из 

которых находятся в состоянии sp²-гибридизации и образуют связи с 

соседними атомами в решётке. Четвертый электрон остается в состоянии p-

орбитали, направленной перпендикулярно этой плоскости.  

 
Структура решетки графена 

Таким образом, каждый атом связан с тремя соседними атомами. 

Расстояние между ними одинаково и равно: 

�M�̅� = = = 1,42 j
 
Однако несложно убедиться, что вектора M�̅ не являются векторами 

решетки Браве. Вектора решетки Браве имеют вид: 

=m�,� = :32 =; Ã √32 =; = M�̅,� − M8̅ 

В элементарную ячейку входят два атома (центральный и любой 

соседний) – говорят, что кристаллическая решетка состоит из двух 

подрешеток А и B, смещенных друг относительно друга на любой из векторов M�̅. 
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Несложно найти вектора обратной решетки �m�,� = 2� & �8? ;  Ã �√8?'. 

Важное значение имеют вершины шестиугольной зоны Бриллюэна графена – 

точки ², ²’ =  }2� 3=⁄ , Ã 2� 3√3=⁄ ~. 

 
Обратная решетка и зона Бриллюэна графена 

Для описания графена уместно использовать приближение сильной 

связи. Потенциал, в котором движется четвертый электрон, состоит из двух 

частей – сумм одноатомных потенциалов по всем узлам подрешетки A и по 

всем узлам подрешетки B: 

�.�/ = 4 �.� − �?/ +�G
4 �.� − �./�/  

Будем считать, что нам известны собственные значения и собственные 

функции электрона, находящегося в потенциале одного узла: 

− ℏ�2� ��,� + �.�/,� = 3�,� 

Для снятия вырождения строим Блоховские функции для первой и 

второй подрешеток: 

,0 = 1√K 4 $���1  ,�  .� − �0/�1  

,2 = 1√K 4 $���3  ,�  .� − �2/�3  
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Функции ,0 и ,2 эквивалентны и ортогональны, так как в их скалярном 

произведении возникает интеграл: 

6 $��.�1��3/78� = 0 

Полную волновую функцию ищем в виде: 

1 = = 10.�/ + � 12.�/ 

Подставим в ее в полное уравнение Шредингера: 

��1 = =��,0 + ���,2 = 3.=,0 + �,2/ 

где E – интересующая нас собственная энергия. Домножая на сопряженные 

функции ,0 и ,2, получаем систему линейных уравнений относительно a и b. 

º�00= + �02� = 3=�20= + �22� = 3� 

�00 = �22 – диагональные элементы гамильтониана 

�02 = �20∗  – недиагональные элементы гамильтониана 

Из равенства нулю детерминанта получаем два решения (2 зоны – 

верхняя и нижняя): 

3 = �00  Ã |�02| – точное решение (приближения пока не 

используются). 

∆3 = 2 |�02| – ширина запрещенной зоны. Уровень Ферми проходит в 

середине запрещенной зоны. 

Теперь воспользуемся приближением сильной связи и найдем 

матричные элементы: 

�00 = 6 ,0∗ ��,0.�/ 78� = 

= 1K 4 $��.�1��1 /  6 ,�∗ .� − �0Z/ ∙�� ,� .� − �0/ 78��1,�1 
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= 4 $���£ 6 ,�∗ .� − ��/ � Ŵ�2� + 4 �.� − �?/ +�G
4 �.� − �./�/ �,� .�/78��£

= 

= 3� + 4 $���£ 6 ,�∗ .� − ��/ ��.�/ − �.�/��£
,� .�/78� 

Этот интеграл убывает по мере роста длины вектора решетки Браве Rm. 

Поэтому в сумме сохраним только ближайшие Rm, а остальными 

пренебрежем): 

�00 ≈ 3� + .$��m ?m( + $��m ?m� + $��m .?m(�?m�/ + к. с. / ∙ 
∙6 ,� .�̅ − =m�/��.�/ − �.�/� ,� .�/78� 

Введем обозначения:  

.$��m ?m( + $��m ?m� + $��m .?m(�?m�/ + к. с. / =  s.x/ 

6 ,� .�̅ − =m�/��.�/ − �.�/� ,� .�/78� = 4� 

Тогда: 

�00 = 3� + 4� s.x/ 

Теперь аналогичным образом найдем недиагональный матричный 

элемент: 

�02 = 1K 4 $��.�1��3/  6 ,�∗ .� − �2/ ∙ �� ,� .� − �0/ 78��1,�3 = 

(пусть начало координат соответствует некоему вектору RA = 0) 

= 4 $���3 6 ,�∗ .� − �2/ ��.�/ − �.�/��3 ,� .�/78� = 

= 4>.$��m5v( + $��m5v� + $��m5vf/ 
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Из оценок известно, что 4� ≈ 0.2 4> 

Модуль недиагонального матричного элемента: 

|�02| =  4>63 + s.x/ 

Тогда полное выражение для закона дисперсии имеет вид: 

3}xm~ = 3� + 4�s}xm~ Ã  4>a3 + s}xm~ 

Свойства полученного закона дисперсии определяются функцией f(k). 

Исследуем ее свойства: 

3 + s.x/ = 3 + }$��m ?m( + $��m ?m� + $��m .?m(�?m�/ + к. с. ~ = 

= 3 + 2 ®yz{�xm=m�� + yz{�xm=m�� + yz{ �xm.=m� − =m�/�° = 

= 3 + 2®yz{�xY=Y + xE=E� + yz{�xY=Y − xE=E� + yz{ �2xE=E�° = 

= 3 + 2 ®2 yz{ xY=Y yz{ xE=E +2 yz{� 2xE=E − 1 ° = 

= 1 + 4 yz{ xE=E .yz{ xY=Y + yz{ xE=E/ 

Чтобы определить ширину запрещенной зоны, нужно найти минимум 

этого выражения. Дифференцируя по двум компонентам волнового вектора и 

решая систему, получаем результат: 

! xY=Y = � xE=E = Ã �3 

}3 + s.x/~��- = 0 

Оказывается, что ширина самой узкой части запрещенной зоны равна 

нулю, т.е. две зоны соприкасаются в точках 

², ²Z ¶2�3= ; Ã 2�3√3=· 
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Как ведет себя функция f(k) в этих точках? Рассмотрим волновой вектор, 

чуть отклоняющийся от точки K или K' на Mx, и разложим 3 + s.x/ вблизи 

этих точек: x = ² + Mx. 

Несложно получить разложение: 3 + s.x/ ≈ 7T =�}MxY� + MxE�~. 

Отсюда выражение для энергии вблизи точки K: 

3.x/ = &3� + 4�s.x/' Ã  4>63 + s.x/ ≈ Ãℏ�.x − ²/ 

Член 3� + 4� s.x/ не учитываем, т.к. он общий для двух зон.  

� = 3 4>=2ℏ ≈ 10l м с⁄  

Таким образом, вблизи точек соприкосновения зон энергия зависит от 

волнового вектора линейно. Форма зон вблизи точек K и K’ – два конуса с 

общей вершиной. 

 
Закон дисперсии графена вблизи конических точек 

Линейный закон дисперсии характерен для безмассовых или 

релятивистских частиц. Благодаря этому графен – уникальная система, 

позволяющая наблюдать эффекты, невозможные в других материалах. 
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17. Уравнения Дирака для электронов в графене. 

Парадокс Клейна. 

Как описать движение электрона в графене? Будем считать, что 

состояние электрона в графене неоднородно: 

1.�/ = =.�/,0 .�/ + �.�/ ,2 .�/ 

где =.�/ и �.�/ – медленно зависящие от координат коэффициенты 

разложения на блоховские волновые функции подрешеток ,0 .�) и ,2 .�/. 

Подставим эту функцию в уравнение Шредингера и домножим на комплексно-

сопряженные функции ,0 .�) и ,2 .�/: 

⎩⎪⎨
⎪⎧− ℏ��  º�= 6 ,0∗ �,0.�/ 78� + �� 6 ,0∗ �,2.�/ 78�8+ �00= + �02� = 3=

− ℏ��  º�= 6 ,2∗ �,0.�/ 78� + �� 6 ,2∗ �,2.�/ 78�8+ �20= + �22� = 3� 

Будем интересоваться поведением коэффициентов разложения в точках 

K и K’, т.к. нас не интересует поведение электрона вдали от точек 

соприкосновения зон. Учитывая полученные ранее выражения для матричных 

элементов и поведения функции f(k), получаем систему уравнений, которая 

описывает поведение коэффициентов a и b. 

⎩⎪⎨
⎪⎧− ℏ��  º6 ,0∗ �,2.�/ 78�8�m� = 3=

− ℏ��  º6 ,2∗ �,0.�/ 78�8�m= = 3� 

Интегралы снова вычисляются в приближении сильной связи. Можно 

показать, что  

6 ,2∗ �,0.�/ 78� = 4Ï.$̅Y; P$̅E/ 

Здесь 4Ï ~ 4>, а .$̅Y; P$̅E/ – вектор, компоненты которого сдвинуты друг 

относительно друга на i по фазе. В результате получаем систему уравнений 
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⎩⎪⎨
⎪⎧−Pℏ� ¶ 99U − P 99�· � = 3=

−Pℏ� ¶ 99U + P 99�· = = 3� 

где V – скорость, которая уже упоминалась ранее. Система уравнений в 

матричном виде: 

Ã
⎝⎜
⎛ 0 −Pℏ� ¶ 99U − P 99�·

−Pℏ� ¶ 99U + P 99�· 0 ⎠⎟
⎞ &=�' = 3 &=�' 

Недиагональные элементы можно выразить через компоненты 

оператора импульса, а сама матрица может быть выражена через матрицы 

Паули. В результате получаем запись этой системы в матричной форме: 

�}+YŴY + +EŴE~ = �.+m, W̅¢/Ф = 3Ф 

+m – матрицы Паули, W̅¢ – двумерный вектор оператора импульса, Ф – матрица-

столбец. В результате система принимает форму уравнений Дирака (которыми 

обычно описывают движение релятивистских электронов). 

Вернемся к уравнениям в исходной дифференциальной форме и будем 

искать решение в виде =, � ~ $��ìY¤��@E: 

».ℏ�xY − Pℏ�xE/� = 3=.ℏ�xY + Pℏ�xE/= = 3� 

Определитель этой системы должен быть равен нулю, откуда снова 

получаем линейный закон дисперсии: 

3� = ℏ���}xY� + xE�~ = ℏ���x� 

3 = Ã ℏ�x 

Выражая b из одного из уравнений, получаем: 
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� = ℏ� .xY + PxE/3 = = Ã xY + PxE|x| = 

В результате двухкомпонентная волновая функция, которая описывает 

движение электрона в графене, имеет вид: 

Ф = 1√2 & 1q$�A' $��ìY¤��@E 

Здесь ªt� = �@�ì и q = {tQ.3/ = Ã1 («+» – в верхней зоне, «–» – в 

нижней).  

Мы отсчитываем энергию от какого-то нулевого уровня. Пусть нулевой 

уровень из-за какой-то примеси «подскакивает» – его положение может 

зависеть от координат. Эту неоднородность можно описывать как 

потенциальный барьер. Потенциал запишем в виде: 

O.U/ = º0, при U < 0, U Á 7 O> , при 0 < U < 7 

 
Потенциальный барьер вдоль оси x 

В результате мы получаем задачу о вероятности прохождения через 

потенциальный барьер, но не для уравнения Шредингера, как обычно, а для 

уравнений Дирака. 

Волновая функция перед барьером: 

Ф� = 1√2 & 1q$�A' $��ìY¤��@E + �√2 & 1−q$��A' $���ìY¤��@E 
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Первый член Ф1 отвечает за падающую волну, а второй – за отраженную. 

Далее нужно записать ВФ в области барьера и за ним, и сшить их. Если на 

барьер падает электрон с волновым вектором (kx,ky), при вхождении область 

барьера ky не меняется, а вот kx заменяется на qx. 

 
Волновые вектора при вхождении электрона в область барьера 

Для того, чтобы найти qx, нужно записать новый закон дисперсии: 

ℏ���}xE� + �Y�~ = . O> − 3/� 

Тогда ВФ внутри барьера: 

Ф� = ±√2 & 1q′$�AZ' $�CìY¤��@E + D√2 & 1−q′$��AZ' $��CìY¤��@E 

где qZ = {tQ.3 − O>/ и ªt�′ = �@Cì, F и G – какие-то амплитуды. ВФ в третьей 

области: 

Ф8 = ª√2 & 1q$�A' $��ìY¤��@E 

Нужно ввести граничные условия в точках x = 0 и в x = d (приравниваем 

Ф1 и Ф2 в точке 0, Ф2 и Ф3 в точке d). При этом будем искать коэффициент 

прохождения � = |ª|�: 

⎩⎪⎨
⎪⎧ 1 + � = ± + D         q}$�A − �$��A~ = q′}±$�AZ − D$��AZ~±$�Cìe + D$��Cìe = ªqZ}±$�A ¤�Cìe − �$��A ��Cìe~ = qª$�A 
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Решение системы для случая падения под произвольным углом � имеет 

вид: 

� = |ª|� = yz{� �′ yz{� �yz{� �Y7 yz{� � yz{� �′+ {PQ� �Y7 .1 − qqZ {PQ � {PQ �′/� 

При нормальном падении электрона на потенциальный барьер  xE = 0;  �,�Z = 0 → � = 1, т.е. электрон гарантировано проходит через 

барьер, независимо от его параметров. Этот неожиданный результат носит 

название парадокса Клейна.  
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18. Движение электронов в магнитном поле. 

Уровни Ландау. Квантовый эффект Холла 

При описании электронов в металлах часто можно использовать модель 

свободного Ферми газа, как нулевое приближение слабо связанных 

электронов. Запишем гамильтониан свободных электронов в магнитном поле: 

�� = 12� &W̅¢ − $y j̅'�
 

j̅ – векторный потенциал электромагнитного поля, для постоянного 

магнитного поля в направлении z его можно задать в виде: j.k�; 0; 0/, в 

других калибровках также можно записывать его в виде j.0; −kU; 0/ или j.2E� ; − 2Y� ; 0/. 
 Запишем уравнение Шредингера: 

12� »¶Pℏ 99U − $ky �·� − ℏ� 9�9�� − ℏ� 9�9��&1 = 31 

Ищем решение в виде: 1.U, �, �/ = $��E¯ · 1.U, �/ = ,.�/$��ìY · $��E¯: 

12� »−ℏ� 9�9�� + ¶ℏxY + $ky �·�&, = :3 − ℏ�x¯�2� ; , 

Член 
ℏ��E���  представляет собой энергию, соответствующую движению 

вдоль z. Выполним следующую замену 3 = 3 − ℏ��E��� , т.к. движение вдоль z 

нас не интересует. Перепишем уравнение: 

12� »−ℏ� 9�9�Ï� + $�k�y� �Ï�&, = 3, 

где �Ï = .� − �>/, где �> = − ℏ��ì�2 , – смещенная координата по оси y. Мы 

получили гамильтониан гармонического осциллятора, поэтому энергия 

электронов в магнитном поле имеет вид: 
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3 = ℏ¡� ¶Q + 12· + ℏ�x¯�2� + {t%2k 

Здесь ¡� = �2�� – циклотронная частота (собственная частота движения 

по окружности в классическом случае), 
ℏ��E���  – отвечает за движение вдоль 

магнитного поля, {t%2k – энергия, связанная со спином, где { – спин, t – 

гиромагнитное отношение, B – значение магнитного поля, %2 = �ℏ��� – 

магнетон Бора. 

Дискретные уровни энергии электрона в магнитном поле называют 

уровнями Ландау. Разница энергий между соседними уровнями Ландау 

пропорциональна магнитному полю, т.е. чем больше B, тем больше расстояние 

между уровнями. Поэтому чем больше магнитное поле, тем меньше уровней 

Ландау имеет энергию меньше уровня Ферми, то есть тем меньше уровней 

Ландау заполнено: чем больше k, тем меньше максимальный номер 

заполненного уровня � = Q�?Y. 

 
Уровни Ландау  

Волновая функция электрона в магнитном поле: 

1.U, �, �/ = Ф-.�Ï/ ∙ $��ìY¤��E¯ 

где Ф-.�Ï/ – волновая функция гармонического осциллятора относительно 

координаты �Ï = .� − �>/, где �> = − ℏ��ì�2 . В направлении x есть волны kx, а в 
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направлении y состояния описываются локализованными функциями 

гармонического осциллятора. Хотя в другой калибровке мы могли бы 

получить все наоборот. 

 
Волновые функции электрона в магнитном поле 

Так как ∆xY = �nÓì  – изменение волнового вектора, ∆�> = ℏ�∆�ì�2 = �nℏ��2Óì – разница 

координат орбиты y0 у соседних независимых гармонических осцилляторов. 

Теперь можно посчитать плотность таких состояний (сколько независимых 

гармонических осцилляторов помещается на единице площади металла) 

Чтобы понять, сколько влезает уровней Ландау на длине Ly, нужно 

поделить Ly на шаг. Тогда общее число орбит N, которое влезает в кристалл: 

K = ÔE∆� = $k2�ℏy ÔYÔE 

где S=LxLy – площадь кристалла. Получаем «фактор вырождения» – 

поверхностную плотность уровней Ландау, которая зависит только от 

магнитного поля: 

Ü = Kq = $k2�ℏy 

 Эффект Холла – это возникновение в проводнике разности 

потенциалов (напряжения Холла) на краях образца, помещённого в 

поперечное магнитное поле, при протекании тока, перпендикулярного полю. 
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Пусть B – магнитное поле, I – ток, a и d – размеры сечения проводника, UH – 

холловское напряжение. Тогда холловское сопротивление �ß = �FG . 

 
Проводник с прямоугольным сечением (измеряем разность 

потенциалов между точками на противоположных гранях) 

Как его посчитать? На каждый электрон действует сила Лоренца (V – 

скорость, c – скорость света): 

±Ó = $k �y = $Eß 

� = Q$� – плотность тока (n – концентрация), тогда холловская разность 

потенциалов: 

Oß = 7 · 3ß = k7�y = k7�Q$y = k7­Q$y7= = k­Q$y= 

В классическом случае холловское сопротивление пропорционально 

магнитному полю: 

�ß = kQ$y= 

Однако в квантовом случае поверхностная плотность электронов 

выражается через число заполненных уровней Ландау и фактор вырождения: 

Q= = Qu = Ü� = $k2�ℏy � 

Тогда холловское сопротивление: 
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�ß = k$y.Q=/ = k$y� ¶ $k2�ℏy·�� = 2�ℏ$�� = ℎ$� ∙ 1� 

Величина 
H�� – универсальный атомный масштаб сопротивления, а m – 

целое число, которое тем меньше, чем больше магнитное поле. 

Квантовый эффект Холла: холловское сопротивление увеличивается 

скачками с ростом магнитного поля B.  

При малых значениях B сопротивление меняется линейно, так как 

скачки очень малы. 

*Квантовый эффект Холла наблюдается при низких температурах, 

чтобы тепловая энергия kT не размывала уровни Ландау. 

 
Поведение Холловского сопротивления при изменении магнитного поля 
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Квантовый эффект Холла для графена 

Уравнения Дирака с учетом магнитного поля имеют вид: 

⎩⎪⎨
⎪⎧¶−Pℏ� 99U + $k �y � − ℏ� 99�· � = 3=

¶−Pℏ� 99U + $k �y � + ℏ� 99�· = = 3� 

Считаем, что =, � ~ $��Y (в направлении x – гармоническая зависимость). 

Выражая b из второго уравнения и подставляя в первое, получаем:  

3�= = ¶ℏ�x + $k �y � − ℏ� 99�· ¶ℏ�x + $k �y � + ℏ� 99�· = = 

= »¶ℏ�x + $k �y �·� − ℏ��� 9�9�� − ℏ� ∙ $k �y& = 

Разделим на 2ℏ���: 

− 12 9�=9�� + 12 ¶$kℏy � + x·� = = 12 : 3�ℏ��� + $kℏy; = 

Это снова уравнение гармонического осциллятора с собственной 

энергией: 

12 : 3�ℏ��� + $kℏy; = $kℏy ¶Q + 12· 

12 : 3�ℏ���; = $kℏy Q 

Отсюда получаем выражение для уровней Ландау в графене: 

3 = Ã`2ℏ��$ky Q 

Эти уровни отличаются от обычных тем, что зависимость от квантового числа 

корневая, кроме того существует уровень n = 0, лежащий на конической точке. 
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Холловское сопротивление в графене имеет вид: 

�ß = ℎ4$� &Q + 12' 

Расстояние между уровнями Ландау в графене достаточно велико, 

поэтому квантовый эффект Холла в графене можно наблюдать даже при 

комнатной температуре. 


